Newspace parameters
Level: | \( N \) | \(=\) | \( 231 = 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 231.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.6294412113\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
197.1 | −5.54421 | −4.13734 | − | 3.14363i | 22.7383 | − | 1.50076i | 22.9383 | + | 17.4289i | 7.00000i | −81.7123 | 7.23519 | + | 26.0125i | 8.32054i | |||||||||||
197.2 | −5.54421 | −4.13734 | + | 3.14363i | 22.7383 | 1.50076i | 22.9383 | − | 17.4289i | − | 7.00000i | −81.7123 | 7.23519 | − | 26.0125i | − | 8.32054i | ||||||||||
197.3 | −5.11246 | 4.16723 | − | 3.10390i | 18.1372 | − | 2.14203i | −21.3048 | + | 15.8685i | 7.00000i | −51.8260 | 7.73167 | − | 25.8693i | 10.9511i | |||||||||||
197.4 | −5.11246 | 4.16723 | + | 3.10390i | 18.1372 | 2.14203i | −21.3048 | − | 15.8685i | − | 7.00000i | −51.8260 | 7.73167 | + | 25.8693i | − | 10.9511i | ||||||||||
197.5 | −5.08922 | 2.66331 | − | 4.46170i | 17.9001 | 19.3058i | −13.5542 | + | 22.7066i | − | 7.00000i | −50.3840 | −12.8135 | − | 23.7658i | − | 98.2512i | ||||||||||
197.6 | −5.08922 | 2.66331 | + | 4.46170i | 17.9001 | − | 19.3058i | −13.5542 | − | 22.7066i | 7.00000i | −50.3840 | −12.8135 | + | 23.7658i | 98.2512i | |||||||||||
197.7 | −4.99045 | 0.361427 | − | 5.18357i | 16.9046 | − | 15.1552i | −1.80369 | + | 25.8683i | − | 7.00000i | −44.4381 | −26.7387 | − | 3.74697i | 75.6313i | ||||||||||
197.8 | −4.99045 | 0.361427 | + | 5.18357i | 16.9046 | 15.1552i | −1.80369 | − | 25.8683i | 7.00000i | −44.4381 | −26.7387 | + | 3.74697i | − | 75.6313i | |||||||||||
197.9 | −4.29970 | 5.14904 | − | 0.698150i | 10.4874 | − | 10.0912i | −22.1393 | + | 3.00183i | − | 7.00000i | −10.6952 | 26.0252 | − | 7.18960i | 43.3891i | ||||||||||
197.10 | −4.29970 | 5.14904 | + | 0.698150i | 10.4874 | 10.0912i | −22.1393 | − | 3.00183i | 7.00000i | −10.6952 | 26.0252 | + | 7.18960i | − | 43.3891i | |||||||||||
197.11 | −4.20854 | −4.96824 | − | 1.52205i | 9.71180 | − | 14.9587i | 20.9090 | + | 6.40560i | − | 7.00000i | −7.20418 | 22.3667 | + | 15.1238i | 62.9541i | ||||||||||
197.12 | −4.20854 | −4.96824 | + | 1.52205i | 9.71180 | 14.9587i | 20.9090 | − | 6.40560i | 7.00000i | −7.20418 | 22.3667 | − | 15.1238i | − | 62.9541i | |||||||||||
197.13 | −4.03592 | −4.73038 | − | 2.15024i | 8.28864 | 6.50649i | 19.0914 | + | 8.67819i | − | 7.00000i | −1.16491 | 17.7529 | + | 20.3429i | − | 26.2597i | ||||||||||
197.14 | −4.03592 | −4.73038 | + | 2.15024i | 8.28864 | − | 6.50649i | 19.0914 | − | 8.67819i | 7.00000i | −1.16491 | 17.7529 | − | 20.3429i | 26.2597i | |||||||||||
197.15 | −3.86705 | 0.0225447 | − | 5.19610i | 6.95404 | − | 11.8293i | −0.0871816 | + | 20.0936i | 7.00000i | 4.04476 | −26.9990 | − | 0.234290i | 45.7445i | |||||||||||
197.16 | −3.86705 | 0.0225447 | + | 5.19610i | 6.95404 | 11.8293i | −0.0871816 | − | 20.0936i | − | 7.00000i | 4.04476 | −26.9990 | + | 0.234290i | − | 45.7445i | ||||||||||
197.17 | −3.16170 | 2.47782 | − | 4.56732i | 1.99637 | 4.01053i | −7.83413 | + | 14.4405i | 7.00000i | 18.9817 | −14.7208 | − | 22.6340i | − | 12.6801i | |||||||||||
197.18 | −3.16170 | 2.47782 | + | 4.56732i | 1.99637 | − | 4.01053i | −7.83413 | − | 14.4405i | − | 7.00000i | 18.9817 | −14.7208 | + | 22.6340i | 12.6801i | ||||||||||
197.19 | −2.91575 | −0.805139 | − | 5.13340i | 0.501627 | 6.15350i | 2.34759 | + | 14.9677i | − | 7.00000i | 21.8634 | −25.7035 | + | 8.26620i | − | 17.9421i | ||||||||||
197.20 | −2.91575 | −0.805139 | + | 5.13340i | 0.501627 | − | 6.15350i | 2.34759 | − | 14.9677i | 7.00000i | 21.8634 | −25.7035 | − | 8.26620i | 17.9421i | |||||||||||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 231.4.g.a | ✓ | 72 |
3.b | odd | 2 | 1 | inner | 231.4.g.a | ✓ | 72 |
11.b | odd | 2 | 1 | inner | 231.4.g.a | ✓ | 72 |
33.d | even | 2 | 1 | inner | 231.4.g.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
231.4.g.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
231.4.g.a | ✓ | 72 | 3.b | odd | 2 | 1 | inner |
231.4.g.a | ✓ | 72 | 11.b | odd | 2 | 1 | inner |
231.4.g.a | ✓ | 72 | 33.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(231, [\chi])\).