Properties

Label 231.4.g
Level $231$
Weight $4$
Character orbit 231.g
Rep. character $\chi_{231}(197,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(231, [\chi])\).

Total New Old
Modular forms 100 72 28
Cusp forms 92 72 20
Eisenstein series 8 0 8

Trace form

\( 72 q + 288 q^{4} + 4 q^{9} + 16 q^{12} + 20 q^{15} + 1248 q^{16} + 384 q^{22} - 1824 q^{25} - 900 q^{27} + 264 q^{31} - 964 q^{33} - 1008 q^{34} + 48 q^{36} - 24 q^{37} + 1524 q^{45} + 192 q^{48} - 3528 q^{49}+ \cdots - 1260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(231, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
231.4.g.a 231.g 33.d $72$ $13.629$ None 231.4.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(231, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(231, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)