Properties

Label 231.4.a.k
Level 231231
Weight 44
Character orbit 231.a
Self dual yes
Analytic conductor 13.62913.629
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [231,4,Mod(1,231)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(231, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("231.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 231=3711 231 = 3 \cdot 7 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 231.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1,-15,21,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.629441211313.6294412113
Analytic rank: 00
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x5x430x3+11x2+185x+162 x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q23q3+(β2+β1+4)q4+(β4+4)q5+3β1q6+7q7+(β4β3+β2+8)q8+9q9+(β4+3β3+2β2+4)q10++99q99+O(q100) q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + \beta_1 + 4) q^{4} + ( - \beta_{4} + 4) q^{5} + 3 \beta_1 q^{6} + 7 q^{7} + ( - \beta_{4} - \beta_{3} + \beta_{2} + \cdots - 8) q^{8} + 9 q^{9} + (\beta_{4} + 3 \beta_{3} + 2 \beta_{2} + \cdots - 4) q^{10}+ \cdots + 99 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq215q3+21q4+21q5+3q6+35q742q8+45q923q10+55q1163q12+101q137q1463q157q1620q179q18+237q19++495q99+O(q100) 5 q - q^{2} - 15 q^{3} + 21 q^{4} + 21 q^{5} + 3 q^{6} + 35 q^{7} - 42 q^{8} + 45 q^{9} - 23 q^{10} + 55 q^{11} - 63 q^{12} + 101 q^{13} - 7 q^{14} - 63 q^{15} - 7 q^{16} - 20 q^{17} - 9 q^{18} + 237 q^{19}+ \cdots + 495 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x5x430x3+11x2+185x+162 x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν12 \nu^{2} - \nu - 12 Copy content Toggle raw display
β3\beta_{3}== ν42ν326ν2+40ν+105 \nu^{4} - 2\nu^{3} - 26\nu^{2} + 40\nu + 105 Copy content Toggle raw display
β4\beta_{4}== ν4+3ν3+27ν260ν125 -\nu^{4} + 3\nu^{3} + 27\nu^{2} - 60\nu - 125 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+12 \beta_{2} + \beta _1 + 12 Copy content Toggle raw display
ν3\nu^{3}== β4+β3β2+19β1+8 \beta_{4} + \beta_{3} - \beta_{2} + 19\beta _1 + 8 Copy content Toggle raw display
ν4\nu^{4}== 2β4+3β3+24β2+24β1+223 2\beta_{4} + 3\beta_{3} + 24\beta_{2} + 24\beta _1 + 223 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
4.79323
3.63074
−1.28053
−1.59998
−4.54345
−4.79323 −3.00000 14.9751 −6.25369 14.3797 7.00000 −33.4331 9.00000 29.9754
1.2 −3.63074 −3.00000 5.18226 21.1113 10.8922 7.00000 10.2305 9.00000 −76.6494
1.3 1.28053 −3.00000 −6.36023 16.8824 −3.84160 7.00000 −18.3888 9.00000 21.6185
1.4 1.59998 −3.00000 −5.44007 −17.2762 −4.79994 7.00000 −21.5038 9.00000 −27.6416
1.5 4.54345 −3.00000 12.6430 6.53625 −13.6304 7.00000 21.0952 9.00000 29.6972
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
77 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 231.4.a.k 5
3.b odd 2 1 693.4.a.p 5
7.b odd 2 1 1617.4.a.n 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.4.a.k 5 1.a even 1 1 trivial
693.4.a.p 5 3.b odd 2 1
1617.4.a.n 5 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(231))S_{4}^{\mathrm{new}}(\Gamma_0(231)):

T25+T2430T2311T22+185T2162 T_{2}^{5} + T_{2}^{4} - 30T_{2}^{3} - 11T_{2}^{2} + 185T_{2} - 162 Copy content Toggle raw display
T5521T54335T53+7089T52+10522T5251688 T_{5}^{5} - 21T_{5}^{4} - 335T_{5}^{3} + 7089T_{5}^{2} + 10522T_{5} - 251688 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5+T4+162 T^{5} + T^{4} + \cdots - 162 Copy content Toggle raw display
33 (T+3)5 (T + 3)^{5} Copy content Toggle raw display
55 T521T4+251688 T^{5} - 21 T^{4} + \cdots - 251688 Copy content Toggle raw display
77 (T7)5 (T - 7)^{5} Copy content Toggle raw display
1111 (T11)5 (T - 11)^{5} Copy content Toggle raw display
1313 T5101T4+699186044 T^{5} - 101 T^{4} + \cdots - 699186044 Copy content Toggle raw display
1717 T5+20T4+21815808 T^{5} + 20 T^{4} + \cdots - 21815808 Copy content Toggle raw display
1919 T5++1631765016 T^{5} + \cdots + 1631765016 Copy content Toggle raw display
2323 T5++14963596032 T^{5} + \cdots + 14963596032 Copy content Toggle raw display
2929 T5+14067075228 T^{5} + \cdots - 14067075228 Copy content Toggle raw display
3131 T5+2282048512 T^{5} + \cdots - 2282048512 Copy content Toggle raw display
3737 T5++64616128484 T^{5} + \cdots + 64616128484 Copy content Toggle raw display
4141 T5++5484263424 T^{5} + \cdots + 5484263424 Copy content Toggle raw display
4343 T5++454049016064 T^{5} + \cdots + 454049016064 Copy content Toggle raw display
4747 T5+640713805344 T^{5} + \cdots - 640713805344 Copy content Toggle raw display
5353 T5++2832799483104 T^{5} + \cdots + 2832799483104 Copy content Toggle raw display
5959 T5++116007727392 T^{5} + \cdots + 116007727392 Copy content Toggle raw display
6161 T5++25076058464 T^{5} + \cdots + 25076058464 Copy content Toggle raw display
6767 T5++49084085096528 T^{5} + \cdots + 49084085096528 Copy content Toggle raw display
7171 T5++182626537218048 T^{5} + \cdots + 182626537218048 Copy content Toggle raw display
7373 T5+70171874704736 T^{5} + \cdots - 70171874704736 Copy content Toggle raw display
7979 T5++39894707683328 T^{5} + \cdots + 39894707683328 Copy content Toggle raw display
8383 T5++8874602922624 T^{5} + \cdots + 8874602922624 Copy content Toggle raw display
8989 T5++76327550636448 T^{5} + \cdots + 76327550636448 Copy content Toggle raw display
9797 T5++812915857189728 T^{5} + \cdots + 812915857189728 Copy content Toggle raw display
show more
show less