gp: [N,k,chi] = [231,4,Mod(1,231)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(231, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("231.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [5,-1,-15,21,21]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − x 4 − 30 x 3 + 11 x 2 + 185 x + 162 x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 x 5 − x 4 − 3 0 x 3 + 1 1 x 2 + 1 8 5 x + 1 6 2
x^5 - x^4 - 30*x^3 + 11*x^2 + 185*x + 162
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − ν − 12 \nu^{2} - \nu - 12 ν 2 − ν − 1 2
v^2 - v - 12
β 3 \beta_{3} β 3 = = =
ν 4 − 2 ν 3 − 26 ν 2 + 40 ν + 105 \nu^{4} - 2\nu^{3} - 26\nu^{2} + 40\nu + 105 ν 4 − 2 ν 3 − 2 6 ν 2 + 4 0 ν + 1 0 5
v^4 - 2*v^3 - 26*v^2 + 40*v + 105
β 4 \beta_{4} β 4 = = =
− ν 4 + 3 ν 3 + 27 ν 2 − 60 ν − 125 -\nu^{4} + 3\nu^{3} + 27\nu^{2} - 60\nu - 125 − ν 4 + 3 ν 3 + 2 7 ν 2 − 6 0 ν − 1 2 5
-v^4 + 3*v^3 + 27*v^2 - 60*v - 125
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + β 1 + 12 \beta_{2} + \beta _1 + 12 β 2 + β 1 + 1 2
b2 + b1 + 12
ν 3 \nu^{3} ν 3 = = =
β 4 + β 3 − β 2 + 19 β 1 + 8 \beta_{4} + \beta_{3} - \beta_{2} + 19\beta _1 + 8 β 4 + β 3 − β 2 + 1 9 β 1 + 8
b4 + b3 - b2 + 19*b1 + 8
ν 4 \nu^{4} ν 4 = = =
2 β 4 + 3 β 3 + 24 β 2 + 24 β 1 + 223 2\beta_{4} + 3\beta_{3} + 24\beta_{2} + 24\beta _1 + 223 2 β 4 + 3 β 3 + 2 4 β 2 + 2 4 β 1 + 2 2 3
2*b4 + 3*b3 + 24*b2 + 24*b1 + 223
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
11 11 1 1
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 231 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(231)) S 4 n e w ( Γ 0 ( 2 3 1 ) ) :
T 2 5 + T 2 4 − 30 T 2 3 − 11 T 2 2 + 185 T 2 − 162 T_{2}^{5} + T_{2}^{4} - 30T_{2}^{3} - 11T_{2}^{2} + 185T_{2} - 162 T 2 5 + T 2 4 − 3 0 T 2 3 − 1 1 T 2 2 + 1 8 5 T 2 − 1 6 2
T2^5 + T2^4 - 30*T2^3 - 11*T2^2 + 185*T2 - 162
T 5 5 − 21 T 5 4 − 335 T 5 3 + 7089 T 5 2 + 10522 T 5 − 251688 T_{5}^{5} - 21T_{5}^{4} - 335T_{5}^{3} + 7089T_{5}^{2} + 10522T_{5} - 251688 T 5 5 − 2 1 T 5 4 − 3 3 5 T 5 3 + 7 0 8 9 T 5 2 + 1 0 5 2 2 T 5 − 2 5 1 6 8 8
T5^5 - 21*T5^4 - 335*T5^3 + 7089*T5^2 + 10522*T5 - 251688
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 + T 4 + ⋯ − 162 T^{5} + T^{4} + \cdots - 162 T 5 + T 4 + ⋯ − 1 6 2
T^5 + T^4 - 30*T^3 - 11*T^2 + 185*T - 162
3 3 3
( T + 3 ) 5 (T + 3)^{5} ( T + 3 ) 5
(T + 3)^5
5 5 5
T 5 − 21 T 4 + ⋯ − 251688 T^{5} - 21 T^{4} + \cdots - 251688 T 5 − 2 1 T 4 + ⋯ − 2 5 1 6 8 8
T^5 - 21*T^4 - 335*T^3 + 7089*T^2 + 10522*T - 251688
7 7 7
( T − 7 ) 5 (T - 7)^{5} ( T − 7 ) 5
(T - 7)^5
11 11 1 1
( T − 11 ) 5 (T - 11)^{5} ( T − 1 1 ) 5
(T - 11)^5
13 13 1 3
T 5 − 101 T 4 + ⋯ − 699186044 T^{5} - 101 T^{4} + \cdots - 699186044 T 5 − 1 0 1 T 4 + ⋯ − 6 9 9 1 8 6 0 4 4
T^5 - 101*T^4 - 5277*T^3 + 620733*T^2 + 3143032*T - 699186044
17 17 1 7
T 5 + 20 T 4 + ⋯ − 21815808 T^{5} + 20 T^{4} + \cdots - 21815808 T 5 + 2 0 T 4 + ⋯ − 2 1 8 1 5 8 0 8
T^5 + 20*T^4 - 16344*T^3 - 100984*T^2 + 9247904*T - 21815808
19 19 1 9
T 5 + ⋯ + 1631765016 T^{5} + \cdots + 1631765016 T 5 + ⋯ + 1 6 3 1 7 6 5 0 1 6
T^5 - 237*T^4 + 3973*T^3 + 2082521*T^2 - 132041586*T + 1631765016
23 23 2 3
T 5 + ⋯ + 14963596032 T^{5} + \cdots + 14963596032 T 5 + ⋯ + 1 4 9 6 3 5 9 6 0 3 2
T^5 + 80*T^4 - 40448*T^3 - 4125624*T^2 + 134028896*T + 14963596032
29 29 2 9
T 5 + ⋯ − 14067075228 T^{5} + \cdots - 14067075228 T 5 + ⋯ − 1 4 0 6 7 0 7 5 2 2 8
T^5 + 11*T^4 - 63197*T^3 + 317469*T^2 + 952001576*T - 14067075228
31 31 3 1
T 5 + ⋯ − 2282048512 T^{5} + \cdots - 2282048512 T 5 + ⋯ − 2 2 8 2 0 4 8 5 1 2
T^5 - 316*T^4 + 21472*T^3 + 1063000*T^2 - 71084064*T - 2282048512
37 37 3 7
T 5 + ⋯ + 64616128484 T^{5} + \cdots + 64616128484 T 5 + ⋯ + 6 4 6 1 6 1 2 8 4 8 4
T^5 - 319*T^4 - 26737*T^3 + 18443455*T^2 - 1990866676*T + 64616128484
41 41 4 1
T 5 + ⋯ + 5484263424 T^{5} + \cdots + 5484263424 T 5 + ⋯ + 5 4 8 4 2 6 3 4 2 4
T^5 - 1190*T^4 + 478056*T^3 - 68360096*T^2 + 1410136064*T + 5484263424
43 43 4 3
T 5 + ⋯ + 454049016064 T^{5} + \cdots + 454049016064 T 5 + ⋯ + 4 5 4 0 4 9 0 1 6 0 6 4
T^5 - 88*T^4 - 181856*T^3 + 6313240*T^2 + 6824717408*T + 454049016064
47 47 4 7
T 5 + ⋯ − 640713805344 T^{5} + \cdots - 640713805344 T 5 + ⋯ − 6 4 0 7 1 3 8 0 5 3 4 4
T^5 - 377*T^4 - 211987*T^3 + 50125037*T^2 + 13610396374*T - 640713805344
53 53 5 3
T 5 + ⋯ + 2832799483104 T^{5} + \cdots + 2832799483104 T 5 + ⋯ + 2 8 3 2 7 9 9 4 8 3 1 0 4
T^5 + 992*T^4 - 27028*T^3 - 252361016*T^2 - 51924569792*T + 2832799483104
59 59 5 9
T 5 + ⋯ + 116007727392 T^{5} + \cdots + 116007727392 T 5 + ⋯ + 1 1 6 0 0 7 7 2 7 3 9 2
T^5 - 71*T^4 - 516297*T^3 + 62751859*T^2 + 37264664660*T + 116007727392
61 61 6 1
T 5 + ⋯ + 25076058464 T^{5} + \cdots + 25076058464 T 5 + ⋯ + 2 5 0 7 6 0 5 8 4 6 4
T^5 + 574*T^4 - 56824*T^3 - 15403088*T^2 + 835952080*T + 25076058464
67 67 6 7
T 5 + ⋯ + 49084085096528 T^{5} + \cdots + 49084085096528 T 5 + ⋯ + 4 9 0 8 4 0 8 5 0 9 6 5 2 8
T^5 + 527*T^4 - 829349*T^3 - 310089395*T^2 + 158670034776*T + 49084085096528
71 71 7 1
T 5 + ⋯ + 182626537218048 T^{5} + \cdots + 182626537218048 T 5 + ⋯ + 1 8 2 6 2 6 5 3 7 2 1 8 0 4 8
T^5 + 1156*T^4 - 833232*T^3 - 1210626944*T^2 - 24609381376*T + 182626537218048
73 73 7 3
T 5 + ⋯ − 70171874704736 T^{5} + \cdots - 70171874704736 T 5 + ⋯ − 7 0 1 7 1 8 7 4 7 0 4 7 3 6
T^5 - 1061*T^4 - 741439*T^3 + 743135177*T^2 + 120657450490*T - 70171874704736
79 79 7 9
T 5 + ⋯ + 39894707683328 T^{5} + \cdots + 39894707683328 T 5 + ⋯ + 3 9 8 9 4 7 0 7 6 8 3 3 2 8
T^5 - 588*T^4 - 1297264*T^3 + 1405942016*T^2 - 444149304320*T + 39894707683328
83 83 8 3
T 5 + ⋯ + 8874602922624 T^{5} + \cdots + 8874602922624 T 5 + ⋯ + 8 8 7 4 6 0 2 9 2 2 6 2 4
T^5 + 212*T^4 - 1686280*T^3 - 35681032*T^2 + 101622256384*T + 8874602922624
89 89 8 9
T 5 + ⋯ + 76327550636448 T^{5} + \cdots + 76327550636448 T 5 + ⋯ + 7 6 3 2 7 5 5 0 6 3 6 4 4 8
T^5 - 1030*T^4 - 1881064*T^3 + 1078211120*T^2 + 828720951952*T + 76327550636448
97 97 9 7
T 5 + ⋯ + 812915857189728 T^{5} + \cdots + 812915857189728 T 5 + ⋯ + 8 1 2 9 1 5 8 5 7 1 8 9 7 2 8
T^5 - 2488*T^4 + 135980*T^3 + 3958980136*T^2 - 3408913111296*T + 812915857189728
show more
show less