Properties

Label 231.4.a.k.1.2
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.63074\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.63074 q^{2} -3.00000 q^{3} +5.18226 q^{4} +21.1113 q^{5} +10.8922 q^{6} +7.00000 q^{7} +10.2305 q^{8} +9.00000 q^{9} -76.6494 q^{10} +11.0000 q^{11} -15.5468 q^{12} +87.3602 q^{13} -25.4152 q^{14} -63.3338 q^{15} -78.6023 q^{16} -28.2691 q^{17} -32.6766 q^{18} -97.9284 q^{19} +109.404 q^{20} -21.0000 q^{21} -39.9381 q^{22} -112.065 q^{23} -30.6914 q^{24} +320.685 q^{25} -317.182 q^{26} -27.0000 q^{27} +36.2758 q^{28} +14.9213 q^{29} +229.948 q^{30} +138.440 q^{31} +203.540 q^{32} -33.0000 q^{33} +102.638 q^{34} +147.779 q^{35} +46.6403 q^{36} +206.944 q^{37} +355.552 q^{38} -262.081 q^{39} +215.978 q^{40} +321.063 q^{41} +76.2455 q^{42} +285.198 q^{43} +57.0048 q^{44} +190.001 q^{45} +406.877 q^{46} -303.300 q^{47} +235.807 q^{48} +49.0000 q^{49} -1164.32 q^{50} +84.8072 q^{51} +452.723 q^{52} -554.639 q^{53} +98.0299 q^{54} +232.224 q^{55} +71.6134 q^{56} +293.785 q^{57} -54.1752 q^{58} -693.110 q^{59} -328.212 q^{60} +156.761 q^{61} -502.638 q^{62} +63.0000 q^{63} -110.184 q^{64} +1844.28 q^{65} +119.814 q^{66} +584.667 q^{67} -146.498 q^{68} +336.194 q^{69} -536.546 q^{70} +363.745 q^{71} +92.0743 q^{72} -747.424 q^{73} -751.360 q^{74} -962.055 q^{75} -507.490 q^{76} +77.0000 q^{77} +951.546 q^{78} +419.344 q^{79} -1659.39 q^{80} +81.0000 q^{81} -1165.70 q^{82} +1178.20 q^{83} -108.827 q^{84} -596.796 q^{85} -1035.48 q^{86} -44.7638 q^{87} +112.535 q^{88} -397.908 q^{89} -689.845 q^{90} +611.521 q^{91} -580.748 q^{92} -415.319 q^{93} +1101.20 q^{94} -2067.39 q^{95} -610.621 q^{96} -1333.21 q^{97} -177.906 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 15 q^{3} + 21 q^{4} + 21 q^{5} + 3 q^{6} + 35 q^{7} - 42 q^{8} + 45 q^{9} - 23 q^{10} + 55 q^{11} - 63 q^{12} + 101 q^{13} - 7 q^{14} - 63 q^{15} - 7 q^{16} - 20 q^{17} - 9 q^{18} + 237 q^{19}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.63074 −1.28366 −0.641830 0.766847i \(-0.721824\pi\)
−0.641830 + 0.766847i \(0.721824\pi\)
\(3\) −3.00000 −0.577350
\(4\) 5.18226 0.647782
\(5\) 21.1113 1.88825 0.944124 0.329590i \(-0.106911\pi\)
0.944124 + 0.329590i \(0.106911\pi\)
\(6\) 10.8922 0.741121
\(7\) 7.00000 0.377964
\(8\) 10.2305 0.452128
\(9\) 9.00000 0.333333
\(10\) −76.6494 −2.42387
\(11\) 11.0000 0.301511
\(12\) −15.5468 −0.373997
\(13\) 87.3602 1.86380 0.931898 0.362719i \(-0.118152\pi\)
0.931898 + 0.362719i \(0.118152\pi\)
\(14\) −25.4152 −0.485178
\(15\) −63.3338 −1.09018
\(16\) −78.6023 −1.22816
\(17\) −28.2691 −0.403309 −0.201655 0.979457i \(-0.564632\pi\)
−0.201655 + 0.979457i \(0.564632\pi\)
\(18\) −32.6766 −0.427887
\(19\) −97.9284 −1.18244 −0.591219 0.806511i \(-0.701353\pi\)
−0.591219 + 0.806511i \(0.701353\pi\)
\(20\) 109.404 1.22317
\(21\) −21.0000 −0.218218
\(22\) −39.9381 −0.387038
\(23\) −112.065 −1.01596 −0.507980 0.861369i \(-0.669608\pi\)
−0.507980 + 0.861369i \(0.669608\pi\)
\(24\) −30.6914 −0.261036
\(25\) 320.685 2.56548
\(26\) −317.182 −2.39248
\(27\) −27.0000 −0.192450
\(28\) 36.2758 0.244839
\(29\) 14.9213 0.0955451 0.0477725 0.998858i \(-0.484788\pi\)
0.0477725 + 0.998858i \(0.484788\pi\)
\(30\) 229.948 1.39942
\(31\) 138.440 0.802081 0.401040 0.916060i \(-0.368649\pi\)
0.401040 + 0.916060i \(0.368649\pi\)
\(32\) 203.540 1.12441
\(33\) −33.0000 −0.174078
\(34\) 102.638 0.517712
\(35\) 147.779 0.713691
\(36\) 46.6403 0.215927
\(37\) 206.944 0.919498 0.459749 0.888049i \(-0.347939\pi\)
0.459749 + 0.888049i \(0.347939\pi\)
\(38\) 355.552 1.51785
\(39\) −262.081 −1.07606
\(40\) 215.978 0.853729
\(41\) 321.063 1.22297 0.611483 0.791257i \(-0.290573\pi\)
0.611483 + 0.791257i \(0.290573\pi\)
\(42\) 76.2455 0.280118
\(43\) 285.198 1.01145 0.505724 0.862696i \(-0.331226\pi\)
0.505724 + 0.862696i \(0.331226\pi\)
\(44\) 57.0048 0.195314
\(45\) 190.001 0.629416
\(46\) 406.877 1.30415
\(47\) −303.300 −0.941293 −0.470647 0.882322i \(-0.655979\pi\)
−0.470647 + 0.882322i \(0.655979\pi\)
\(48\) 235.807 0.709079
\(49\) 49.0000 0.142857
\(50\) −1164.32 −3.29320
\(51\) 84.8072 0.232851
\(52\) 452.723 1.20733
\(53\) −554.639 −1.43746 −0.718732 0.695287i \(-0.755277\pi\)
−0.718732 + 0.695287i \(0.755277\pi\)
\(54\) 98.0299 0.247040
\(55\) 232.224 0.569328
\(56\) 71.6134 0.170888
\(57\) 293.785 0.682681
\(58\) −54.1752 −0.122647
\(59\) −693.110 −1.52941 −0.764705 0.644380i \(-0.777115\pi\)
−0.764705 + 0.644380i \(0.777115\pi\)
\(60\) −328.212 −0.706200
\(61\) 156.761 0.329037 0.164518 0.986374i \(-0.447393\pi\)
0.164518 + 0.986374i \(0.447393\pi\)
\(62\) −502.638 −1.02960
\(63\) 63.0000 0.125988
\(64\) −110.184 −0.215203
\(65\) 1844.28 3.51931
\(66\) 119.814 0.223456
\(67\) 584.667 1.06610 0.533048 0.846085i \(-0.321047\pi\)
0.533048 + 0.846085i \(0.321047\pi\)
\(68\) −146.498 −0.261257
\(69\) 336.194 0.586565
\(70\) −536.546 −0.916136
\(71\) 363.745 0.608008 0.304004 0.952671i \(-0.401676\pi\)
0.304004 + 0.952671i \(0.401676\pi\)
\(72\) 92.0743 0.150709
\(73\) −747.424 −1.19835 −0.599173 0.800619i \(-0.704504\pi\)
−0.599173 + 0.800619i \(0.704504\pi\)
\(74\) −751.360 −1.18032
\(75\) −962.055 −1.48118
\(76\) −507.490 −0.765962
\(77\) 77.0000 0.113961
\(78\) 951.546 1.38130
\(79\) 419.344 0.597213 0.298607 0.954376i \(-0.403478\pi\)
0.298607 + 0.954376i \(0.403478\pi\)
\(80\) −1659.39 −2.31907
\(81\) 81.0000 0.111111
\(82\) −1165.70 −1.56987
\(83\) 1178.20 1.55812 0.779061 0.626948i \(-0.215696\pi\)
0.779061 + 0.626948i \(0.215696\pi\)
\(84\) −108.827 −0.141358
\(85\) −596.796 −0.761548
\(86\) −1035.48 −1.29835
\(87\) −44.7638 −0.0551630
\(88\) 112.535 0.136322
\(89\) −397.908 −0.473911 −0.236956 0.971520i \(-0.576150\pi\)
−0.236956 + 0.971520i \(0.576150\pi\)
\(90\) −689.845 −0.807956
\(91\) 611.521 0.704449
\(92\) −580.748 −0.658121
\(93\) −415.319 −0.463082
\(94\) 1101.20 1.20830
\(95\) −2067.39 −2.23274
\(96\) −610.621 −0.649180
\(97\) −1333.21 −1.39553 −0.697766 0.716325i \(-0.745823\pi\)
−0.697766 + 0.716325i \(0.745823\pi\)
\(98\) −177.906 −0.183380
\(99\) 99.0000 0.100504
\(100\) 1661.87 1.66187
\(101\) 747.399 0.736326 0.368163 0.929761i \(-0.379987\pi\)
0.368163 + 0.929761i \(0.379987\pi\)
\(102\) −307.913 −0.298901
\(103\) 548.716 0.524918 0.262459 0.964943i \(-0.415467\pi\)
0.262459 + 0.964943i \(0.415467\pi\)
\(104\) 893.737 0.842674
\(105\) −443.336 −0.412050
\(106\) 2013.75 1.84521
\(107\) 273.875 0.247444 0.123722 0.992317i \(-0.460517\pi\)
0.123722 + 0.992317i \(0.460517\pi\)
\(108\) −139.921 −0.124666
\(109\) 2026.77 1.78100 0.890500 0.454983i \(-0.150355\pi\)
0.890500 + 0.454983i \(0.150355\pi\)
\(110\) −843.144 −0.730824
\(111\) −620.833 −0.530872
\(112\) −550.216 −0.464201
\(113\) −1048.04 −0.872490 −0.436245 0.899828i \(-0.643692\pi\)
−0.436245 + 0.899828i \(0.643692\pi\)
\(114\) −1066.66 −0.876330
\(115\) −2365.83 −1.91839
\(116\) 77.3258 0.0618924
\(117\) 786.242 0.621266
\(118\) 2516.50 1.96324
\(119\) −197.884 −0.152437
\(120\) −647.935 −0.492901
\(121\) 121.000 0.0909091
\(122\) −569.160 −0.422371
\(123\) −963.189 −0.706080
\(124\) 717.431 0.519574
\(125\) 4131.16 2.95602
\(126\) −228.736 −0.161726
\(127\) −905.819 −0.632901 −0.316451 0.948609i \(-0.602491\pi\)
−0.316451 + 0.948609i \(0.602491\pi\)
\(128\) −1228.27 −0.848166
\(129\) −855.593 −0.583959
\(130\) −6696.11 −4.51760
\(131\) 1887.45 1.25883 0.629416 0.777069i \(-0.283294\pi\)
0.629416 + 0.777069i \(0.283294\pi\)
\(132\) −171.015 −0.112764
\(133\) −685.499 −0.446919
\(134\) −2122.77 −1.36850
\(135\) −570.004 −0.363394
\(136\) −289.206 −0.182347
\(137\) 690.753 0.430767 0.215383 0.976530i \(-0.430900\pi\)
0.215383 + 0.976530i \(0.430900\pi\)
\(138\) −1220.63 −0.752950
\(139\) −1466.05 −0.894592 −0.447296 0.894386i \(-0.647613\pi\)
−0.447296 + 0.894386i \(0.647613\pi\)
\(140\) 765.828 0.462316
\(141\) 909.899 0.543456
\(142\) −1320.66 −0.780476
\(143\) 960.962 0.561956
\(144\) −707.420 −0.409387
\(145\) 315.006 0.180413
\(146\) 2713.70 1.53827
\(147\) −147.000 −0.0824786
\(148\) 1072.44 0.595634
\(149\) 1367.88 0.752088 0.376044 0.926602i \(-0.377284\pi\)
0.376044 + 0.926602i \(0.377284\pi\)
\(150\) 3492.97 1.90133
\(151\) 93.9161 0.0506145 0.0253072 0.999680i \(-0.491944\pi\)
0.0253072 + 0.999680i \(0.491944\pi\)
\(152\) −1001.85 −0.534613
\(153\) −254.422 −0.134436
\(154\) −279.567 −0.146287
\(155\) 2922.64 1.51453
\(156\) −1358.17 −0.697055
\(157\) −72.3063 −0.0367558 −0.0183779 0.999831i \(-0.505850\pi\)
−0.0183779 + 0.999831i \(0.505850\pi\)
\(158\) −1522.53 −0.766619
\(159\) 1663.92 0.829920
\(160\) 4296.99 2.12317
\(161\) −784.453 −0.383997
\(162\) −294.090 −0.142629
\(163\) 34.3598 0.0165108 0.00825542 0.999966i \(-0.497372\pi\)
0.00825542 + 0.999966i \(0.497372\pi\)
\(164\) 1663.83 0.792216
\(165\) −696.671 −0.328702
\(166\) −4277.73 −2.00010
\(167\) 379.079 0.175653 0.0878263 0.996136i \(-0.472008\pi\)
0.0878263 + 0.996136i \(0.472008\pi\)
\(168\) −214.840 −0.0986623
\(169\) 5434.80 2.47374
\(170\) 2166.81 0.977569
\(171\) −881.356 −0.394146
\(172\) 1477.97 0.655198
\(173\) −1398.29 −0.614507 −0.307253 0.951628i \(-0.599410\pi\)
−0.307253 + 0.951628i \(0.599410\pi\)
\(174\) 162.525 0.0708105
\(175\) 2244.80 0.969661
\(176\) −864.625 −0.370304
\(177\) 2079.33 0.883006
\(178\) 1444.70 0.608341
\(179\) −2591.03 −1.08191 −0.540956 0.841051i \(-0.681938\pi\)
−0.540956 + 0.841051i \(0.681938\pi\)
\(180\) 984.636 0.407725
\(181\) 3408.35 1.39967 0.699837 0.714303i \(-0.253256\pi\)
0.699837 + 0.714303i \(0.253256\pi\)
\(182\) −2220.27 −0.904273
\(183\) −470.284 −0.189969
\(184\) −1146.48 −0.459344
\(185\) 4368.85 1.73624
\(186\) 1507.92 0.594439
\(187\) −310.960 −0.121602
\(188\) −1571.78 −0.609753
\(189\) −189.000 −0.0727393
\(190\) 7506.16 2.86607
\(191\) −2785.74 −1.05533 −0.527667 0.849451i \(-0.676933\pi\)
−0.527667 + 0.849451i \(0.676933\pi\)
\(192\) 330.551 0.124247
\(193\) −4931.75 −1.83935 −0.919677 0.392676i \(-0.871549\pi\)
−0.919677 + 0.392676i \(0.871549\pi\)
\(194\) 4840.53 1.79139
\(195\) −5532.85 −2.03188
\(196\) 253.931 0.0925403
\(197\) 28.9860 0.0104831 0.00524154 0.999986i \(-0.498332\pi\)
0.00524154 + 0.999986i \(0.498332\pi\)
\(198\) −359.443 −0.129013
\(199\) −499.588 −0.177964 −0.0889821 0.996033i \(-0.528361\pi\)
−0.0889821 + 0.996033i \(0.528361\pi\)
\(200\) 3280.76 1.15992
\(201\) −1754.00 −0.615511
\(202\) −2713.61 −0.945192
\(203\) 104.449 0.0361126
\(204\) 439.493 0.150837
\(205\) 6778.04 2.30926
\(206\) −1992.24 −0.673816
\(207\) −1008.58 −0.338654
\(208\) −6866.71 −2.28904
\(209\) −1077.21 −0.356518
\(210\) 1609.64 0.528931
\(211\) 3435.50 1.12090 0.560450 0.828189i \(-0.310628\pi\)
0.560450 + 0.828189i \(0.310628\pi\)
\(212\) −2874.29 −0.931164
\(213\) −1091.23 −0.351034
\(214\) −994.369 −0.317634
\(215\) 6020.88 1.90986
\(216\) −276.223 −0.0870120
\(217\) 969.078 0.303158
\(218\) −7358.66 −2.28620
\(219\) 2242.27 0.691866
\(220\) 1203.44 0.368801
\(221\) −2469.59 −0.751687
\(222\) 2254.08 0.681459
\(223\) −707.522 −0.212463 −0.106231 0.994341i \(-0.533878\pi\)
−0.106231 + 0.994341i \(0.533878\pi\)
\(224\) 1424.78 0.424988
\(225\) 2886.17 0.855160
\(226\) 3805.16 1.11998
\(227\) −500.427 −0.146319 −0.0731596 0.997320i \(-0.523308\pi\)
−0.0731596 + 0.997320i \(0.523308\pi\)
\(228\) 1522.47 0.442228
\(229\) 3362.25 0.970236 0.485118 0.874449i \(-0.338777\pi\)
0.485118 + 0.874449i \(0.338777\pi\)
\(230\) 8589.69 2.46255
\(231\) −231.000 −0.0657952
\(232\) 152.652 0.0431986
\(233\) −2963.07 −0.833122 −0.416561 0.909108i \(-0.636765\pi\)
−0.416561 + 0.909108i \(0.636765\pi\)
\(234\) −2854.64 −0.797494
\(235\) −6403.03 −1.77740
\(236\) −3591.88 −0.990725
\(237\) −1258.03 −0.344801
\(238\) 718.463 0.195677
\(239\) −844.179 −0.228474 −0.114237 0.993454i \(-0.536442\pi\)
−0.114237 + 0.993454i \(0.536442\pi\)
\(240\) 4978.18 1.33892
\(241\) 3616.63 0.966672 0.483336 0.875435i \(-0.339425\pi\)
0.483336 + 0.875435i \(0.339425\pi\)
\(242\) −439.319 −0.116696
\(243\) −243.000 −0.0641500
\(244\) 812.378 0.213144
\(245\) 1034.45 0.269750
\(246\) 3497.09 0.906366
\(247\) −8555.04 −2.20382
\(248\) 1416.30 0.362643
\(249\) −3534.60 −0.899582
\(250\) −14999.2 −3.79452
\(251\) −6190.73 −1.55679 −0.778397 0.627772i \(-0.783967\pi\)
−0.778397 + 0.627772i \(0.783967\pi\)
\(252\) 326.482 0.0816129
\(253\) −1232.71 −0.306324
\(254\) 3288.79 0.812430
\(255\) 1790.39 0.439680
\(256\) 5341.01 1.30396
\(257\) −4990.16 −1.21120 −0.605598 0.795771i \(-0.707066\pi\)
−0.605598 + 0.795771i \(0.707066\pi\)
\(258\) 3106.43 0.749605
\(259\) 1448.61 0.347537
\(260\) 9557.55 2.27975
\(261\) 134.291 0.0318484
\(262\) −6852.82 −1.61591
\(263\) −672.993 −0.157789 −0.0788946 0.996883i \(-0.525139\pi\)
−0.0788946 + 0.996883i \(0.525139\pi\)
\(264\) −337.606 −0.0787053
\(265\) −11709.1 −2.71429
\(266\) 2488.87 0.573692
\(267\) 1193.72 0.273613
\(268\) 3029.89 0.690598
\(269\) −3558.01 −0.806453 −0.403226 0.915100i \(-0.632111\pi\)
−0.403226 + 0.915100i \(0.632111\pi\)
\(270\) 2069.53 0.466474
\(271\) 3305.52 0.740944 0.370472 0.928844i \(-0.379196\pi\)
0.370472 + 0.928844i \(0.379196\pi\)
\(272\) 2222.01 0.495328
\(273\) −1834.56 −0.406714
\(274\) −2507.94 −0.552958
\(275\) 3527.54 0.773522
\(276\) 1742.24 0.379967
\(277\) 1428.48 0.309851 0.154926 0.987926i \(-0.450486\pi\)
0.154926 + 0.987926i \(0.450486\pi\)
\(278\) 5322.83 1.14835
\(279\) 1245.96 0.267360
\(280\) 1511.85 0.322679
\(281\) −7156.92 −1.51938 −0.759691 0.650284i \(-0.774650\pi\)
−0.759691 + 0.650284i \(0.774650\pi\)
\(282\) −3303.60 −0.697612
\(283\) −2470.58 −0.518942 −0.259471 0.965751i \(-0.583548\pi\)
−0.259471 + 0.965751i \(0.583548\pi\)
\(284\) 1885.02 0.393857
\(285\) 6202.17 1.28907
\(286\) −3489.00 −0.721360
\(287\) 2247.44 0.462238
\(288\) 1831.86 0.374804
\(289\) −4113.86 −0.837342
\(290\) −1143.71 −0.231589
\(291\) 3999.62 0.805711
\(292\) −3873.34 −0.776268
\(293\) 4544.57 0.906131 0.453066 0.891477i \(-0.350330\pi\)
0.453066 + 0.891477i \(0.350330\pi\)
\(294\) 533.718 0.105874
\(295\) −14632.4 −2.88791
\(296\) 2117.14 0.415730
\(297\) −297.000 −0.0580259
\(298\) −4966.41 −0.965425
\(299\) −9789.99 −1.89354
\(300\) −4985.62 −0.959483
\(301\) 1996.38 0.382291
\(302\) −340.985 −0.0649717
\(303\) −2242.20 −0.425118
\(304\) 7697.39 1.45222
\(305\) 3309.43 0.621303
\(306\) 923.738 0.172571
\(307\) 6711.77 1.24776 0.623878 0.781522i \(-0.285556\pi\)
0.623878 + 0.781522i \(0.285556\pi\)
\(308\) 399.034 0.0738217
\(309\) −1646.15 −0.303062
\(310\) −10611.3 −1.94414
\(311\) −3627.08 −0.661328 −0.330664 0.943749i \(-0.607273\pi\)
−0.330664 + 0.943749i \(0.607273\pi\)
\(312\) −2681.21 −0.486518
\(313\) 4355.14 0.786475 0.393238 0.919437i \(-0.371355\pi\)
0.393238 + 0.919437i \(0.371355\pi\)
\(314\) 262.525 0.0471820
\(315\) 1330.01 0.237897
\(316\) 2173.15 0.386864
\(317\) −9227.18 −1.63486 −0.817429 0.576029i \(-0.804602\pi\)
−0.817429 + 0.576029i \(0.804602\pi\)
\(318\) −6041.25 −1.06534
\(319\) 164.134 0.0288079
\(320\) −2326.12 −0.406356
\(321\) −821.626 −0.142862
\(322\) 2848.14 0.492922
\(323\) 2768.35 0.476888
\(324\) 419.763 0.0719758
\(325\) 28015.1 4.78154
\(326\) −124.751 −0.0211943
\(327\) −6080.30 −1.02826
\(328\) 3284.63 0.552937
\(329\) −2123.10 −0.355775
\(330\) 2529.43 0.421941
\(331\) 837.223 0.139027 0.0695135 0.997581i \(-0.477855\pi\)
0.0695135 + 0.997581i \(0.477855\pi\)
\(332\) 6105.73 1.00932
\(333\) 1862.50 0.306499
\(334\) −1376.34 −0.225478
\(335\) 12343.0 2.01305
\(336\) 1650.65 0.268007
\(337\) −9563.00 −1.54579 −0.772893 0.634536i \(-0.781191\pi\)
−0.772893 + 0.634536i \(0.781191\pi\)
\(338\) −19732.3 −3.17544
\(339\) 3144.12 0.503732
\(340\) −3092.75 −0.493317
\(341\) 1522.84 0.241837
\(342\) 3199.97 0.505949
\(343\) 343.000 0.0539949
\(344\) 2917.71 0.457303
\(345\) 7097.48 1.10758
\(346\) 5076.81 0.788818
\(347\) −7584.04 −1.17329 −0.586646 0.809843i \(-0.699552\pi\)
−0.586646 + 0.809843i \(0.699552\pi\)
\(348\) −231.977 −0.0357336
\(349\) −1800.32 −0.276128 −0.138064 0.990423i \(-0.544088\pi\)
−0.138064 + 0.990423i \(0.544088\pi\)
\(350\) −8150.27 −1.24471
\(351\) −2358.73 −0.358688
\(352\) 2238.94 0.339023
\(353\) 9042.84 1.36346 0.681731 0.731603i \(-0.261228\pi\)
0.681731 + 0.731603i \(0.261228\pi\)
\(354\) −7549.50 −1.13348
\(355\) 7679.11 1.14807
\(356\) −2062.06 −0.306991
\(357\) 593.651 0.0880093
\(358\) 9407.33 1.38881
\(359\) 8915.34 1.31068 0.655339 0.755335i \(-0.272526\pi\)
0.655339 + 0.755335i \(0.272526\pi\)
\(360\) 1943.80 0.284576
\(361\) 2730.97 0.398159
\(362\) −12374.8 −1.79671
\(363\) −363.000 −0.0524864
\(364\) 3169.06 0.456330
\(365\) −15779.1 −2.26278
\(366\) 1707.48 0.243856
\(367\) −11721.9 −1.66724 −0.833622 0.552335i \(-0.813737\pi\)
−0.833622 + 0.552335i \(0.813737\pi\)
\(368\) 8808.53 1.24776
\(369\) 2889.57 0.407655
\(370\) −15862.2 −2.22874
\(371\) −3882.48 −0.543310
\(372\) −2152.29 −0.299976
\(373\) −8089.21 −1.12291 −0.561453 0.827509i \(-0.689757\pi\)
−0.561453 + 0.827509i \(0.689757\pi\)
\(374\) 1129.01 0.156096
\(375\) −12393.5 −1.70666
\(376\) −3102.90 −0.425585
\(377\) 1303.52 0.178077
\(378\) 686.209 0.0933725
\(379\) −10580.4 −1.43398 −0.716989 0.697084i \(-0.754480\pi\)
−0.716989 + 0.697084i \(0.754480\pi\)
\(380\) −10713.8 −1.44633
\(381\) 2717.46 0.365406
\(382\) 10114.3 1.35469
\(383\) 10512.0 1.40245 0.701224 0.712941i \(-0.252637\pi\)
0.701224 + 0.712941i \(0.252637\pi\)
\(384\) 3684.82 0.489689
\(385\) 1625.57 0.215186
\(386\) 17905.9 2.36110
\(387\) 2566.78 0.337149
\(388\) −6909.02 −0.904001
\(389\) 1019.47 0.132878 0.0664388 0.997790i \(-0.478836\pi\)
0.0664388 + 0.997790i \(0.478836\pi\)
\(390\) 20088.3 2.60824
\(391\) 3167.96 0.409746
\(392\) 501.294 0.0645897
\(393\) −5662.34 −0.726787
\(394\) −105.241 −0.0134567
\(395\) 8852.87 1.12769
\(396\) 513.044 0.0651046
\(397\) 11793.5 1.49093 0.745467 0.666543i \(-0.232227\pi\)
0.745467 + 0.666543i \(0.232227\pi\)
\(398\) 1813.87 0.228445
\(399\) 2056.50 0.258029
\(400\) −25206.6 −3.15082
\(401\) −5342.21 −0.665280 −0.332640 0.943054i \(-0.607939\pi\)
−0.332640 + 0.943054i \(0.607939\pi\)
\(402\) 6368.31 0.790106
\(403\) 12094.1 1.49492
\(404\) 3873.21 0.476979
\(405\) 1710.01 0.209805
\(406\) −379.226 −0.0463563
\(407\) 2276.39 0.277239
\(408\) 867.619 0.105278
\(409\) −8535.63 −1.03193 −0.515965 0.856610i \(-0.672567\pi\)
−0.515965 + 0.856610i \(0.672567\pi\)
\(410\) −24609.3 −2.96431
\(411\) −2072.26 −0.248703
\(412\) 2843.59 0.340033
\(413\) −4851.77 −0.578063
\(414\) 3661.90 0.434716
\(415\) 24873.3 2.94212
\(416\) 17781.3 2.09568
\(417\) 4398.14 0.516493
\(418\) 3911.08 0.457648
\(419\) 4300.54 0.501420 0.250710 0.968062i \(-0.419336\pi\)
0.250710 + 0.968062i \(0.419336\pi\)
\(420\) −2297.48 −0.266918
\(421\) −5917.77 −0.685070 −0.342535 0.939505i \(-0.611285\pi\)
−0.342535 + 0.939505i \(0.611285\pi\)
\(422\) −12473.4 −1.43885
\(423\) −2729.70 −0.313764
\(424\) −5674.23 −0.649917
\(425\) −9065.47 −1.03468
\(426\) 3961.99 0.450608
\(427\) 1097.33 0.124364
\(428\) 1419.29 0.160290
\(429\) −2882.89 −0.324445
\(430\) −21860.2 −2.45161
\(431\) 8110.20 0.906391 0.453196 0.891411i \(-0.350284\pi\)
0.453196 + 0.891411i \(0.350284\pi\)
\(432\) 2122.26 0.236360
\(433\) −4242.54 −0.470862 −0.235431 0.971891i \(-0.575650\pi\)
−0.235431 + 0.971891i \(0.575650\pi\)
\(434\) −3518.47 −0.389152
\(435\) −945.019 −0.104161
\(436\) 10503.2 1.15370
\(437\) 10974.3 1.20131
\(438\) −8141.10 −0.888120
\(439\) −595.983 −0.0647944 −0.0323972 0.999475i \(-0.510314\pi\)
−0.0323972 + 0.999475i \(0.510314\pi\)
\(440\) 2375.76 0.257409
\(441\) 441.000 0.0476190
\(442\) 8966.44 0.964910
\(443\) −4284.60 −0.459521 −0.229760 0.973247i \(-0.573794\pi\)
−0.229760 + 0.973247i \(0.573794\pi\)
\(444\) −3217.31 −0.343890
\(445\) −8400.33 −0.894862
\(446\) 2568.83 0.272730
\(447\) −4103.64 −0.434218
\(448\) −771.286 −0.0813389
\(449\) −704.286 −0.0740252 −0.0370126 0.999315i \(-0.511784\pi\)
−0.0370126 + 0.999315i \(0.511784\pi\)
\(450\) −10478.9 −1.09773
\(451\) 3531.69 0.368738
\(452\) −5431.22 −0.565184
\(453\) −281.748 −0.0292223
\(454\) 1816.92 0.187824
\(455\) 12910.0 1.33017
\(456\) 3005.56 0.308659
\(457\) −7013.21 −0.717865 −0.358932 0.933364i \(-0.616859\pi\)
−0.358932 + 0.933364i \(0.616859\pi\)
\(458\) −12207.5 −1.24545
\(459\) 763.265 0.0776169
\(460\) −12260.3 −1.24270
\(461\) 1032.99 0.104363 0.0521813 0.998638i \(-0.483383\pi\)
0.0521813 + 0.998638i \(0.483383\pi\)
\(462\) 838.700 0.0844586
\(463\) 12593.3 1.26406 0.632029 0.774945i \(-0.282222\pi\)
0.632029 + 0.774945i \(0.282222\pi\)
\(464\) −1172.84 −0.117345
\(465\) −8767.91 −0.874413
\(466\) 10758.1 1.06944
\(467\) −18527.1 −1.83583 −0.917914 0.396779i \(-0.870128\pi\)
−0.917914 + 0.396779i \(0.870128\pi\)
\(468\) 4074.51 0.402445
\(469\) 4092.67 0.402946
\(470\) 23247.7 2.28157
\(471\) 216.919 0.0212210
\(472\) −7090.85 −0.691489
\(473\) 3137.17 0.304963
\(474\) 4567.58 0.442607
\(475\) −31404.2 −3.03352
\(476\) −1025.48 −0.0987457
\(477\) −4991.76 −0.479155
\(478\) 3064.99 0.293283
\(479\) −15402.2 −1.46920 −0.734599 0.678501i \(-0.762630\pi\)
−0.734599 + 0.678501i \(0.762630\pi\)
\(480\) −12891.0 −1.22581
\(481\) 18078.7 1.71376
\(482\) −13131.0 −1.24088
\(483\) 2353.36 0.221701
\(484\) 627.053 0.0588893
\(485\) −28145.7 −2.63511
\(486\) 882.269 0.0823468
\(487\) 6816.82 0.634291 0.317146 0.948377i \(-0.397276\pi\)
0.317146 + 0.948377i \(0.397276\pi\)
\(488\) 1603.74 0.148767
\(489\) −103.079 −0.00953254
\(490\) −3755.82 −0.346267
\(491\) 6232.66 0.572864 0.286432 0.958101i \(-0.407531\pi\)
0.286432 + 0.958101i \(0.407531\pi\)
\(492\) −4991.49 −0.457386
\(493\) −421.810 −0.0385342
\(494\) 31061.1 2.82896
\(495\) 2090.01 0.189776
\(496\) −10881.7 −0.985084
\(497\) 2546.21 0.229806
\(498\) 12833.2 1.15476
\(499\) −19244.6 −1.72646 −0.863232 0.504807i \(-0.831564\pi\)
−0.863232 + 0.504807i \(0.831564\pi\)
\(500\) 21408.7 1.91486
\(501\) −1137.24 −0.101413
\(502\) 22476.9 1.99839
\(503\) 7177.94 0.636280 0.318140 0.948044i \(-0.396942\pi\)
0.318140 + 0.948044i \(0.396942\pi\)
\(504\) 644.520 0.0569627
\(505\) 15778.5 1.39037
\(506\) 4475.65 0.393215
\(507\) −16304.4 −1.42821
\(508\) −4694.19 −0.409982
\(509\) 15314.2 1.33357 0.666787 0.745248i \(-0.267669\pi\)
0.666787 + 0.745248i \(0.267669\pi\)
\(510\) −6500.43 −0.564399
\(511\) −5231.97 −0.452933
\(512\) −9565.62 −0.825674
\(513\) 2644.07 0.227560
\(514\) 18118.0 1.55476
\(515\) 11584.1 0.991176
\(516\) −4433.90 −0.378278
\(517\) −3336.29 −0.283811
\(518\) −5259.52 −0.446120
\(519\) 4194.86 0.354786
\(520\) 18867.9 1.59118
\(521\) 9650.62 0.811519 0.405760 0.913980i \(-0.367007\pi\)
0.405760 + 0.913980i \(0.367007\pi\)
\(522\) −487.576 −0.0408825
\(523\) −13116.1 −1.09661 −0.548305 0.836278i \(-0.684727\pi\)
−0.548305 + 0.836278i \(0.684727\pi\)
\(524\) 9781.23 0.815449
\(525\) −6734.39 −0.559834
\(526\) 2443.46 0.202548
\(527\) −3913.56 −0.323487
\(528\) 2593.87 0.213795
\(529\) 391.484 0.0321759
\(530\) 42512.8 3.48422
\(531\) −6237.99 −0.509804
\(532\) −3552.43 −0.289506
\(533\) 28048.1 2.27936
\(534\) −4334.09 −0.351226
\(535\) 5781.85 0.467236
\(536\) 5981.42 0.482011
\(537\) 7773.08 0.624642
\(538\) 12918.2 1.03521
\(539\) 539.000 0.0430730
\(540\) −2953.91 −0.235400
\(541\) 18625.5 1.48017 0.740086 0.672512i \(-0.234785\pi\)
0.740086 + 0.672512i \(0.234785\pi\)
\(542\) −12001.5 −0.951121
\(543\) −10225.1 −0.808102
\(544\) −5753.90 −0.453486
\(545\) 42787.6 3.36297
\(546\) 6660.82 0.522082
\(547\) −6967.57 −0.544628 −0.272314 0.962208i \(-0.587789\pi\)
−0.272314 + 0.962208i \(0.587789\pi\)
\(548\) 3579.66 0.279043
\(549\) 1410.85 0.109679
\(550\) −12807.6 −0.992939
\(551\) −1461.21 −0.112976
\(552\) 3439.43 0.265202
\(553\) 2935.41 0.225725
\(554\) −5186.42 −0.397744
\(555\) −13106.6 −1.00242
\(556\) −7597.43 −0.579501
\(557\) −17230.7 −1.31075 −0.655374 0.755305i \(-0.727489\pi\)
−0.655374 + 0.755305i \(0.727489\pi\)
\(558\) −4523.75 −0.343200
\(559\) 24914.9 1.88513
\(560\) −11615.7 −0.876527
\(561\) 932.879 0.0702071
\(562\) 25984.9 1.95037
\(563\) −20751.0 −1.55338 −0.776688 0.629885i \(-0.783102\pi\)
−0.776688 + 0.629885i \(0.783102\pi\)
\(564\) 4715.33 0.352041
\(565\) −22125.5 −1.64748
\(566\) 8970.01 0.666145
\(567\) 567.000 0.0419961
\(568\) 3721.29 0.274897
\(569\) −15953.4 −1.17540 −0.587700 0.809079i \(-0.699966\pi\)
−0.587700 + 0.809079i \(0.699966\pi\)
\(570\) −22518.5 −1.65473
\(571\) 10837.6 0.794291 0.397145 0.917756i \(-0.370001\pi\)
0.397145 + 0.917756i \(0.370001\pi\)
\(572\) 4979.95 0.364025
\(573\) 8357.21 0.609297
\(574\) −8159.87 −0.593356
\(575\) −35937.5 −2.60643
\(576\) −991.654 −0.0717342
\(577\) 9613.09 0.693584 0.346792 0.937942i \(-0.387271\pi\)
0.346792 + 0.937942i \(0.387271\pi\)
\(578\) 14936.3 1.07486
\(579\) 14795.3 1.06195
\(580\) 1632.44 0.116868
\(581\) 8247.39 0.588915
\(582\) −14521.6 −1.03426
\(583\) −6101.03 −0.433412
\(584\) −7646.50 −0.541806
\(585\) 16598.6 1.17310
\(586\) −16500.1 −1.16316
\(587\) 2169.43 0.152542 0.0762708 0.997087i \(-0.475699\pi\)
0.0762708 + 0.997087i \(0.475699\pi\)
\(588\) −761.792 −0.0534282
\(589\) −13557.2 −0.948411
\(590\) 53126.5 3.70709
\(591\) −86.9580 −0.00605241
\(592\) −16266.3 −1.12929
\(593\) 4688.62 0.324686 0.162343 0.986734i \(-0.448095\pi\)
0.162343 + 0.986734i \(0.448095\pi\)
\(594\) 1078.33 0.0744855
\(595\) −4177.57 −0.287838
\(596\) 7088.71 0.487189
\(597\) 1498.76 0.102748
\(598\) 35544.9 2.43067
\(599\) 941.884 0.0642476 0.0321238 0.999484i \(-0.489773\pi\)
0.0321238 + 0.999484i \(0.489773\pi\)
\(600\) −9842.29 −0.669683
\(601\) −8131.21 −0.551879 −0.275939 0.961175i \(-0.588989\pi\)
−0.275939 + 0.961175i \(0.588989\pi\)
\(602\) −7248.34 −0.490732
\(603\) 5262.00 0.355365
\(604\) 486.698 0.0327872
\(605\) 2554.46 0.171659
\(606\) 8140.83 0.545707
\(607\) −27616.5 −1.84666 −0.923328 0.384011i \(-0.874542\pi\)
−0.923328 + 0.384011i \(0.874542\pi\)
\(608\) −19932.4 −1.32955
\(609\) −313.346 −0.0208496
\(610\) −12015.7 −0.797542
\(611\) −26496.3 −1.75438
\(612\) −1318.48 −0.0870855
\(613\) 7289.82 0.480315 0.240158 0.970734i \(-0.422801\pi\)
0.240158 + 0.970734i \(0.422801\pi\)
\(614\) −24368.7 −1.60169
\(615\) −20334.1 −1.33325
\(616\) 787.747 0.0515247
\(617\) −13672.2 −0.892094 −0.446047 0.895010i \(-0.647169\pi\)
−0.446047 + 0.895010i \(0.647169\pi\)
\(618\) 5976.73 0.389028
\(619\) 20157.3 1.30887 0.654435 0.756118i \(-0.272906\pi\)
0.654435 + 0.756118i \(0.272906\pi\)
\(620\) 15145.9 0.981084
\(621\) 3025.75 0.195522
\(622\) 13169.0 0.848920
\(623\) −2785.35 −0.179122
\(624\) 20600.1 1.32158
\(625\) 47128.3 3.01621
\(626\) −15812.4 −1.00957
\(627\) 3231.64 0.205836
\(628\) −374.710 −0.0238098
\(629\) −5850.12 −0.370842
\(630\) −4828.91 −0.305379
\(631\) −21955.4 −1.38515 −0.692576 0.721345i \(-0.743524\pi\)
−0.692576 + 0.721345i \(0.743524\pi\)
\(632\) 4290.09 0.270017
\(633\) −10306.5 −0.647151
\(634\) 33501.5 2.09860
\(635\) −19123.0 −1.19507
\(636\) 8622.86 0.537608
\(637\) 4280.65 0.266257
\(638\) −595.927 −0.0369796
\(639\) 3273.70 0.202669
\(640\) −25930.4 −1.60155
\(641\) 3575.87 0.220340 0.110170 0.993913i \(-0.464860\pi\)
0.110170 + 0.993913i \(0.464860\pi\)
\(642\) 2983.11 0.183386
\(643\) 6676.04 0.409452 0.204726 0.978819i \(-0.434370\pi\)
0.204726 + 0.978819i \(0.434370\pi\)
\(644\) −4065.24 −0.248746
\(645\) −18062.6 −1.10266
\(646\) −10051.1 −0.612162
\(647\) −12366.4 −0.751430 −0.375715 0.926735i \(-0.622603\pi\)
−0.375715 + 0.926735i \(0.622603\pi\)
\(648\) 828.669 0.0502364
\(649\) −7624.21 −0.461135
\(650\) −101716. −6.13786
\(651\) −2907.23 −0.175028
\(652\) 178.061 0.0106954
\(653\) 19797.3 1.18642 0.593208 0.805049i \(-0.297861\pi\)
0.593208 + 0.805049i \(0.297861\pi\)
\(654\) 22076.0 1.31994
\(655\) 39846.4 2.37699
\(656\) −25236.3 −1.50200
\(657\) −6726.81 −0.399449
\(658\) 7708.41 0.456695
\(659\) −893.599 −0.0528220 −0.0264110 0.999651i \(-0.508408\pi\)
−0.0264110 + 0.999651i \(0.508408\pi\)
\(660\) −3610.33 −0.212927
\(661\) 16418.8 0.966137 0.483068 0.875583i \(-0.339522\pi\)
0.483068 + 0.875583i \(0.339522\pi\)
\(662\) −3039.74 −0.178463
\(663\) 7408.78 0.433986
\(664\) 12053.5 0.704470
\(665\) −14471.7 −0.843895
\(666\) −6762.24 −0.393441
\(667\) −1672.14 −0.0970700
\(668\) 1964.48 0.113785
\(669\) 2122.57 0.122665
\(670\) −44814.4 −2.58408
\(671\) 1724.38 0.0992083
\(672\) −4274.35 −0.245367
\(673\) −17447.6 −0.999339 −0.499670 0.866216i \(-0.666545\pi\)
−0.499670 + 0.866216i \(0.666545\pi\)
\(674\) 34720.8 1.98426
\(675\) −8658.50 −0.493727
\(676\) 28164.6 1.60244
\(677\) −23669.4 −1.34371 −0.671853 0.740685i \(-0.734501\pi\)
−0.671853 + 0.740685i \(0.734501\pi\)
\(678\) −11415.5 −0.646621
\(679\) −9332.45 −0.527462
\(680\) −6105.51 −0.344317
\(681\) 1501.28 0.0844775
\(682\) −5529.02 −0.310436
\(683\) −15236.3 −0.853586 −0.426793 0.904349i \(-0.640357\pi\)
−0.426793 + 0.904349i \(0.640357\pi\)
\(684\) −4567.41 −0.255321
\(685\) 14582.7 0.813394
\(686\) −1245.34 −0.0693111
\(687\) −10086.8 −0.560166
\(688\) −22417.2 −1.24222
\(689\) −48453.4 −2.67914
\(690\) −25769.1 −1.42176
\(691\) −8336.36 −0.458944 −0.229472 0.973315i \(-0.573700\pi\)
−0.229472 + 0.973315i \(0.573700\pi\)
\(692\) −7246.28 −0.398067
\(693\) 693.000 0.0379869
\(694\) 27535.7 1.50611
\(695\) −30950.1 −1.68921
\(696\) −457.955 −0.0249407
\(697\) −9076.15 −0.493234
\(698\) 6536.48 0.354455
\(699\) 8889.22 0.481003
\(700\) 11633.1 0.628129
\(701\) 798.786 0.0430381 0.0215191 0.999768i \(-0.493150\pi\)
0.0215191 + 0.999768i \(0.493150\pi\)
\(702\) 8563.91 0.460433
\(703\) −20265.7 −1.08725
\(704\) −1212.02 −0.0648860
\(705\) 19209.1 1.02618
\(706\) −32832.2 −1.75022
\(707\) 5231.79 0.278305
\(708\) 10775.6 0.571995
\(709\) −22352.2 −1.18400 −0.591999 0.805939i \(-0.701661\pi\)
−0.591999 + 0.805939i \(0.701661\pi\)
\(710\) −27880.9 −1.47373
\(711\) 3774.09 0.199071
\(712\) −4070.79 −0.214268
\(713\) −15514.2 −0.814883
\(714\) −2155.39 −0.112974
\(715\) 20287.1 1.06111
\(716\) −13427.4 −0.700844
\(717\) 2532.54 0.131910
\(718\) −32369.3 −1.68247
\(719\) 13763.8 0.713914 0.356957 0.934121i \(-0.383814\pi\)
0.356957 + 0.934121i \(0.383814\pi\)
\(720\) −14934.5 −0.773024
\(721\) 3841.01 0.198400
\(722\) −9915.44 −0.511100
\(723\) −10849.9 −0.558108
\(724\) 17663.0 0.906684
\(725\) 4785.02 0.245119
\(726\) 1317.96 0.0673747
\(727\) 16014.2 0.816966 0.408483 0.912766i \(-0.366058\pi\)
0.408483 + 0.912766i \(0.366058\pi\)
\(728\) 6256.16 0.318501
\(729\) 729.000 0.0370370
\(730\) 57289.6 2.90463
\(731\) −8062.27 −0.407926
\(732\) −2437.13 −0.123059
\(733\) 21073.3 1.06188 0.530942 0.847408i \(-0.321838\pi\)
0.530942 + 0.847408i \(0.321838\pi\)
\(734\) 42559.2 2.14017
\(735\) −3103.35 −0.155740
\(736\) −22809.7 −1.14236
\(737\) 6431.33 0.321440
\(738\) −10491.3 −0.523291
\(739\) 4570.10 0.227488 0.113744 0.993510i \(-0.463716\pi\)
0.113744 + 0.993510i \(0.463716\pi\)
\(740\) 22640.5 1.12471
\(741\) 25665.1 1.27238
\(742\) 14096.3 0.697426
\(743\) 7122.27 0.351670 0.175835 0.984420i \(-0.443737\pi\)
0.175835 + 0.984420i \(0.443737\pi\)
\(744\) −4248.91 −0.209372
\(745\) 28877.7 1.42013
\(746\) 29369.8 1.44143
\(747\) 10603.8 0.519374
\(748\) −1611.47 −0.0787718
\(749\) 1917.13 0.0935251
\(750\) 44997.5 2.19077
\(751\) 31096.8 1.51097 0.755485 0.655166i \(-0.227401\pi\)
0.755485 + 0.655166i \(0.227401\pi\)
\(752\) 23840.0 1.15606
\(753\) 18572.2 0.898816
\(754\) −4732.75 −0.228590
\(755\) 1982.69 0.0955727
\(756\) −979.447 −0.0471192
\(757\) 2783.78 0.133657 0.0668284 0.997764i \(-0.478712\pi\)
0.0668284 + 0.997764i \(0.478712\pi\)
\(758\) 38414.6 1.84074
\(759\) 3698.13 0.176856
\(760\) −21150.4 −1.00948
\(761\) 22236.2 1.05922 0.529608 0.848243i \(-0.322339\pi\)
0.529608 + 0.848243i \(0.322339\pi\)
\(762\) −9866.38 −0.469057
\(763\) 14187.4 0.673155
\(764\) −14436.4 −0.683626
\(765\) −5371.16 −0.253849
\(766\) −38166.3 −1.80027
\(767\) −60550.2 −2.85051
\(768\) −16023.0 −0.752841
\(769\) −28682.5 −1.34502 −0.672508 0.740090i \(-0.734783\pi\)
−0.672508 + 0.740090i \(0.734783\pi\)
\(770\) −5902.01 −0.276225
\(771\) 14970.5 0.699284
\(772\) −25557.6 −1.19150
\(773\) 27245.4 1.26772 0.633861 0.773447i \(-0.281469\pi\)
0.633861 + 0.773447i \(0.281469\pi\)
\(774\) −9319.30 −0.432785
\(775\) 44395.6 2.05772
\(776\) −13639.3 −0.630959
\(777\) −4345.83 −0.200651
\(778\) −3701.45 −0.170570
\(779\) −31441.2 −1.44608
\(780\) −28672.7 −1.31621
\(781\) 4001.19 0.183321
\(782\) −11502.0 −0.525975
\(783\) −402.874 −0.0183877
\(784\) −3851.51 −0.175451
\(785\) −1526.48 −0.0694042
\(786\) 20558.5 0.932947
\(787\) −33427.2 −1.51404 −0.757020 0.653391i \(-0.773346\pi\)
−0.757020 + 0.653391i \(0.773346\pi\)
\(788\) 150.213 0.00679075
\(789\) 2018.98 0.0910996
\(790\) −32142.5 −1.44757
\(791\) −7336.29 −0.329770
\(792\) 1012.82 0.0454405
\(793\) 13694.7 0.613258
\(794\) −42819.2 −1.91385
\(795\) 35127.4 1.56710
\(796\) −2589.00 −0.115282
\(797\) −6592.94 −0.293016 −0.146508 0.989209i \(-0.546803\pi\)
−0.146508 + 0.989209i \(0.546803\pi\)
\(798\) −7466.60 −0.331221
\(799\) 8574.00 0.379632
\(800\) 65272.4 2.88466
\(801\) −3581.17 −0.157970
\(802\) 19396.2 0.853993
\(803\) −8221.66 −0.361315
\(804\) −9089.68 −0.398717
\(805\) −16560.8 −0.725082
\(806\) −43910.6 −1.91896
\(807\) 10674.0 0.465606
\(808\) 7646.25 0.332913
\(809\) 22661.3 0.984830 0.492415 0.870361i \(-0.336114\pi\)
0.492415 + 0.870361i \(0.336114\pi\)
\(810\) −6208.60 −0.269319
\(811\) 2938.33 0.127224 0.0636121 0.997975i \(-0.479738\pi\)
0.0636121 + 0.997975i \(0.479738\pi\)
\(812\) 541.281 0.0233931
\(813\) −9916.56 −0.427784
\(814\) −8264.96 −0.355881
\(815\) 725.379 0.0311766
\(816\) −6666.04 −0.285978
\(817\) −27928.9 −1.19597
\(818\) 30990.6 1.32465
\(819\) 5503.69 0.234816
\(820\) 35125.6 1.49590
\(821\) 27511.4 1.16949 0.584747 0.811216i \(-0.301194\pi\)
0.584747 + 0.811216i \(0.301194\pi\)
\(822\) 7523.83 0.319250
\(823\) 25092.9 1.06280 0.531400 0.847121i \(-0.321666\pi\)
0.531400 + 0.847121i \(0.321666\pi\)
\(824\) 5613.63 0.237330
\(825\) −10582.6 −0.446593
\(826\) 17615.5 0.742036
\(827\) 10259.3 0.431382 0.215691 0.976462i \(-0.430800\pi\)
0.215691 + 0.976462i \(0.430800\pi\)
\(828\) −5226.73 −0.219374
\(829\) −40456.9 −1.69497 −0.847483 0.530823i \(-0.821883\pi\)
−0.847483 + 0.530823i \(0.821883\pi\)
\(830\) −90308.3 −3.77668
\(831\) −4285.43 −0.178893
\(832\) −9625.67 −0.401094
\(833\) −1385.18 −0.0576156
\(834\) −15968.5 −0.663001
\(835\) 8002.83 0.331676
\(836\) −5582.39 −0.230946
\(837\) −3737.87 −0.154361
\(838\) −15614.1 −0.643652
\(839\) 11387.0 0.468563 0.234281 0.972169i \(-0.424726\pi\)
0.234281 + 0.972169i \(0.424726\pi\)
\(840\) −4535.54 −0.186299
\(841\) −24166.4 −0.990871
\(842\) 21485.9 0.879396
\(843\) 21470.8 0.877215
\(844\) 17803.7 0.726099
\(845\) 114736. 4.67103
\(846\) 9910.81 0.402767
\(847\) 847.000 0.0343604
\(848\) 43595.9 1.76544
\(849\) 7411.73 0.299611
\(850\) 32914.4 1.32818
\(851\) −23191.1 −0.934173
\(852\) −5655.06 −0.227393
\(853\) 8058.93 0.323485 0.161742 0.986833i \(-0.448289\pi\)
0.161742 + 0.986833i \(0.448289\pi\)
\(854\) −3984.12 −0.159641
\(855\) −18606.5 −0.744245
\(856\) 2801.87 0.111876
\(857\) 4025.02 0.160434 0.0802170 0.996777i \(-0.474439\pi\)
0.0802170 + 0.996777i \(0.474439\pi\)
\(858\) 10467.0 0.416477
\(859\) −4319.84 −0.171584 −0.0857922 0.996313i \(-0.527342\pi\)
−0.0857922 + 0.996313i \(0.527342\pi\)
\(860\) 31201.8 1.23718
\(861\) −6742.32 −0.266873
\(862\) −29446.0 −1.16350
\(863\) 11967.7 0.472055 0.236028 0.971746i \(-0.424154\pi\)
0.236028 + 0.971746i \(0.424154\pi\)
\(864\) −5495.59 −0.216393
\(865\) −29519.6 −1.16034
\(866\) 15403.5 0.604427
\(867\) 12341.6 0.483439
\(868\) 5022.01 0.196380
\(869\) 4612.78 0.180067
\(870\) 3431.12 0.133708
\(871\) 51076.6 1.98699
\(872\) 20734.8 0.805239
\(873\) −11998.9 −0.465178
\(874\) −39844.8 −1.54207
\(875\) 28918.1 1.11727
\(876\) 11620.0 0.448179
\(877\) −3248.36 −0.125074 −0.0625368 0.998043i \(-0.519919\pi\)
−0.0625368 + 0.998043i \(0.519919\pi\)
\(878\) 2163.86 0.0831740
\(879\) −13633.7 −0.523155
\(880\) −18253.3 −0.699226
\(881\) 1264.38 0.0483518 0.0241759 0.999708i \(-0.492304\pi\)
0.0241759 + 0.999708i \(0.492304\pi\)
\(882\) −1601.16 −0.0611267
\(883\) −11524.4 −0.439216 −0.219608 0.975588i \(-0.570478\pi\)
−0.219608 + 0.975588i \(0.570478\pi\)
\(884\) −12798.1 −0.486929
\(885\) 43897.3 1.66733
\(886\) 15556.3 0.589868
\(887\) 24949.8 0.944457 0.472228 0.881476i \(-0.343450\pi\)
0.472228 + 0.881476i \(0.343450\pi\)
\(888\) −6351.41 −0.240022
\(889\) −6340.73 −0.239214
\(890\) 30499.4 1.14870
\(891\) 891.000 0.0335013
\(892\) −3666.56 −0.137630
\(893\) 29701.6 1.11302
\(894\) 14899.2 0.557388
\(895\) −54699.8 −2.04292
\(896\) −8597.92 −0.320576
\(897\) 29370.0 1.09324
\(898\) 2557.08 0.0950231
\(899\) 2065.69 0.0766349
\(900\) 14956.9 0.553958
\(901\) 15679.1 0.579743
\(902\) −12822.7 −0.473334
\(903\) −5989.15 −0.220716
\(904\) −10722.0 −0.394477
\(905\) 71954.6 2.64293
\(906\) 1022.95 0.0375115
\(907\) 40615.8 1.48691 0.743454 0.668787i \(-0.233186\pi\)
0.743454 + 0.668787i \(0.233186\pi\)
\(908\) −2593.34 −0.0947830
\(909\) 6726.59 0.245442
\(910\) −46872.8 −1.70749
\(911\) −14594.0 −0.530760 −0.265380 0.964144i \(-0.585497\pi\)
−0.265380 + 0.964144i \(0.585497\pi\)
\(912\) −23092.2 −0.838441
\(913\) 12960.2 0.469792
\(914\) 25463.1 0.921494
\(915\) −9928.29 −0.358710
\(916\) 17424.1 0.628502
\(917\) 13212.1 0.475794
\(918\) −2771.22 −0.0996337
\(919\) 28339.1 1.01721 0.508607 0.860999i \(-0.330161\pi\)
0.508607 + 0.860999i \(0.330161\pi\)
\(920\) −24203.5 −0.867355
\(921\) −20135.3 −0.720392
\(922\) −3750.51 −0.133966
\(923\) 31776.8 1.13320
\(924\) −1197.10 −0.0426209
\(925\) 66363.9 2.35895
\(926\) −45722.9 −1.62262
\(927\) 4938.44 0.174973
\(928\) 3037.08 0.107432
\(929\) 25916.5 0.915276 0.457638 0.889139i \(-0.348696\pi\)
0.457638 + 0.889139i \(0.348696\pi\)
\(930\) 31834.0 1.12245
\(931\) −4798.49 −0.168920
\(932\) −15355.4 −0.539682
\(933\) 10881.2 0.381818
\(934\) 67267.0 2.35658
\(935\) −6564.75 −0.229615
\(936\) 8043.63 0.280891
\(937\) −2004.67 −0.0698930 −0.0349465 0.999389i \(-0.511126\pi\)
−0.0349465 + 0.999389i \(0.511126\pi\)
\(938\) −14859.4 −0.517246
\(939\) −13065.4 −0.454072
\(940\) −33182.2 −1.15137
\(941\) −36486.7 −1.26401 −0.632004 0.774965i \(-0.717767\pi\)
−0.632004 + 0.774965i \(0.717767\pi\)
\(942\) −787.575 −0.0272405
\(943\) −35979.8 −1.24249
\(944\) 54480.0 1.87836
\(945\) −3990.03 −0.137350
\(946\) −11390.3 −0.391468
\(947\) −26275.1 −0.901611 −0.450806 0.892622i \(-0.648863\pi\)
−0.450806 + 0.892622i \(0.648863\pi\)
\(948\) −6519.44 −0.223356
\(949\) −65295.1 −2.23347
\(950\) 114020. 3.89401
\(951\) 27681.5 0.943886
\(952\) −2024.44 −0.0689208
\(953\) −25800.3 −0.876971 −0.438485 0.898738i \(-0.644485\pi\)
−0.438485 + 0.898738i \(0.644485\pi\)
\(954\) 18123.8 0.615072
\(955\) −58810.4 −1.99273
\(956\) −4374.75 −0.148002
\(957\) −492.401 −0.0166323
\(958\) 55921.5 1.88595
\(959\) 4835.27 0.162814
\(960\) 6978.35 0.234610
\(961\) −10625.4 −0.356666
\(962\) −65639.0 −2.19988
\(963\) 2464.88 0.0824814
\(964\) 18742.3 0.626193
\(965\) −104115. −3.47316
\(966\) −8544.42 −0.284588
\(967\) −24454.9 −0.813254 −0.406627 0.913594i \(-0.633295\pi\)
−0.406627 + 0.913594i \(0.633295\pi\)
\(968\) 1237.89 0.0411025
\(969\) −8305.04 −0.275331
\(970\) 102190. 3.38259
\(971\) −57692.0 −1.90672 −0.953359 0.301839i \(-0.902400\pi\)
−0.953359 + 0.301839i \(0.902400\pi\)
\(972\) −1259.29 −0.0415553
\(973\) −10262.3 −0.338124
\(974\) −24750.1 −0.814214
\(975\) −84045.3 −2.76062
\(976\) −12321.8 −0.404110
\(977\) −6855.66 −0.224495 −0.112248 0.993680i \(-0.535805\pi\)
−0.112248 + 0.993680i \(0.535805\pi\)
\(978\) 374.254 0.0122365
\(979\) −4376.98 −0.142890
\(980\) 5360.80 0.174739
\(981\) 18240.9 0.593667
\(982\) −22629.2 −0.735362
\(983\) −8142.33 −0.264191 −0.132096 0.991237i \(-0.542171\pi\)
−0.132096 + 0.991237i \(0.542171\pi\)
\(984\) −9853.89 −0.319238
\(985\) 611.931 0.0197947
\(986\) 1531.48 0.0494648
\(987\) 6369.29 0.205407
\(988\) −44334.4 −1.42760
\(989\) −31960.6 −1.02759
\(990\) −7588.29 −0.243608
\(991\) 11895.7 0.381312 0.190656 0.981657i \(-0.438938\pi\)
0.190656 + 0.981657i \(0.438938\pi\)
\(992\) 28178.1 0.901870
\(993\) −2511.67 −0.0802672
\(994\) −9244.64 −0.294992
\(995\) −10546.9 −0.336041
\(996\) −18317.2 −0.582734
\(997\) −44608.5 −1.41702 −0.708509 0.705702i \(-0.750632\pi\)
−0.708509 + 0.705702i \(0.750632\pi\)
\(998\) 69872.0 2.21619
\(999\) −5587.49 −0.176957
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.k.1.2 5
3.2 odd 2 693.4.a.p.1.4 5
7.6 odd 2 1617.4.a.n.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.k.1.2 5 1.1 even 1 trivial
693.4.a.p.1.4 5 3.2 odd 2
1617.4.a.n.1.2 5 7.6 odd 2