Properties

Label 231.4.a.k.1.5
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-4.54345\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.54345 q^{2} -3.00000 q^{3} +12.6430 q^{4} +6.53625 q^{5} -13.6304 q^{6} +7.00000 q^{7} +21.0952 q^{8} +9.00000 q^{9} +29.6972 q^{10} +11.0000 q^{11} -37.9289 q^{12} +71.3370 q^{13} +31.8042 q^{14} -19.6088 q^{15} -5.29887 q^{16} +2.45049 q^{17} +40.8911 q^{18} +80.0091 q^{19} +82.6377 q^{20} -21.0000 q^{21} +49.9780 q^{22} +61.8164 q^{23} -63.2855 q^{24} -82.2774 q^{25} +324.117 q^{26} -27.0000 q^{27} +88.5009 q^{28} -156.839 q^{29} -89.0915 q^{30} +77.7131 q^{31} -192.837 q^{32} -33.0000 q^{33} +11.1337 q^{34} +45.7538 q^{35} +113.787 q^{36} +84.7185 q^{37} +363.518 q^{38} -214.011 q^{39} +137.883 q^{40} +28.8114 q^{41} -95.4126 q^{42} -352.389 q^{43} +139.073 q^{44} +58.8263 q^{45} +280.860 q^{46} -256.310 q^{47} +15.8966 q^{48} +49.0000 q^{49} -373.824 q^{50} -7.35147 q^{51} +901.913 q^{52} +492.147 q^{53} -122.673 q^{54} +71.8988 q^{55} +147.666 q^{56} -240.027 q^{57} -712.590 q^{58} -3.13000 q^{59} -247.913 q^{60} -159.772 q^{61} +353.086 q^{62} +63.0000 q^{63} -833.753 q^{64} +466.277 q^{65} -149.934 q^{66} -521.200 q^{67} +30.9815 q^{68} -185.449 q^{69} +207.880 q^{70} -885.588 q^{71} +189.857 q^{72} -375.499 q^{73} +384.914 q^{74} +246.832 q^{75} +1011.55 q^{76} +77.0000 q^{77} -972.350 q^{78} -1346.03 q^{79} -34.6348 q^{80} +81.0000 q^{81} +130.903 q^{82} -1379.43 q^{83} -265.503 q^{84} +16.0170 q^{85} -1601.07 q^{86} +470.516 q^{87} +232.047 q^{88} -111.045 q^{89} +267.274 q^{90} +499.359 q^{91} +781.543 q^{92} -233.139 q^{93} -1164.53 q^{94} +522.959 q^{95} +578.510 q^{96} +472.385 q^{97} +222.629 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 15 q^{3} + 21 q^{4} + 21 q^{5} + 3 q^{6} + 35 q^{7} - 42 q^{8} + 45 q^{9} - 23 q^{10} + 55 q^{11} - 63 q^{12} + 101 q^{13} - 7 q^{14} - 63 q^{15} - 7 q^{16} - 20 q^{17} - 9 q^{18} + 237 q^{19}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.54345 1.60635 0.803177 0.595741i \(-0.203141\pi\)
0.803177 + 0.595741i \(0.203141\pi\)
\(3\) −3.00000 −0.577350
\(4\) 12.6430 1.58037
\(5\) 6.53625 0.584620 0.292310 0.956324i \(-0.405576\pi\)
0.292310 + 0.956324i \(0.405576\pi\)
\(6\) −13.6304 −0.927429
\(7\) 7.00000 0.377964
\(8\) 21.0952 0.932284
\(9\) 9.00000 0.333333
\(10\) 29.6972 0.939107
\(11\) 11.0000 0.301511
\(12\) −37.9289 −0.912429
\(13\) 71.3370 1.52195 0.760974 0.648782i \(-0.224721\pi\)
0.760974 + 0.648782i \(0.224721\pi\)
\(14\) 31.8042 0.607145
\(15\) −19.6088 −0.337531
\(16\) −5.29887 −0.0827949
\(17\) 2.45049 0.0349607 0.0174803 0.999847i \(-0.494436\pi\)
0.0174803 + 0.999847i \(0.494436\pi\)
\(18\) 40.8911 0.535451
\(19\) 80.0091 0.966071 0.483035 0.875601i \(-0.339534\pi\)
0.483035 + 0.875601i \(0.339534\pi\)
\(20\) 82.6377 0.923917
\(21\) −21.0000 −0.218218
\(22\) 49.9780 0.484334
\(23\) 61.8164 0.560418 0.280209 0.959939i \(-0.409596\pi\)
0.280209 + 0.959939i \(0.409596\pi\)
\(24\) −63.2855 −0.538254
\(25\) −82.2774 −0.658219
\(26\) 324.117 2.44479
\(27\) −27.0000 −0.192450
\(28\) 88.5009 0.597325
\(29\) −156.839 −1.00428 −0.502142 0.864785i \(-0.667454\pi\)
−0.502142 + 0.864785i \(0.667454\pi\)
\(30\) −89.0915 −0.542193
\(31\) 77.7131 0.450248 0.225124 0.974330i \(-0.427721\pi\)
0.225124 + 0.974330i \(0.427721\pi\)
\(32\) −192.837 −1.06528
\(33\) −33.0000 −0.174078
\(34\) 11.1337 0.0561592
\(35\) 45.7538 0.220966
\(36\) 113.787 0.526791
\(37\) 84.7185 0.376422 0.188211 0.982129i \(-0.439731\pi\)
0.188211 + 0.982129i \(0.439731\pi\)
\(38\) 363.518 1.55185
\(39\) −214.011 −0.878697
\(40\) 137.883 0.545032
\(41\) 28.8114 0.109746 0.0548729 0.998493i \(-0.482525\pi\)
0.0548729 + 0.998493i \(0.482525\pi\)
\(42\) −95.4126 −0.350535
\(43\) −352.389 −1.24974 −0.624871 0.780728i \(-0.714848\pi\)
−0.624871 + 0.780728i \(0.714848\pi\)
\(44\) 139.073 0.476500
\(45\) 58.8263 0.194873
\(46\) 280.860 0.900229
\(47\) −256.310 −0.795459 −0.397730 0.917503i \(-0.630202\pi\)
−0.397730 + 0.917503i \(0.630202\pi\)
\(48\) 15.8966 0.0478017
\(49\) 49.0000 0.142857
\(50\) −373.824 −1.05733
\(51\) −7.35147 −0.0201845
\(52\) 901.913 2.40525
\(53\) 492.147 1.27550 0.637751 0.770243i \(-0.279865\pi\)
0.637751 + 0.770243i \(0.279865\pi\)
\(54\) −122.673 −0.309143
\(55\) 71.8988 0.176270
\(56\) 147.666 0.352370
\(57\) −240.027 −0.557761
\(58\) −712.590 −1.61323
\(59\) −3.13000 −0.00690663 −0.00345331 0.999994i \(-0.501099\pi\)
−0.00345331 + 0.999994i \(0.501099\pi\)
\(60\) −247.913 −0.533424
\(61\) −159.772 −0.335356 −0.167678 0.985842i \(-0.553627\pi\)
−0.167678 + 0.985842i \(0.553627\pi\)
\(62\) 353.086 0.723257
\(63\) 63.0000 0.125988
\(64\) −833.753 −1.62842
\(65\) 466.277 0.889761
\(66\) −149.934 −0.279630
\(67\) −521.200 −0.950370 −0.475185 0.879886i \(-0.657619\pi\)
−0.475185 + 0.879886i \(0.657619\pi\)
\(68\) 30.9815 0.0552509
\(69\) −185.449 −0.323557
\(70\) 207.880 0.354949
\(71\) −885.588 −1.48028 −0.740141 0.672452i \(-0.765241\pi\)
−0.740141 + 0.672452i \(0.765241\pi\)
\(72\) 189.857 0.310761
\(73\) −375.499 −0.602039 −0.301020 0.953618i \(-0.597327\pi\)
−0.301020 + 0.953618i \(0.597327\pi\)
\(74\) 384.914 0.604668
\(75\) 246.832 0.380023
\(76\) 1011.55 1.52675
\(77\) 77.0000 0.113961
\(78\) −972.350 −1.41150
\(79\) −1346.03 −1.91697 −0.958484 0.285145i \(-0.907958\pi\)
−0.958484 + 0.285145i \(0.907958\pi\)
\(80\) −34.6348 −0.0484036
\(81\) 81.0000 0.111111
\(82\) 130.903 0.176291
\(83\) −1379.43 −1.82424 −0.912121 0.409920i \(-0.865557\pi\)
−0.912121 + 0.409920i \(0.865557\pi\)
\(84\) −265.503 −0.344866
\(85\) 16.0170 0.0204387
\(86\) −1601.07 −2.00753
\(87\) 470.516 0.579823
\(88\) 232.047 0.281094
\(89\) −111.045 −0.132255 −0.0661276 0.997811i \(-0.521064\pi\)
−0.0661276 + 0.997811i \(0.521064\pi\)
\(90\) 267.274 0.313036
\(91\) 499.359 0.575242
\(92\) 781.543 0.885669
\(93\) −233.139 −0.259951
\(94\) −1164.53 −1.27779
\(95\) 522.959 0.564784
\(96\) 578.510 0.615041
\(97\) 472.385 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(98\) 222.629 0.229479
\(99\) 99.0000 0.100504
\(100\) −1040.23 −1.04023
\(101\) 1046.51 1.03101 0.515505 0.856887i \(-0.327604\pi\)
0.515505 + 0.856887i \(0.327604\pi\)
\(102\) −33.4011 −0.0324235
\(103\) 1116.84 1.06840 0.534200 0.845358i \(-0.320613\pi\)
0.534200 + 0.845358i \(0.320613\pi\)
\(104\) 1504.87 1.41889
\(105\) −137.261 −0.127575
\(106\) 2236.05 2.04891
\(107\) 1484.22 1.34098 0.670492 0.741917i \(-0.266083\pi\)
0.670492 + 0.741917i \(0.266083\pi\)
\(108\) −341.360 −0.304143
\(109\) 1064.65 0.935547 0.467774 0.883848i \(-0.345056\pi\)
0.467774 + 0.883848i \(0.345056\pi\)
\(110\) 326.669 0.283151
\(111\) −254.155 −0.217328
\(112\) −37.0921 −0.0312935
\(113\) −438.172 −0.364776 −0.182388 0.983227i \(-0.558383\pi\)
−0.182388 + 0.983227i \(0.558383\pi\)
\(114\) −1090.55 −0.895962
\(115\) 404.047 0.327631
\(116\) −1982.91 −1.58714
\(117\) 642.033 0.507316
\(118\) −14.2210 −0.0110945
\(119\) 17.1534 0.0132139
\(120\) −413.650 −0.314674
\(121\) 121.000 0.0909091
\(122\) −725.917 −0.538700
\(123\) −86.4341 −0.0633618
\(124\) 982.525 0.711559
\(125\) −1354.82 −0.969428
\(126\) 286.238 0.202382
\(127\) 1926.01 1.34571 0.672856 0.739774i \(-0.265068\pi\)
0.672856 + 0.739774i \(0.265068\pi\)
\(128\) −2245.43 −1.55054
\(129\) 1057.17 0.721539
\(130\) 2118.51 1.42927
\(131\) −703.646 −0.469296 −0.234648 0.972080i \(-0.575394\pi\)
−0.234648 + 0.972080i \(0.575394\pi\)
\(132\) −417.218 −0.275108
\(133\) 560.064 0.365140
\(134\) −2368.05 −1.52663
\(135\) −176.479 −0.112510
\(136\) 51.6935 0.0325933
\(137\) −944.945 −0.589285 −0.294643 0.955608i \(-0.595201\pi\)
−0.294643 + 0.955608i \(0.595201\pi\)
\(138\) −842.580 −0.519747
\(139\) 1222.86 0.746200 0.373100 0.927791i \(-0.378295\pi\)
0.373100 + 0.927791i \(0.378295\pi\)
\(140\) 578.464 0.349208
\(141\) 768.929 0.459259
\(142\) −4023.63 −2.37786
\(143\) 784.707 0.458885
\(144\) −47.6899 −0.0275983
\(145\) −1025.14 −0.587124
\(146\) −1706.06 −0.967088
\(147\) −147.000 −0.0824786
\(148\) 1071.09 0.594888
\(149\) −2723.95 −1.49768 −0.748840 0.662750i \(-0.769389\pi\)
−0.748840 + 0.662750i \(0.769389\pi\)
\(150\) 1121.47 0.610452
\(151\) 1133.68 0.610980 0.305490 0.952195i \(-0.401180\pi\)
0.305490 + 0.952195i \(0.401180\pi\)
\(152\) 1687.81 0.900652
\(153\) 22.0544 0.0116536
\(154\) 349.846 0.183061
\(155\) 507.952 0.263224
\(156\) −2705.74 −1.38867
\(157\) 3449.91 1.75371 0.876856 0.480753i \(-0.159636\pi\)
0.876856 + 0.480753i \(0.159636\pi\)
\(158\) −6115.64 −3.07933
\(159\) −1476.44 −0.736411
\(160\) −1260.43 −0.622785
\(161\) 432.715 0.211818
\(162\) 368.020 0.178484
\(163\) 917.605 0.440935 0.220467 0.975394i \(-0.429242\pi\)
0.220467 + 0.975394i \(0.429242\pi\)
\(164\) 364.261 0.173439
\(165\) −215.696 −0.101769
\(166\) −6267.38 −2.93038
\(167\) −3405.63 −1.57806 −0.789029 0.614355i \(-0.789416\pi\)
−0.789029 + 0.614355i \(0.789416\pi\)
\(168\) −442.999 −0.203441
\(169\) 2891.97 1.31633
\(170\) 72.7726 0.0328318
\(171\) 720.082 0.322024
\(172\) −4455.25 −1.97506
\(173\) 1874.17 0.823644 0.411822 0.911264i \(-0.364892\pi\)
0.411822 + 0.911264i \(0.364892\pi\)
\(174\) 2137.77 0.931402
\(175\) −575.942 −0.248784
\(176\) −58.2876 −0.0249636
\(177\) 9.38999 0.00398754
\(178\) −504.527 −0.212449
\(179\) −546.539 −0.228214 −0.114107 0.993468i \(-0.536401\pi\)
−0.114107 + 0.993468i \(0.536401\pi\)
\(180\) 743.739 0.307972
\(181\) 2927.32 1.20213 0.601066 0.799200i \(-0.294743\pi\)
0.601066 + 0.799200i \(0.294743\pi\)
\(182\) 2268.82 0.924043
\(183\) 479.316 0.193618
\(184\) 1304.03 0.522468
\(185\) 553.741 0.220064
\(186\) −1059.26 −0.417573
\(187\) 26.9554 0.0105410
\(188\) −3240.52 −1.25712
\(189\) −189.000 −0.0727393
\(190\) 2376.04 0.907243
\(191\) −2232.58 −0.845780 −0.422890 0.906181i \(-0.638984\pi\)
−0.422890 + 0.906181i \(0.638984\pi\)
\(192\) 2501.26 0.940171
\(193\) 1440.00 0.537065 0.268533 0.963271i \(-0.413461\pi\)
0.268533 + 0.963271i \(0.413461\pi\)
\(194\) 2146.26 0.794291
\(195\) −1398.83 −0.513704
\(196\) 619.506 0.225768
\(197\) 1026.53 0.371256 0.185628 0.982620i \(-0.440568\pi\)
0.185628 + 0.982620i \(0.440568\pi\)
\(198\) 449.802 0.161445
\(199\) 1273.27 0.453565 0.226783 0.973945i \(-0.427179\pi\)
0.226783 + 0.973945i \(0.427179\pi\)
\(200\) −1735.66 −0.613647
\(201\) 1563.60 0.548696
\(202\) 4754.79 1.65617
\(203\) −1097.87 −0.379584
\(204\) −92.9445 −0.0318991
\(205\) 188.318 0.0641596
\(206\) 5074.29 1.71623
\(207\) 556.347 0.186806
\(208\) −378.006 −0.126010
\(209\) 880.100 0.291281
\(210\) −623.640 −0.204930
\(211\) −1087.89 −0.354944 −0.177472 0.984126i \(-0.556792\pi\)
−0.177472 + 0.984126i \(0.556792\pi\)
\(212\) 6222.21 2.01577
\(213\) 2656.76 0.854641
\(214\) 6743.50 2.15409
\(215\) −2303.31 −0.730624
\(216\) −569.570 −0.179418
\(217\) 543.992 0.170178
\(218\) 4837.17 1.50282
\(219\) 1126.50 0.347588
\(220\) 909.015 0.278572
\(221\) 174.811 0.0532083
\(222\) −1154.74 −0.349105
\(223\) −1826.52 −0.548487 −0.274244 0.961660i \(-0.588427\pi\)
−0.274244 + 0.961660i \(0.588427\pi\)
\(224\) −1349.86 −0.402639
\(225\) −740.497 −0.219406
\(226\) −1990.81 −0.585960
\(227\) 1821.81 0.532678 0.266339 0.963879i \(-0.414186\pi\)
0.266339 + 0.963879i \(0.414186\pi\)
\(228\) −3034.66 −0.881470
\(229\) −1369.86 −0.395296 −0.197648 0.980273i \(-0.563330\pi\)
−0.197648 + 0.980273i \(0.563330\pi\)
\(230\) 1835.77 0.526292
\(231\) −231.000 −0.0657952
\(232\) −3308.54 −0.936277
\(233\) −2116.08 −0.594975 −0.297488 0.954726i \(-0.596149\pi\)
−0.297488 + 0.954726i \(0.596149\pi\)
\(234\) 2917.05 0.814929
\(235\) −1675.30 −0.465041
\(236\) −39.5725 −0.0109150
\(237\) 4038.10 1.10676
\(238\) 77.9358 0.0212262
\(239\) 5148.64 1.39346 0.696732 0.717331i \(-0.254636\pi\)
0.696732 + 0.717331i \(0.254636\pi\)
\(240\) 103.904 0.0279458
\(241\) −3756.11 −1.00395 −0.501975 0.864882i \(-0.667393\pi\)
−0.501975 + 0.864882i \(0.667393\pi\)
\(242\) 549.758 0.146032
\(243\) −243.000 −0.0641500
\(244\) −2019.99 −0.529987
\(245\) 320.276 0.0835171
\(246\) −392.709 −0.101781
\(247\) 5707.61 1.47031
\(248\) 1639.37 0.419759
\(249\) 4138.29 1.05323
\(250\) −6155.55 −1.55724
\(251\) −1906.43 −0.479413 −0.239707 0.970845i \(-0.577051\pi\)
−0.239707 + 0.970845i \(0.577051\pi\)
\(252\) 796.508 0.199108
\(253\) 679.980 0.168972
\(254\) 8750.72 2.16169
\(255\) −48.0511 −0.0118003
\(256\) −3531.97 −0.862298
\(257\) −143.978 −0.0349459 −0.0174729 0.999847i \(-0.505562\pi\)
−0.0174729 + 0.999847i \(0.505562\pi\)
\(258\) 4803.20 1.15905
\(259\) 593.029 0.142274
\(260\) 5895.13 1.40615
\(261\) −1411.55 −0.334761
\(262\) −3196.98 −0.753856
\(263\) −6827.81 −1.60084 −0.800420 0.599440i \(-0.795390\pi\)
−0.800420 + 0.599440i \(0.795390\pi\)
\(264\) −696.141 −0.162290
\(265\) 3216.80 0.745684
\(266\) 2544.62 0.586545
\(267\) 333.134 0.0763576
\(268\) −6589.53 −1.50194
\(269\) 8049.95 1.82459 0.912294 0.409537i \(-0.134310\pi\)
0.912294 + 0.409537i \(0.134310\pi\)
\(270\) −801.823 −0.180731
\(271\) 1420.76 0.318469 0.159234 0.987241i \(-0.449097\pi\)
0.159234 + 0.987241i \(0.449097\pi\)
\(272\) −12.9848 −0.00289456
\(273\) −1498.08 −0.332116
\(274\) −4293.31 −0.946601
\(275\) −905.052 −0.198461
\(276\) −2344.63 −0.511341
\(277\) 8044.20 1.74487 0.872435 0.488730i \(-0.162540\pi\)
0.872435 + 0.488730i \(0.162540\pi\)
\(278\) 5556.02 1.19866
\(279\) 699.418 0.150083
\(280\) 965.183 0.206003
\(281\) 3089.28 0.655839 0.327919 0.944706i \(-0.393653\pi\)
0.327919 + 0.944706i \(0.393653\pi\)
\(282\) 3493.59 0.737732
\(283\) −8123.26 −1.70628 −0.853141 0.521681i \(-0.825305\pi\)
−0.853141 + 0.521681i \(0.825305\pi\)
\(284\) −11196.5 −2.33940
\(285\) −1568.88 −0.326078
\(286\) 3565.28 0.737131
\(287\) 201.680 0.0414800
\(288\) −1735.53 −0.355094
\(289\) −4907.00 −0.998778
\(290\) −4657.66 −0.943129
\(291\) −1417.15 −0.285481
\(292\) −4747.43 −0.951447
\(293\) −8383.65 −1.67160 −0.835799 0.549036i \(-0.814995\pi\)
−0.835799 + 0.549036i \(0.814995\pi\)
\(294\) −667.888 −0.132490
\(295\) −20.4584 −0.00403775
\(296\) 1787.15 0.350933
\(297\) −297.000 −0.0580259
\(298\) −12376.1 −2.40581
\(299\) 4409.80 0.852927
\(300\) 3120.70 0.600578
\(301\) −2466.73 −0.472358
\(302\) 5150.84 0.981450
\(303\) −3139.54 −0.595254
\(304\) −423.958 −0.0799857
\(305\) −1044.31 −0.196056
\(306\) 100.203 0.0187197
\(307\) −6514.20 −1.21103 −0.605513 0.795835i \(-0.707032\pi\)
−0.605513 + 0.795835i \(0.707032\pi\)
\(308\) 973.510 0.180100
\(309\) −3350.51 −0.616841
\(310\) 2307.86 0.422831
\(311\) −3822.91 −0.697034 −0.348517 0.937303i \(-0.613315\pi\)
−0.348517 + 0.937303i \(0.613315\pi\)
\(312\) −4514.60 −0.819195
\(313\) 1239.73 0.223878 0.111939 0.993715i \(-0.464294\pi\)
0.111939 + 0.993715i \(0.464294\pi\)
\(314\) 15674.5 2.81708
\(315\) 411.784 0.0736552
\(316\) −17017.9 −3.02953
\(317\) 5377.28 0.952739 0.476369 0.879245i \(-0.341953\pi\)
0.476369 + 0.879245i \(0.341953\pi\)
\(318\) −6708.14 −1.18294
\(319\) −1725.23 −0.302803
\(320\) −5449.62 −0.952010
\(321\) −4452.67 −0.774217
\(322\) 1966.02 0.340255
\(323\) 196.061 0.0337745
\(324\) 1024.08 0.175597
\(325\) −5869.43 −1.00178
\(326\) 4169.10 0.708297
\(327\) −3193.94 −0.540138
\(328\) 607.781 0.102314
\(329\) −1794.17 −0.300655
\(330\) −980.006 −0.163477
\(331\) 2321.44 0.385493 0.192746 0.981249i \(-0.438261\pi\)
0.192746 + 0.981249i \(0.438261\pi\)
\(332\) −17440.1 −2.88298
\(333\) 762.466 0.125474
\(334\) −15473.3 −2.53492
\(335\) −3406.70 −0.555605
\(336\) 111.276 0.0180673
\(337\) 7265.72 1.17445 0.587224 0.809425i \(-0.300221\pi\)
0.587224 + 0.809425i \(0.300221\pi\)
\(338\) 13139.5 2.11449
\(339\) 1314.52 0.210604
\(340\) 202.503 0.0323008
\(341\) 854.844 0.135755
\(342\) 3271.66 0.517284
\(343\) 343.000 0.0539949
\(344\) −7433.72 −1.16511
\(345\) −1212.14 −0.189158
\(346\) 8515.21 1.32306
\(347\) −8322.54 −1.28754 −0.643771 0.765218i \(-0.722631\pi\)
−0.643771 + 0.765218i \(0.722631\pi\)
\(348\) 5948.73 0.916337
\(349\) 4604.41 0.706213 0.353107 0.935583i \(-0.385125\pi\)
0.353107 + 0.935583i \(0.385125\pi\)
\(350\) −2616.77 −0.399634
\(351\) −1926.10 −0.292899
\(352\) −2121.20 −0.321195
\(353\) −3257.91 −0.491221 −0.245611 0.969369i \(-0.578988\pi\)
−0.245611 + 0.969369i \(0.578988\pi\)
\(354\) 42.6630 0.00640541
\(355\) −5788.43 −0.865402
\(356\) −1403.94 −0.209013
\(357\) −51.4603 −0.00762904
\(358\) −2483.18 −0.366592
\(359\) 11269.4 1.65676 0.828380 0.560167i \(-0.189263\pi\)
0.828380 + 0.560167i \(0.189263\pi\)
\(360\) 1240.95 0.181677
\(361\) −457.546 −0.0667075
\(362\) 13300.1 1.93105
\(363\) −363.000 −0.0524864
\(364\) 6313.39 0.909097
\(365\) −2454.36 −0.351964
\(366\) 2177.75 0.311019
\(367\) 9729.11 1.38380 0.691901 0.721992i \(-0.256773\pi\)
0.691901 + 0.721992i \(0.256773\pi\)
\(368\) −327.557 −0.0463997
\(369\) 259.302 0.0365819
\(370\) 2515.90 0.353501
\(371\) 3445.03 0.482094
\(372\) −2947.58 −0.410819
\(373\) 6722.55 0.933191 0.466596 0.884471i \(-0.345480\pi\)
0.466596 + 0.884471i \(0.345480\pi\)
\(374\) 122.471 0.0169326
\(375\) 4064.45 0.559700
\(376\) −5406.89 −0.741594
\(377\) −11188.4 −1.52847
\(378\) −858.713 −0.116845
\(379\) −5966.99 −0.808717 −0.404358 0.914601i \(-0.632505\pi\)
−0.404358 + 0.914601i \(0.632505\pi\)
\(380\) 6611.77 0.892570
\(381\) −5778.02 −0.776947
\(382\) −10143.6 −1.35862
\(383\) −10029.0 −1.33801 −0.669005 0.743258i \(-0.733279\pi\)
−0.669005 + 0.743258i \(0.733279\pi\)
\(384\) 6736.28 0.895207
\(385\) 503.291 0.0666236
\(386\) 6542.58 0.862717
\(387\) −3171.51 −0.416581
\(388\) 5972.35 0.781444
\(389\) −13234.3 −1.72495 −0.862477 0.506096i \(-0.831088\pi\)
−0.862477 + 0.506096i \(0.831088\pi\)
\(390\) −6355.52 −0.825190
\(391\) 151.480 0.0195926
\(392\) 1033.66 0.133183
\(393\) 2110.94 0.270948
\(394\) 4664.00 0.596368
\(395\) −8798.01 −1.12070
\(396\) 1251.66 0.158833
\(397\) −9951.99 −1.25813 −0.629063 0.777354i \(-0.716561\pi\)
−0.629063 + 0.777354i \(0.716561\pi\)
\(398\) 5785.03 0.728586
\(399\) −1680.19 −0.210814
\(400\) 435.978 0.0544972
\(401\) −4709.60 −0.586499 −0.293250 0.956036i \(-0.594737\pi\)
−0.293250 + 0.956036i \(0.594737\pi\)
\(402\) 7104.15 0.881400
\(403\) 5543.82 0.685254
\(404\) 13231.1 1.62938
\(405\) 529.436 0.0649578
\(406\) −4988.13 −0.609745
\(407\) 931.903 0.113496
\(408\) −155.081 −0.0188177
\(409\) 15044.8 1.81887 0.909434 0.415848i \(-0.136515\pi\)
0.909434 + 0.415848i \(0.136515\pi\)
\(410\) 855.615 0.103063
\(411\) 2834.83 0.340224
\(412\) 14120.1 1.68847
\(413\) −21.9100 −0.00261046
\(414\) 2527.74 0.300076
\(415\) −9016.30 −1.06649
\(416\) −13756.4 −1.62130
\(417\) −3668.59 −0.430819
\(418\) 3998.69 0.467901
\(419\) 5987.57 0.698119 0.349059 0.937101i \(-0.386501\pi\)
0.349059 + 0.937101i \(0.386501\pi\)
\(420\) −1735.39 −0.201615
\(421\) −6743.22 −0.780628 −0.390314 0.920682i \(-0.627634\pi\)
−0.390314 + 0.920682i \(0.627634\pi\)
\(422\) −4942.76 −0.570166
\(423\) −2306.79 −0.265153
\(424\) 10381.9 1.18913
\(425\) −201.620 −0.0230118
\(426\) 12070.9 1.37286
\(427\) −1118.40 −0.126753
\(428\) 18765.0 2.11925
\(429\) −2354.12 −0.264937
\(430\) −10465.0 −1.17364
\(431\) 1953.86 0.218363 0.109181 0.994022i \(-0.465177\pi\)
0.109181 + 0.994022i \(0.465177\pi\)
\(432\) 143.070 0.0159339
\(433\) 11962.7 1.32769 0.663844 0.747871i \(-0.268924\pi\)
0.663844 + 0.747871i \(0.268924\pi\)
\(434\) 2471.60 0.273366
\(435\) 3075.41 0.338976
\(436\) 13460.3 1.47851
\(437\) 4945.87 0.541403
\(438\) 5118.19 0.558349
\(439\) 5515.13 0.599597 0.299798 0.954003i \(-0.403081\pi\)
0.299798 + 0.954003i \(0.403081\pi\)
\(440\) 1516.72 0.164333
\(441\) 441.000 0.0476190
\(442\) 794.244 0.0854714
\(443\) −13131.2 −1.40831 −0.704156 0.710046i \(-0.748674\pi\)
−0.704156 + 0.710046i \(0.748674\pi\)
\(444\) −3213.28 −0.343459
\(445\) −725.816 −0.0773191
\(446\) −8298.70 −0.881064
\(447\) 8171.84 0.864687
\(448\) −5836.27 −0.615487
\(449\) 5101.57 0.536209 0.268104 0.963390i \(-0.413603\pi\)
0.268104 + 0.963390i \(0.413603\pi\)
\(450\) −3364.41 −0.352444
\(451\) 316.925 0.0330896
\(452\) −5539.80 −0.576483
\(453\) −3401.05 −0.352749
\(454\) 8277.31 0.855669
\(455\) 3263.94 0.336298
\(456\) −5063.42 −0.519992
\(457\) −1671.55 −0.171098 −0.0855490 0.996334i \(-0.527264\pi\)
−0.0855490 + 0.996334i \(0.527264\pi\)
\(458\) −6223.89 −0.634985
\(459\) −66.1632 −0.00672818
\(460\) 5108.36 0.517780
\(461\) −3298.51 −0.333247 −0.166623 0.986021i \(-0.553286\pi\)
−0.166623 + 0.986021i \(0.553286\pi\)
\(462\) −1049.54 −0.105690
\(463\) 7364.93 0.739260 0.369630 0.929179i \(-0.379484\pi\)
0.369630 + 0.929179i \(0.379484\pi\)
\(464\) 831.069 0.0831496
\(465\) −1523.86 −0.151972
\(466\) −9614.33 −0.955740
\(467\) −9694.12 −0.960579 −0.480290 0.877110i \(-0.659468\pi\)
−0.480290 + 0.877110i \(0.659468\pi\)
\(468\) 8117.21 0.801749
\(469\) −3648.40 −0.359206
\(470\) −7611.66 −0.747021
\(471\) −10349.7 −1.01251
\(472\) −66.0279 −0.00643894
\(473\) −3876.28 −0.376811
\(474\) 18346.9 1.77785
\(475\) −6582.94 −0.635887
\(476\) 216.871 0.0208829
\(477\) 4429.32 0.425167
\(478\) 23392.6 2.23840
\(479\) 11673.5 1.11352 0.556760 0.830673i \(-0.312044\pi\)
0.556760 + 0.830673i \(0.312044\pi\)
\(480\) 3781.28 0.359565
\(481\) 6043.56 0.572895
\(482\) −17065.7 −1.61270
\(483\) −1298.14 −0.122293
\(484\) 1529.80 0.143670
\(485\) 3087.63 0.289076
\(486\) −1104.06 −0.103048
\(487\) −5032.39 −0.468253 −0.234127 0.972206i \(-0.575223\pi\)
−0.234127 + 0.972206i \(0.575223\pi\)
\(488\) −3370.42 −0.312647
\(489\) −2752.81 −0.254574
\(490\) 1455.16 0.134158
\(491\) 10559.5 0.970557 0.485278 0.874360i \(-0.338718\pi\)
0.485278 + 0.874360i \(0.338718\pi\)
\(492\) −1092.78 −0.100135
\(493\) −384.332 −0.0351104
\(494\) 25932.3 2.36184
\(495\) 647.089 0.0587565
\(496\) −411.792 −0.0372782
\(497\) −6199.12 −0.559494
\(498\) 18802.1 1.69186
\(499\) −7367.48 −0.660949 −0.330475 0.943815i \(-0.607209\pi\)
−0.330475 + 0.943815i \(0.607209\pi\)
\(500\) −17128.9 −1.53206
\(501\) 10216.9 0.911093
\(502\) −8661.78 −0.770107
\(503\) 4656.82 0.412798 0.206399 0.978468i \(-0.433826\pi\)
0.206399 + 0.978468i \(0.433826\pi\)
\(504\) 1329.00 0.117457
\(505\) 6840.28 0.602749
\(506\) 3089.46 0.271429
\(507\) −8675.91 −0.759982
\(508\) 24350.4 2.12673
\(509\) −2210.78 −0.192517 −0.0962583 0.995356i \(-0.530687\pi\)
−0.0962583 + 0.995356i \(0.530687\pi\)
\(510\) −218.318 −0.0189554
\(511\) −2628.50 −0.227550
\(512\) 1916.06 0.165388
\(513\) −2160.25 −0.185920
\(514\) −654.157 −0.0561354
\(515\) 7299.92 0.624608
\(516\) 13365.8 1.14030
\(517\) −2819.40 −0.239840
\(518\) 2694.40 0.228543
\(519\) −5622.51 −0.475531
\(520\) 9836.19 0.829510
\(521\) 18348.3 1.54291 0.771453 0.636286i \(-0.219530\pi\)
0.771453 + 0.636286i \(0.219530\pi\)
\(522\) −6413.31 −0.537745
\(523\) −15196.1 −1.27051 −0.635256 0.772301i \(-0.719106\pi\)
−0.635256 + 0.772301i \(0.719106\pi\)
\(524\) −8896.18 −0.741663
\(525\) 1727.83 0.143635
\(526\) −31021.8 −2.57151
\(527\) 190.435 0.0157410
\(528\) 174.863 0.0144127
\(529\) −8345.74 −0.685932
\(530\) 14615.4 1.19783
\(531\) −28.1700 −0.00230221
\(532\) 7080.87 0.577058
\(533\) 2055.32 0.167027
\(534\) 1513.58 0.122657
\(535\) 9701.25 0.783966
\(536\) −10994.8 −0.886014
\(537\) 1639.62 0.131759
\(538\) 36574.6 2.93093
\(539\) 539.000 0.0430730
\(540\) −2231.22 −0.177808
\(541\) −5051.03 −0.401406 −0.200703 0.979652i \(-0.564323\pi\)
−0.200703 + 0.979652i \(0.564323\pi\)
\(542\) 6455.16 0.511573
\(543\) −8781.95 −0.694051
\(544\) −472.544 −0.0372430
\(545\) 6958.80 0.546940
\(546\) −6806.45 −0.533496
\(547\) −14873.9 −1.16263 −0.581317 0.813677i \(-0.697462\pi\)
−0.581317 + 0.813677i \(0.697462\pi\)
\(548\) −11946.9 −0.931290
\(549\) −1437.95 −0.111785
\(550\) −4112.06 −0.318798
\(551\) −12548.5 −0.970209
\(552\) −3912.08 −0.301647
\(553\) −9422.23 −0.724546
\(554\) 36548.4 2.80288
\(555\) −1661.22 −0.127054
\(556\) 15460.6 1.17927
\(557\) 20254.8 1.54079 0.770396 0.637565i \(-0.220058\pi\)
0.770396 + 0.637565i \(0.220058\pi\)
\(558\) 3177.77 0.241086
\(559\) −25138.4 −1.90204
\(560\) −242.443 −0.0182948
\(561\) −80.8662 −0.00608587
\(562\) 14036.0 1.05351
\(563\) −2659.45 −0.199081 −0.0995404 0.995034i \(-0.531737\pi\)
−0.0995404 + 0.995034i \(0.531737\pi\)
\(564\) 9721.55 0.725800
\(565\) −2864.00 −0.213256
\(566\) −36907.7 −2.74089
\(567\) 567.000 0.0419961
\(568\) −18681.6 −1.38004
\(569\) −14712.3 −1.08395 −0.541977 0.840393i \(-0.682324\pi\)
−0.541977 + 0.840393i \(0.682324\pi\)
\(570\) −7128.13 −0.523797
\(571\) 26158.2 1.91714 0.958570 0.284856i \(-0.0919456\pi\)
0.958570 + 0.284856i \(0.0919456\pi\)
\(572\) 9921.04 0.725209
\(573\) 6697.75 0.488311
\(574\) 916.322 0.0666316
\(575\) −5086.09 −0.368878
\(576\) −7503.78 −0.542808
\(577\) 24028.7 1.73367 0.866835 0.498595i \(-0.166151\pi\)
0.866835 + 0.498595i \(0.166151\pi\)
\(578\) −22294.7 −1.60439
\(579\) −4320.01 −0.310075
\(580\) −12960.8 −0.927875
\(581\) −9656.01 −0.689499
\(582\) −6438.78 −0.458584
\(583\) 5413.62 0.384578
\(584\) −7921.23 −0.561272
\(585\) 4196.49 0.296587
\(586\) −38090.7 −2.68518
\(587\) −18554.9 −1.30468 −0.652338 0.757928i \(-0.726212\pi\)
−0.652338 + 0.757928i \(0.726212\pi\)
\(588\) −1858.52 −0.130347
\(589\) 6217.75 0.434971
\(590\) −92.9520 −0.00648606
\(591\) −3079.60 −0.214345
\(592\) −448.913 −0.0311659
\(593\) 24535.9 1.69911 0.849553 0.527504i \(-0.176872\pi\)
0.849553 + 0.527504i \(0.176872\pi\)
\(594\) −1349.41 −0.0932101
\(595\) 112.119 0.00772510
\(596\) −34438.8 −2.36689
\(597\) −3819.80 −0.261866
\(598\) 20035.7 1.37010
\(599\) −88.4090 −0.00603054 −0.00301527 0.999995i \(-0.500960\pi\)
−0.00301527 + 0.999995i \(0.500960\pi\)
\(600\) 5206.97 0.354289
\(601\) −26290.0 −1.78434 −0.892172 0.451695i \(-0.850819\pi\)
−0.892172 + 0.451695i \(0.850819\pi\)
\(602\) −11207.5 −0.758774
\(603\) −4690.80 −0.316790
\(604\) 14333.2 0.965576
\(605\) 790.886 0.0531473
\(606\) −14264.4 −0.956188
\(607\) 28411.4 1.89981 0.949905 0.312540i \(-0.101180\pi\)
0.949905 + 0.312540i \(0.101180\pi\)
\(608\) −15428.7 −1.02914
\(609\) 3293.61 0.219153
\(610\) −4744.77 −0.314935
\(611\) −18284.4 −1.21065
\(612\) 278.834 0.0184170
\(613\) −3295.49 −0.217135 −0.108567 0.994089i \(-0.534626\pi\)
−0.108567 + 0.994089i \(0.534626\pi\)
\(614\) −29597.0 −1.94534
\(615\) −564.955 −0.0370426
\(616\) 1624.33 0.106244
\(617\) −3409.29 −0.222452 −0.111226 0.993795i \(-0.535478\pi\)
−0.111226 + 0.993795i \(0.535478\pi\)
\(618\) −15222.9 −0.990864
\(619\) −10865.7 −0.705542 −0.352771 0.935710i \(-0.614760\pi\)
−0.352771 + 0.935710i \(0.614760\pi\)
\(620\) 6422.03 0.415992
\(621\) −1669.04 −0.107852
\(622\) −17369.2 −1.11968
\(623\) −777.313 −0.0499878
\(624\) 1134.02 0.0727517
\(625\) 1429.26 0.0914724
\(626\) 5632.66 0.359627
\(627\) −2640.30 −0.168171
\(628\) 43617.2 2.77152
\(629\) 207.602 0.0131600
\(630\) 1870.92 0.118316
\(631\) 23851.7 1.50479 0.752394 0.658713i \(-0.228899\pi\)
0.752394 + 0.658713i \(0.228899\pi\)
\(632\) −28394.8 −1.78716
\(633\) 3263.66 0.204927
\(634\) 24431.4 1.53044
\(635\) 12588.9 0.786730
\(636\) −18666.6 −1.16380
\(637\) 3495.51 0.217421
\(638\) −7838.49 −0.486409
\(639\) −7970.29 −0.493427
\(640\) −14676.7 −0.906479
\(641\) 13710.2 0.844809 0.422404 0.906408i \(-0.361186\pi\)
0.422404 + 0.906408i \(0.361186\pi\)
\(642\) −20230.5 −1.24367
\(643\) 4879.27 0.299253 0.149627 0.988743i \(-0.452193\pi\)
0.149627 + 0.988743i \(0.452193\pi\)
\(644\) 5470.80 0.334751
\(645\) 6909.92 0.421826
\(646\) 890.796 0.0542537
\(647\) 13856.7 0.841982 0.420991 0.907065i \(-0.361682\pi\)
0.420991 + 0.907065i \(0.361682\pi\)
\(648\) 1708.71 0.103587
\(649\) −34.4300 −0.00208243
\(650\) −26667.5 −1.60921
\(651\) −1631.97 −0.0982521
\(652\) 11601.3 0.696841
\(653\) 9861.70 0.590993 0.295496 0.955344i \(-0.404515\pi\)
0.295496 + 0.955344i \(0.404515\pi\)
\(654\) −14511.5 −0.867653
\(655\) −4599.20 −0.274360
\(656\) −152.668 −0.00908640
\(657\) −3379.49 −0.200680
\(658\) −8151.72 −0.482959
\(659\) 6849.60 0.404890 0.202445 0.979294i \(-0.435111\pi\)
0.202445 + 0.979294i \(0.435111\pi\)
\(660\) −2727.04 −0.160833
\(661\) 24156.9 1.42147 0.710737 0.703458i \(-0.248361\pi\)
0.710737 + 0.703458i \(0.248361\pi\)
\(662\) 10547.4 0.619238
\(663\) −524.432 −0.0307198
\(664\) −29099.3 −1.70071
\(665\) 3660.72 0.213468
\(666\) 3464.23 0.201556
\(667\) −9695.20 −0.562818
\(668\) −43057.4 −2.49392
\(669\) 5479.55 0.316669
\(670\) −15478.2 −0.892498
\(671\) −1757.49 −0.101114
\(672\) 4049.57 0.232464
\(673\) 10039.3 0.575015 0.287508 0.957778i \(-0.407173\pi\)
0.287508 + 0.957778i \(0.407173\pi\)
\(674\) 33011.5 1.88658
\(675\) 2221.49 0.126674
\(676\) 36563.1 2.08029
\(677\) 17849.5 1.01331 0.506655 0.862149i \(-0.330882\pi\)
0.506655 + 0.862149i \(0.330882\pi\)
\(678\) 5972.44 0.338304
\(679\) 3306.69 0.186891
\(680\) 337.882 0.0190547
\(681\) −5465.43 −0.307542
\(682\) 3883.95 0.218070
\(683\) −8199.58 −0.459368 −0.229684 0.973265i \(-0.573769\pi\)
−0.229684 + 0.973265i \(0.573769\pi\)
\(684\) 9103.98 0.508917
\(685\) −6176.39 −0.344508
\(686\) 1558.40 0.0867350
\(687\) 4109.58 0.228224
\(688\) 1867.27 0.103472
\(689\) 35108.3 1.94125
\(690\) −5507.31 −0.303855
\(691\) 6179.89 0.340223 0.170111 0.985425i \(-0.445587\pi\)
0.170111 + 0.985425i \(0.445587\pi\)
\(692\) 23695.1 1.30167
\(693\) 693.000 0.0379869
\(694\) −37813.1 −2.06825
\(695\) 7992.94 0.436244
\(696\) 9925.62 0.540560
\(697\) 70.6020 0.00383679
\(698\) 20919.9 1.13443
\(699\) 6348.25 0.343509
\(700\) −7281.62 −0.393171
\(701\) −13389.9 −0.721437 −0.360719 0.932675i \(-0.617469\pi\)
−0.360719 + 0.932675i \(0.617469\pi\)
\(702\) −8751.15 −0.470500
\(703\) 6778.25 0.363651
\(704\) −9171.29 −0.490988
\(705\) 5025.91 0.268492
\(706\) −14802.2 −0.789075
\(707\) 7325.60 0.389685
\(708\) 118.718 0.00630180
\(709\) −4773.49 −0.252852 −0.126426 0.991976i \(-0.540351\pi\)
−0.126426 + 0.991976i \(0.540351\pi\)
\(710\) −26299.4 −1.39014
\(711\) −12114.3 −0.638990
\(712\) −2342.51 −0.123299
\(713\) 4803.94 0.252327
\(714\) −233.808 −0.0122549
\(715\) 5129.04 0.268273
\(716\) −6909.88 −0.360663
\(717\) −15445.9 −0.804517
\(718\) 51202.1 2.66134
\(719\) −8643.93 −0.448351 −0.224175 0.974549i \(-0.571969\pi\)
−0.224175 + 0.974549i \(0.571969\pi\)
\(720\) −311.713 −0.0161345
\(721\) 7817.85 0.403817
\(722\) −2078.84 −0.107156
\(723\) 11268.3 0.579631
\(724\) 37010.0 1.89982
\(725\) 12904.3 0.661039
\(726\) −1649.27 −0.0843117
\(727\) 6255.16 0.319108 0.159554 0.987189i \(-0.448994\pi\)
0.159554 + 0.987189i \(0.448994\pi\)
\(728\) 10534.1 0.536289
\(729\) 729.000 0.0370370
\(730\) −11151.3 −0.565379
\(731\) −863.527 −0.0436918
\(732\) 6059.98 0.305988
\(733\) 8881.40 0.447534 0.223767 0.974643i \(-0.428165\pi\)
0.223767 + 0.974643i \(0.428165\pi\)
\(734\) 44203.8 2.22288
\(735\) −960.829 −0.0482186
\(736\) −11920.5 −0.597003
\(737\) −5733.20 −0.286547
\(738\) 1178.13 0.0587635
\(739\) 30833.0 1.53479 0.767395 0.641175i \(-0.221553\pi\)
0.767395 + 0.641175i \(0.221553\pi\)
\(740\) 7000.94 0.347783
\(741\) −17122.8 −0.848884
\(742\) 15652.3 0.774414
\(743\) 9598.45 0.473934 0.236967 0.971518i \(-0.423847\pi\)
0.236967 + 0.971518i \(0.423847\pi\)
\(744\) −4918.11 −0.242348
\(745\) −17804.4 −0.875574
\(746\) 30543.6 1.49904
\(747\) −12414.9 −0.608081
\(748\) 340.797 0.0166588
\(749\) 10389.6 0.506844
\(750\) 18466.7 0.899076
\(751\) −40107.6 −1.94880 −0.974399 0.224826i \(-0.927819\pi\)
−0.974399 + 0.224826i \(0.927819\pi\)
\(752\) 1358.15 0.0658600
\(753\) 5719.29 0.276789
\(754\) −50834.0 −2.45526
\(755\) 7410.05 0.357191
\(756\) −2389.52 −0.114955
\(757\) 3714.41 0.178339 0.0891696 0.996016i \(-0.471579\pi\)
0.0891696 + 0.996016i \(0.471579\pi\)
\(758\) −27110.7 −1.29908
\(759\) −2039.94 −0.0975562
\(760\) 11031.9 0.526539
\(761\) 29623.8 1.41112 0.705559 0.708651i \(-0.250696\pi\)
0.705559 + 0.708651i \(0.250696\pi\)
\(762\) −26252.2 −1.24805
\(763\) 7452.53 0.353604
\(764\) −28226.5 −1.33665
\(765\) 144.153 0.00681290
\(766\) −45566.3 −2.14932
\(767\) −223.285 −0.0105115
\(768\) 10595.9 0.497848
\(769\) −39173.6 −1.83698 −0.918489 0.395446i \(-0.870590\pi\)
−0.918489 + 0.395446i \(0.870590\pi\)
\(770\) 2286.68 0.107021
\(771\) 431.933 0.0201760
\(772\) 18205.9 0.848763
\(773\) −9500.27 −0.442045 −0.221023 0.975269i \(-0.570939\pi\)
−0.221023 + 0.975269i \(0.570939\pi\)
\(774\) −14409.6 −0.669176
\(775\) −6394.03 −0.296362
\(776\) 9965.04 0.460985
\(777\) −1779.09 −0.0821421
\(778\) −60129.6 −2.77089
\(779\) 2305.17 0.106022
\(780\) −17685.4 −0.811844
\(781\) −9741.47 −0.446322
\(782\) 688.244 0.0314726
\(783\) 4234.65 0.193274
\(784\) −259.645 −0.0118278
\(785\) 22549.5 1.02526
\(786\) 9590.95 0.435239
\(787\) 21640.9 0.980195 0.490097 0.871668i \(-0.336961\pi\)
0.490097 + 0.871668i \(0.336961\pi\)
\(788\) 12978.4 0.586723
\(789\) 20483.4 0.924245
\(790\) −39973.4 −1.80024
\(791\) −3067.20 −0.137873
\(792\) 2088.42 0.0936981
\(793\) −11397.7 −0.510394
\(794\) −45216.4 −2.02100
\(795\) −9650.39 −0.430521
\(796\) 16097.9 0.716802
\(797\) −9843.72 −0.437494 −0.218747 0.975782i \(-0.570197\pi\)
−0.218747 + 0.975782i \(0.570197\pi\)
\(798\) −7633.87 −0.338642
\(799\) −628.084 −0.0278098
\(800\) 15866.1 0.701189
\(801\) −999.403 −0.0440851
\(802\) −21397.9 −0.942125
\(803\) −4130.49 −0.181522
\(804\) 19768.6 0.867144
\(805\) 2828.33 0.123833
\(806\) 25188.1 1.10076
\(807\) −24149.8 −1.05343
\(808\) 22076.4 0.961194
\(809\) −1679.53 −0.0729902 −0.0364951 0.999334i \(-0.511619\pi\)
−0.0364951 + 0.999334i \(0.511619\pi\)
\(810\) 2405.47 0.104345
\(811\) 19807.2 0.857612 0.428806 0.903397i \(-0.358934\pi\)
0.428806 + 0.903397i \(0.358934\pi\)
\(812\) −13880.4 −0.599883
\(813\) −4262.28 −0.183868
\(814\) 4234.06 0.182314
\(815\) 5997.69 0.257779
\(816\) 38.9545 0.00167118
\(817\) −28194.4 −1.20734
\(818\) 68355.3 2.92175
\(819\) 4494.23 0.191747
\(820\) 2380.90 0.101396
\(821\) −4861.54 −0.206661 −0.103331 0.994647i \(-0.532950\pi\)
−0.103331 + 0.994647i \(0.532950\pi\)
\(822\) 12879.9 0.546520
\(823\) 15188.4 0.643297 0.321648 0.946859i \(-0.395763\pi\)
0.321648 + 0.946859i \(0.395763\pi\)
\(824\) 23559.9 0.996051
\(825\) 2715.16 0.114581
\(826\) −99.5470 −0.00419332
\(827\) −29620.8 −1.24548 −0.622742 0.782428i \(-0.713981\pi\)
−0.622742 + 0.782428i \(0.713981\pi\)
\(828\) 7033.89 0.295223
\(829\) −1614.70 −0.0676487 −0.0338243 0.999428i \(-0.510769\pi\)
−0.0338243 + 0.999428i \(0.510769\pi\)
\(830\) −40965.2 −1.71316
\(831\) −24132.6 −1.00740
\(832\) −59477.5 −2.47838
\(833\) 120.074 0.00499438
\(834\) −16668.1 −0.692048
\(835\) −22260.1 −0.922565
\(836\) 11127.1 0.460333
\(837\) −2098.25 −0.0866502
\(838\) 27204.2 1.12143
\(839\) 10645.8 0.438063 0.219031 0.975718i \(-0.429710\pi\)
0.219031 + 0.975718i \(0.429710\pi\)
\(840\) −2895.55 −0.118936
\(841\) 209.391 0.00858547
\(842\) −30637.5 −1.25397
\(843\) −9267.83 −0.378649
\(844\) −13754.1 −0.560944
\(845\) 18902.6 0.769551
\(846\) −10480.8 −0.425930
\(847\) 847.000 0.0343604
\(848\) −2607.83 −0.105605
\(849\) 24369.8 0.985122
\(850\) −916.052 −0.0369651
\(851\) 5236.99 0.210954
\(852\) 33589.4 1.35065
\(853\) 30300.5 1.21626 0.608130 0.793837i \(-0.291920\pi\)
0.608130 + 0.793837i \(0.291920\pi\)
\(854\) −5081.42 −0.203609
\(855\) 4706.63 0.188261
\(856\) 31310.0 1.25018
\(857\) −14243.2 −0.567721 −0.283861 0.958866i \(-0.591615\pi\)
−0.283861 + 0.958866i \(0.591615\pi\)
\(858\) −10695.8 −0.425583
\(859\) 21732.6 0.863221 0.431610 0.902060i \(-0.357946\pi\)
0.431610 + 0.902060i \(0.357946\pi\)
\(860\) −29120.7 −1.15466
\(861\) −605.039 −0.0239485
\(862\) 8877.29 0.350768
\(863\) −36687.7 −1.44712 −0.723559 0.690263i \(-0.757495\pi\)
−0.723559 + 0.690263i \(0.757495\pi\)
\(864\) 5206.59 0.205014
\(865\) 12250.0 0.481519
\(866\) 54351.8 2.13274
\(867\) 14721.0 0.576645
\(868\) 6877.68 0.268944
\(869\) −14806.4 −0.577988
\(870\) 13973.0 0.544516
\(871\) −37180.9 −1.44641
\(872\) 22458.9 0.872195
\(873\) 4251.46 0.164823
\(874\) 22471.3 0.869685
\(875\) −9483.72 −0.366409
\(876\) 14242.3 0.549318
\(877\) 2430.02 0.0935643 0.0467822 0.998905i \(-0.485103\pi\)
0.0467822 + 0.998905i \(0.485103\pi\)
\(878\) 25057.8 0.963165
\(879\) 25150.9 0.965097
\(880\) −380.982 −0.0145942
\(881\) 31492.8 1.20434 0.602168 0.798369i \(-0.294304\pi\)
0.602168 + 0.798369i \(0.294304\pi\)
\(882\) 2003.66 0.0764930
\(883\) 9175.59 0.349698 0.174849 0.984595i \(-0.444056\pi\)
0.174849 + 0.984595i \(0.444056\pi\)
\(884\) 2210.13 0.0840890
\(885\) 61.3753 0.00233120
\(886\) −59661.0 −2.26225
\(887\) 23904.6 0.904890 0.452445 0.891792i \(-0.350552\pi\)
0.452445 + 0.891792i \(0.350552\pi\)
\(888\) −5361.45 −0.202611
\(889\) 13482.0 0.508631
\(890\) −3297.71 −0.124202
\(891\) 891.000 0.0335013
\(892\) −23092.6 −0.866814
\(893\) −20507.1 −0.768470
\(894\) 37128.4 1.38899
\(895\) −3572.32 −0.133418
\(896\) −15718.0 −0.586051
\(897\) −13229.4 −0.492437
\(898\) 23178.7 0.861341
\(899\) −12188.4 −0.452177
\(900\) −9362.09 −0.346744
\(901\) 1206.00 0.0445924
\(902\) 1439.93 0.0531536
\(903\) 7400.18 0.272716
\(904\) −9243.31 −0.340075
\(905\) 19133.7 0.702790
\(906\) −15452.5 −0.566640
\(907\) 30088.7 1.10152 0.550760 0.834663i \(-0.314338\pi\)
0.550760 + 0.834663i \(0.314338\pi\)
\(908\) 23033.1 0.841829
\(909\) 9418.62 0.343670
\(910\) 14829.5 0.540214
\(911\) −30837.0 −1.12149 −0.560745 0.827989i \(-0.689485\pi\)
−0.560745 + 0.827989i \(0.689485\pi\)
\(912\) 1271.87 0.0461798
\(913\) −15173.7 −0.550030
\(914\) −7594.61 −0.274844
\(915\) 3132.93 0.113193
\(916\) −17319.1 −0.624715
\(917\) −4925.52 −0.177377
\(918\) −300.610 −0.0108078
\(919\) 52840.0 1.89666 0.948330 0.317285i \(-0.102771\pi\)
0.948330 + 0.317285i \(0.102771\pi\)
\(920\) 8523.45 0.305445
\(921\) 19542.6 0.699187
\(922\) −14986.6 −0.535312
\(923\) −63175.2 −2.25291
\(924\) −2920.53 −0.103981
\(925\) −6970.42 −0.247769
\(926\) 33462.2 1.18751
\(927\) 10051.5 0.356133
\(928\) 30244.3 1.06984
\(929\) 12341.6 0.435861 0.217930 0.975964i \(-0.430069\pi\)
0.217930 + 0.975964i \(0.430069\pi\)
\(930\) −6923.57 −0.244121
\(931\) 3920.45 0.138010
\(932\) −26753.6 −0.940282
\(933\) 11468.7 0.402433
\(934\) −44044.8 −1.54303
\(935\) 176.187 0.00616250
\(936\) 13543.8 0.472963
\(937\) 3939.78 0.137361 0.0686803 0.997639i \(-0.478121\pi\)
0.0686803 + 0.997639i \(0.478121\pi\)
\(938\) −16576.4 −0.577012
\(939\) −3719.19 −0.129256
\(940\) −21180.8 −0.734939
\(941\) 35201.0 1.21947 0.609734 0.792606i \(-0.291276\pi\)
0.609734 + 0.792606i \(0.291276\pi\)
\(942\) −47023.5 −1.62644
\(943\) 1781.01 0.0615035
\(944\) 16.5855 0.000571834 0
\(945\) −1235.35 −0.0425248
\(946\) −17611.7 −0.605292
\(947\) −17958.1 −0.616218 −0.308109 0.951351i \(-0.599696\pi\)
−0.308109 + 0.951351i \(0.599696\pi\)
\(948\) 51053.6 1.74910
\(949\) −26787.0 −0.916273
\(950\) −29909.3 −1.02146
\(951\) −16131.8 −0.550064
\(952\) 361.855 0.0123191
\(953\) 9631.60 0.327385 0.163693 0.986511i \(-0.447659\pi\)
0.163693 + 0.986511i \(0.447659\pi\)
\(954\) 20124.4 0.682969
\(955\) −14592.7 −0.494460
\(956\) 65094.2 2.20219
\(957\) 5175.68 0.174823
\(958\) 53038.1 1.78871
\(959\) −6614.61 −0.222729
\(960\) 16348.9 0.549643
\(961\) −23751.7 −0.797277
\(962\) 27458.7 0.920273
\(963\) 13358.0 0.446995
\(964\) −47488.4 −1.58662
\(965\) 9412.21 0.313979
\(966\) −5898.06 −0.196446
\(967\) −46034.2 −1.53088 −0.765439 0.643508i \(-0.777478\pi\)
−0.765439 + 0.643508i \(0.777478\pi\)
\(968\) 2552.52 0.0847531
\(969\) −588.184 −0.0194997
\(970\) 14028.5 0.464358
\(971\) −17330.8 −0.572782 −0.286391 0.958113i \(-0.592456\pi\)
−0.286391 + 0.958113i \(0.592456\pi\)
\(972\) −3072.24 −0.101381
\(973\) 8560.04 0.282037
\(974\) −22864.4 −0.752180
\(975\) 17608.3 0.578376
\(976\) 846.612 0.0277658
\(977\) 8836.93 0.289374 0.144687 0.989477i \(-0.453782\pi\)
0.144687 + 0.989477i \(0.453782\pi\)
\(978\) −12507.3 −0.408935
\(979\) −1221.49 −0.0398765
\(980\) 4049.25 0.131988
\(981\) 9581.82 0.311849
\(982\) 47976.6 1.55906
\(983\) 27933.6 0.906352 0.453176 0.891421i \(-0.350291\pi\)
0.453176 + 0.891421i \(0.350291\pi\)
\(984\) −1823.34 −0.0590712
\(985\) 6709.67 0.217044
\(986\) −1746.19 −0.0563997
\(987\) 5382.50 0.173583
\(988\) 72161.2 2.32364
\(989\) −21783.4 −0.700377
\(990\) 2940.02 0.0943838
\(991\) 57618.7 1.84694 0.923471 0.383668i \(-0.125339\pi\)
0.923471 + 0.383668i \(0.125339\pi\)
\(992\) −14985.9 −0.479641
\(993\) −6964.33 −0.222564
\(994\) −28165.4 −0.898745
\(995\) 8322.39 0.265163
\(996\) 52320.3 1.66449
\(997\) −8399.40 −0.266812 −0.133406 0.991061i \(-0.542591\pi\)
−0.133406 + 0.991061i \(0.542591\pi\)
\(998\) −33473.8 −1.06172
\(999\) −2287.40 −0.0724425
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.k.1.5 5
3.2 odd 2 693.4.a.p.1.1 5
7.6 odd 2 1617.4.a.n.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.k.1.5 5 1.1 even 1 trivial
693.4.a.p.1.1 5 3.2 odd 2
1617.4.a.n.1.5 5 7.6 odd 2