Newspace parameters
| Level: | \( N \) | \(=\) | \( 231 = 3 \cdot 7 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 231.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.29429410672\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 230.1 | −3.61990 | −0.855150 | − | 2.87554i | 9.10367 | 1.63873 | 3.09556 | + | 10.4092i | −4.95924 | − | 4.94024i | −18.4748 | −7.53744 | + | 4.91803i | −5.93203 | ||||||||||
| 230.2 | −3.61990 | −0.855150 | + | 2.87554i | 9.10367 | 1.63873 | 3.09556 | − | 10.4092i | −4.95924 | + | 4.94024i | −18.4748 | −7.53744 | − | 4.91803i | −5.93203 | ||||||||||
| 230.3 | −3.61990 | 0.855150 | − | 2.87554i | 9.10367 | −1.63873 | −3.09556 | + | 10.4092i | 4.95924 | + | 4.94024i | −18.4748 | −7.53744 | − | 4.91803i | 5.93203 | ||||||||||
| 230.4 | −3.61990 | 0.855150 | + | 2.87554i | 9.10367 | −1.63873 | −3.09556 | − | 10.4092i | 4.95924 | − | 4.94024i | −18.4748 | −7.53744 | + | 4.91803i | 5.93203 | ||||||||||
| 230.5 | −2.79736 | −2.26534 | − | 1.96678i | 3.82525 | −5.34447 | 6.33698 | + | 5.50181i | 0.424866 | + | 6.98709i | 0.488843 | 1.26352 | + | 8.91086i | 14.9504 | ||||||||||
| 230.6 | −2.79736 | −2.26534 | + | 1.96678i | 3.82525 | −5.34447 | 6.33698 | − | 5.50181i | 0.424866 | − | 6.98709i | 0.488843 | 1.26352 | − | 8.91086i | 14.9504 | ||||||||||
| 230.7 | −2.79736 | 2.26534 | − | 1.96678i | 3.82525 | 5.34447 | −6.33698 | + | 5.50181i | −0.424866 | − | 6.98709i | 0.488843 | 1.26352 | − | 8.91086i | −14.9504 | ||||||||||
| 230.8 | −2.79736 | 2.26534 | + | 1.96678i | 3.82525 | 5.34447 | −6.33698 | − | 5.50181i | −0.424866 | + | 6.98709i | 0.488843 | 1.26352 | + | 8.91086i | −14.9504 | ||||||||||
| 230.9 | −2.18332 | −0.798986 | − | 2.89165i | 0.766888 | 9.25203 | 1.74444 | + | 6.31339i | −3.46525 | + | 6.08211i | 7.05892 | −7.72324 | + | 4.62077i | −20.2001 | ||||||||||
| 230.10 | −2.18332 | −0.798986 | + | 2.89165i | 0.766888 | 9.25203 | 1.74444 | − | 6.31339i | −3.46525 | − | 6.08211i | 7.05892 | −7.72324 | − | 4.62077i | −20.2001 | ||||||||||
| 230.11 | −2.18332 | 0.798986 | − | 2.89165i | 0.766888 | −9.25203 | −1.74444 | + | 6.31339i | 3.46525 | − | 6.08211i | 7.05892 | −7.72324 | − | 4.62077i | 20.2001 | ||||||||||
| 230.12 | −2.18332 | 0.798986 | + | 2.89165i | 0.766888 | −9.25203 | −1.74444 | − | 6.31339i | 3.46525 | + | 6.08211i | 7.05892 | −7.72324 | + | 4.62077i | 20.2001 | ||||||||||
| 230.13 | −2.01477 | −2.47008 | − | 1.70256i | 0.0592996 | 0.175820 | 4.97664 | + | 3.43027i | 5.46195 | − | 4.37802i | 7.93961 | 3.20255 | + | 8.41092i | −0.354238 | ||||||||||
| 230.14 | −2.01477 | −2.47008 | + | 1.70256i | 0.0592996 | 0.175820 | 4.97664 | − | 3.43027i | 5.46195 | + | 4.37802i | 7.93961 | 3.20255 | − | 8.41092i | −0.354238 | ||||||||||
| 230.15 | −2.01477 | 2.47008 | − | 1.70256i | 0.0592996 | −0.175820 | −4.97664 | + | 3.43027i | −5.46195 | + | 4.37802i | 7.93961 | 3.20255 | − | 8.41092i | 0.354238 | ||||||||||
| 230.16 | −2.01477 | 2.47008 | + | 1.70256i | 0.0592996 | −0.175820 | −4.97664 | − | 3.43027i | −5.46195 | − | 4.37802i | 7.93961 | 3.20255 | + | 8.41092i | 0.354238 | ||||||||||
| 230.17 | −0.909212 | −0.785304 | − | 2.89539i | −3.17333 | −3.00590 | 0.714008 | + | 2.63253i | −6.62219 | − | 2.26860i | 6.52208 | −7.76660 | + | 4.54752i | 2.73300 | ||||||||||
| 230.18 | −0.909212 | −0.785304 | + | 2.89539i | −3.17333 | −3.00590 | 0.714008 | − | 2.63253i | −6.62219 | + | 2.26860i | 6.52208 | −7.76660 | − | 4.54752i | 2.73300 | ||||||||||
| 230.19 | −0.909212 | 0.785304 | − | 2.89539i | −3.17333 | 3.00590 | −0.714008 | + | 2.63253i | 6.62219 | + | 2.26860i | 6.52208 | −7.76660 | − | 4.54752i | −2.73300 | ||||||||||
| 230.20 | −0.909212 | 0.785304 | + | 2.89539i | −3.17333 | 3.00590 | −0.714008 | − | 2.63253i | 6.62219 | − | 2.26860i | 6.52208 | −7.76660 | + | 4.54752i | −2.73300 | ||||||||||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 7.b | odd | 2 | 1 | inner |
| 11.b | odd | 2 | 1 | inner |
| 21.c | even | 2 | 1 | inner |
| 33.d | even | 2 | 1 | inner |
| 77.b | even | 2 | 1 | inner |
| 231.h | odd | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 231.3.h.e | ✓ | 48 |
| 3.b | odd | 2 | 1 | inner | 231.3.h.e | ✓ | 48 |
| 7.b | odd | 2 | 1 | inner | 231.3.h.e | ✓ | 48 |
| 11.b | odd | 2 | 1 | inner | 231.3.h.e | ✓ | 48 |
| 21.c | even | 2 | 1 | inner | 231.3.h.e | ✓ | 48 |
| 33.d | even | 2 | 1 | inner | 231.3.h.e | ✓ | 48 |
| 77.b | even | 2 | 1 | inner | 231.3.h.e | ✓ | 48 |
| 231.h | odd | 2 | 1 | inner | 231.3.h.e | ✓ | 48 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 231.3.h.e | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
| 231.3.h.e | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
| 231.3.h.e | ✓ | 48 | 7.b | odd | 2 | 1 | inner |
| 231.3.h.e | ✓ | 48 | 11.b | odd | 2 | 1 | inner |
| 231.3.h.e | ✓ | 48 | 21.c | even | 2 | 1 | inner |
| 231.3.h.e | ✓ | 48 | 33.d | even | 2 | 1 | inner |
| 231.3.h.e | ✓ | 48 | 77.b | even | 2 | 1 | inner |
| 231.3.h.e | ✓ | 48 | 231.h | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(231, [\chi])\):
|
\( T_{2}^{12} - 31T_{2}^{10} + 344T_{2}^{8} - 1702T_{2}^{6} + 3721T_{2}^{4} - 2923T_{2}^{2} + 686 \)
|
|
\( T_{5}^{12} - 149T_{5}^{10} + 6718T_{5}^{8} - 119528T_{5}^{6} + 788520T_{5}^{4} - 1393792T_{5}^{2} + 42336 \)
|