| L(s) = 1 | + 2.01·2-s + (−2.47 + 1.70i)3-s + 0.0592·4-s + 0.175·5-s + (−4.97 + 3.43i)6-s + (−5.46 − 4.37i)7-s − 7.93·8-s + (3.20 − 8.41i)9-s + 0.354·10-s + (6.07 − 9.17i)11-s + (−0.146 + 0.100i)12-s − 7.53·13-s + (−11.0 − 8.82i)14-s + (−0.434 + 0.299i)15-s − 16.2·16-s − 21.7i·17-s + ⋯ |
| L(s) = 1 | + 1.00·2-s + (−0.823 + 0.567i)3-s + 0.0148·4-s + 0.0351·5-s + (−0.829 + 0.571i)6-s + (−0.780 − 0.625i)7-s − 0.992·8-s + (0.355 − 0.934i)9-s + 0.0354·10-s + (0.552 − 0.833i)11-s + (−0.0122 + 0.00841i)12-s − 0.579·13-s + (−0.786 − 0.630i)14-s + (−0.0289 + 0.0199i)15-s − 1.01·16-s − 1.28i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.610 + 0.791i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.610 + 0.791i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.264315 - 0.537674i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.264315 - 0.537674i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (2.47 - 1.70i)T \) |
| 7 | \( 1 + (5.46 + 4.37i)T \) |
| 11 | \( 1 + (-6.07 + 9.17i)T \) |
| good | 2 | \( 1 - 2.01T + 4T^{2} \) |
| 5 | \( 1 - 0.175T + 25T^{2} \) |
| 13 | \( 1 + 7.53T + 169T^{2} \) |
| 17 | \( 1 + 21.7iT - 289T^{2} \) |
| 19 | \( 1 + 13.1T + 361T^{2} \) |
| 23 | \( 1 - 28.3iT - 529T^{2} \) |
| 29 | \( 1 - 7.12T + 841T^{2} \) |
| 31 | \( 1 - 0.122iT - 961T^{2} \) |
| 37 | \( 1 + 53.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + 55.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 13.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 48.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 35.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 81.5T + 3.48e3T^{2} \) |
| 61 | \( 1 + 34.1T + 3.72e3T^{2} \) |
| 67 | \( 1 - 84.8T + 4.48e3T^{2} \) |
| 71 | \( 1 + 11.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 106.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 37.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 56.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 14.4T + 7.92e3T^{2} \) |
| 97 | \( 1 + 133. iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85739886891217922363274936328, −10.86207782400643693768832518689, −9.719858856290207066369266580691, −9.059262485994935217969463846048, −7.16547012411411526472753284230, −6.15313718701837675313287632195, −5.28508074566859074213965117323, −4.14616396357225460956183681918, −3.29052228632616258909207403926, −0.24795922020966014915611728210,
2.24513546373301021648986727317, 3.98212666723346925054558584277, 5.06086938250566786411075437741, 6.16153010524888745800192801855, 6.71419419000072163584256106333, 8.296603360422540201244724896412, 9.520697021873544061984135079799, 10.54540086143685216031581087657, 11.92909565567358464637238982823, 12.44747570667199368878082301710