| L(s) = 1 | + 2.18·2-s + (−0.798 + 2.89i)3-s + 0.766·4-s + 9.25·5-s + (−1.74 + 6.31i)6-s + (3.46 + 6.08i)7-s − 7.05·8-s + (−7.72 − 4.62i)9-s + 20.2·10-s + (7.25 − 8.26i)11-s + (−0.612 + 2.21i)12-s − 3.97·13-s + (7.56 + 13.2i)14-s + (−7.39 + 26.7i)15-s − 18.4·16-s + 26.9i·17-s + ⋯ |
| L(s) = 1 | + 1.09·2-s + (−0.266 + 0.963i)3-s + 0.191·4-s + 1.85·5-s + (−0.290 + 1.05i)6-s + (0.495 + 0.868i)7-s − 0.882·8-s + (−0.858 − 0.513i)9-s + 2.02·10-s + (0.659 − 0.751i)11-s + (−0.0510 + 0.184i)12-s − 0.306·13-s + (0.540 + 0.948i)14-s + (−0.492 + 1.78i)15-s − 1.15·16-s + 1.58i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.454 - 0.890i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.454 - 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(2.50573 + 1.53468i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.50573 + 1.53468i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.798 - 2.89i)T \) |
| 7 | \( 1 + (-3.46 - 6.08i)T \) |
| 11 | \( 1 + (-7.25 + 8.26i)T \) |
| good | 2 | \( 1 - 2.18T + 4T^{2} \) |
| 5 | \( 1 - 9.25T + 25T^{2} \) |
| 13 | \( 1 + 3.97T + 169T^{2} \) |
| 17 | \( 1 - 26.9iT - 289T^{2} \) |
| 19 | \( 1 - 4.49T + 361T^{2} \) |
| 23 | \( 1 + 4.85iT - 529T^{2} \) |
| 29 | \( 1 + 29.2T + 841T^{2} \) |
| 31 | \( 1 + 42.0iT - 961T^{2} \) |
| 37 | \( 1 + 0.532T + 1.36e3T^{2} \) |
| 41 | \( 1 + 17.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 59.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 18.0T + 2.20e3T^{2} \) |
| 53 | \( 1 + 51.0iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 59.2T + 3.48e3T^{2} \) |
| 61 | \( 1 + 72.8T + 3.72e3T^{2} \) |
| 67 | \( 1 + 87.6T + 4.48e3T^{2} \) |
| 71 | \( 1 + 32.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 56.2T + 5.32e3T^{2} \) |
| 79 | \( 1 + 49.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 44.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 21.1T + 7.92e3T^{2} \) |
| 97 | \( 1 - 8.09iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.27785283838832944488060889874, −11.26869824311336674076778995720, −10.21699973018042849113908894514, −9.223211662660960800569016936260, −8.720019261134412500886546789198, −6.12069239480819896420920458363, −5.86559000709419034466079326872, −4.98968217452653297497704980788, −3.67435899514690861400259534524, −2.22425184688455027867675711993,
1.42245998089776168813554685927, 2.77013775930631778476631788335, 4.73306413365231757077038297654, 5.47136452065696439852868060677, 6.53639967899892481314983194205, 7.30204710057945146590047109678, 9.045360639834398431620693459338, 9.830108707534162555395661772221, 11.13908193947815257712700342878, 12.15950513686206042289037797928