Properties

Label 230.6.a.g.1.3
Level $230$
Weight $6$
Character 230.1
Self dual yes
Analytic conductor $36.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [230,6,Mod(1,230)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("230.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(230, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-20,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.8882785570\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 772x^{3} - 255x^{2} + 13416x + 10080 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.766035\) of defining polynomial
Character \(\chi\) \(=\) 230.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +0.233965 q^{3} +16.0000 q^{4} -25.0000 q^{5} -0.935860 q^{6} +203.513 q^{7} -64.0000 q^{8} -242.945 q^{9} +100.000 q^{10} -151.197 q^{11} +3.74344 q^{12} +1152.80 q^{13} -814.051 q^{14} -5.84912 q^{15} +256.000 q^{16} -692.618 q^{17} +971.781 q^{18} -360.416 q^{19} -400.000 q^{20} +47.6148 q^{21} +604.789 q^{22} +529.000 q^{23} -14.9738 q^{24} +625.000 q^{25} -4611.19 q^{26} -113.694 q^{27} +3256.20 q^{28} -3686.27 q^{29} +23.3965 q^{30} +868.793 q^{31} -1024.00 q^{32} -35.3748 q^{33} +2770.47 q^{34} -5087.82 q^{35} -3887.12 q^{36} +4023.42 q^{37} +1441.66 q^{38} +269.714 q^{39} +1600.00 q^{40} -6448.34 q^{41} -190.459 q^{42} +6561.73 q^{43} -2419.16 q^{44} +6073.63 q^{45} -2116.00 q^{46} +12850.0 q^{47} +59.8950 q^{48} +24610.4 q^{49} -2500.00 q^{50} -162.048 q^{51} +18444.8 q^{52} -11515.1 q^{53} +454.777 q^{54} +3779.93 q^{55} -13024.8 q^{56} -84.3247 q^{57} +14745.1 q^{58} +28695.2 q^{59} -93.5860 q^{60} +3672.30 q^{61} -3475.17 q^{62} -49442.5 q^{63} +4096.00 q^{64} -28819.9 q^{65} +141.499 q^{66} +39498.4 q^{67} -11081.9 q^{68} +123.767 q^{69} +20351.3 q^{70} +31887.5 q^{71} +15548.5 q^{72} +2911.70 q^{73} -16093.7 q^{74} +146.228 q^{75} -5766.66 q^{76} -30770.6 q^{77} -1078.86 q^{78} +100421. q^{79} -6400.00 q^{80} +59009.1 q^{81} +25793.4 q^{82} +77129.7 q^{83} +761.838 q^{84} +17315.4 q^{85} -26246.9 q^{86} -862.457 q^{87} +9676.62 q^{88} +106159. q^{89} -24294.5 q^{90} +234609. q^{91} +8464.00 q^{92} +203.267 q^{93} -51399.9 q^{94} +9010.40 q^{95} -239.580 q^{96} -35876.4 q^{97} -98441.8 q^{98} +36732.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20 q^{2} + 5 q^{3} + 80 q^{4} - 125 q^{5} - 20 q^{6} + 130 q^{7} - 320 q^{8} + 334 q^{9} + 500 q^{10} + 81 q^{11} + 80 q^{12} - 753 q^{13} - 520 q^{14} - 125 q^{15} + 1280 q^{16} - 1780 q^{17} - 1336 q^{18}+ \cdots + 362547 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0.233965 0.0150089 0.00750443 0.999972i \(-0.497611\pi\)
0.00750443 + 0.999972i \(0.497611\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) −0.935860 −0.0106129
\(7\) 203.513 1.56981 0.784904 0.619617i \(-0.212712\pi\)
0.784904 + 0.619617i \(0.212712\pi\)
\(8\) −64.0000 −0.353553
\(9\) −242.945 −0.999775
\(10\) 100.000 0.316228
\(11\) −151.197 −0.376758 −0.188379 0.982096i \(-0.560323\pi\)
−0.188379 + 0.982096i \(0.560323\pi\)
\(12\) 3.74344 0.00750443
\(13\) 1152.80 1.89188 0.945942 0.324336i \(-0.105141\pi\)
0.945942 + 0.324336i \(0.105141\pi\)
\(14\) −814.051 −1.11002
\(15\) −5.84912 −0.00671216
\(16\) 256.000 0.250000
\(17\) −692.618 −0.581261 −0.290631 0.956835i \(-0.593865\pi\)
−0.290631 + 0.956835i \(0.593865\pi\)
\(18\) 971.781 0.706947
\(19\) −360.416 −0.229045 −0.114522 0.993421i \(-0.536534\pi\)
−0.114522 + 0.993421i \(0.536534\pi\)
\(20\) −400.000 −0.223607
\(21\) 47.6148 0.0235610
\(22\) 604.789 0.266408
\(23\) 529.000 0.208514
\(24\) −14.9738 −0.00530643
\(25\) 625.000 0.200000
\(26\) −4611.19 −1.33776
\(27\) −113.694 −0.0300143
\(28\) 3256.20 0.784904
\(29\) −3686.27 −0.813938 −0.406969 0.913442i \(-0.633414\pi\)
−0.406969 + 0.913442i \(0.633414\pi\)
\(30\) 23.3965 0.00474622
\(31\) 868.793 0.162372 0.0811861 0.996699i \(-0.474129\pi\)
0.0811861 + 0.996699i \(0.474129\pi\)
\(32\) −1024.00 −0.176777
\(33\) −35.3748 −0.00565470
\(34\) 2770.47 0.411014
\(35\) −5087.82 −0.702040
\(36\) −3887.12 −0.499887
\(37\) 4023.42 0.483160 0.241580 0.970381i \(-0.422334\pi\)
0.241580 + 0.970381i \(0.422334\pi\)
\(38\) 1441.66 0.161959
\(39\) 269.714 0.0283950
\(40\) 1600.00 0.158114
\(41\) −6448.34 −0.599085 −0.299542 0.954083i \(-0.596834\pi\)
−0.299542 + 0.954083i \(0.596834\pi\)
\(42\) −190.459 −0.0166602
\(43\) 6561.73 0.541187 0.270593 0.962694i \(-0.412780\pi\)
0.270593 + 0.962694i \(0.412780\pi\)
\(44\) −2419.16 −0.188379
\(45\) 6073.63 0.447113
\(46\) −2116.00 −0.147442
\(47\) 12850.0 0.848512 0.424256 0.905542i \(-0.360536\pi\)
0.424256 + 0.905542i \(0.360536\pi\)
\(48\) 59.8950 0.00375221
\(49\) 24610.4 1.46430
\(50\) −2500.00 −0.141421
\(51\) −162.048 −0.00872407
\(52\) 18444.8 0.945942
\(53\) −11515.1 −0.563092 −0.281546 0.959548i \(-0.590847\pi\)
−0.281546 + 0.959548i \(0.590847\pi\)
\(54\) 454.777 0.0212233
\(55\) 3779.93 0.168491
\(56\) −13024.8 −0.555011
\(57\) −84.3247 −0.00343770
\(58\) 14745.1 0.575541
\(59\) 28695.2 1.07320 0.536598 0.843838i \(-0.319709\pi\)
0.536598 + 0.843838i \(0.319709\pi\)
\(60\) −93.5860 −0.00335608
\(61\) 3672.30 0.126361 0.0631805 0.998002i \(-0.479876\pi\)
0.0631805 + 0.998002i \(0.479876\pi\)
\(62\) −3475.17 −0.114815
\(63\) −49442.5 −1.56945
\(64\) 4096.00 0.125000
\(65\) −28819.9 −0.846076
\(66\) 141.499 0.00399848
\(67\) 39498.4 1.07496 0.537480 0.843276i \(-0.319376\pi\)
0.537480 + 0.843276i \(0.319376\pi\)
\(68\) −11081.9 −0.290631
\(69\) 123.767 0.00312956
\(70\) 20351.3 0.496417
\(71\) 31887.5 0.750713 0.375357 0.926880i \(-0.377520\pi\)
0.375357 + 0.926880i \(0.377520\pi\)
\(72\) 15548.5 0.353474
\(73\) 2911.70 0.0639499 0.0319749 0.999489i \(-0.489820\pi\)
0.0319749 + 0.999489i \(0.489820\pi\)
\(74\) −16093.7 −0.341645
\(75\) 146.228 0.00300177
\(76\) −5766.66 −0.114522
\(77\) −30770.6 −0.591437
\(78\) −1078.86 −0.0200783
\(79\) 100421. 1.81032 0.905159 0.425073i \(-0.139752\pi\)
0.905159 + 0.425073i \(0.139752\pi\)
\(80\) −6400.00 −0.111803
\(81\) 59009.1 0.999324
\(82\) 25793.4 0.423617
\(83\) 77129.7 1.22893 0.614464 0.788945i \(-0.289372\pi\)
0.614464 + 0.788945i \(0.289372\pi\)
\(84\) 761.838 0.0117805
\(85\) 17315.4 0.259948
\(86\) −26246.9 −0.382677
\(87\) −862.457 −0.0122163
\(88\) 9676.62 0.133204
\(89\) 106159. 1.42063 0.710316 0.703883i \(-0.248552\pi\)
0.710316 + 0.703883i \(0.248552\pi\)
\(90\) −24294.5 −0.316157
\(91\) 234609. 2.96989
\(92\) 8464.00 0.104257
\(93\) 203.267 0.00243702
\(94\) −51399.9 −0.599988
\(95\) 9010.40 0.102432
\(96\) −239.580 −0.00265322
\(97\) −35876.4 −0.387150 −0.193575 0.981085i \(-0.562008\pi\)
−0.193575 + 0.981085i \(0.562008\pi\)
\(98\) −98441.8 −1.03541
\(99\) 36732.6 0.376673
\(100\) 10000.0 0.100000
\(101\) 149519. 1.45846 0.729228 0.684270i \(-0.239879\pi\)
0.729228 + 0.684270i \(0.239879\pi\)
\(102\) 648.193 0.00616885
\(103\) 185430. 1.72221 0.861105 0.508427i \(-0.169773\pi\)
0.861105 + 0.508427i \(0.169773\pi\)
\(104\) −73779.0 −0.668882
\(105\) −1190.37 −0.0105368
\(106\) 46060.5 0.398166
\(107\) −51104.2 −0.431516 −0.215758 0.976447i \(-0.569222\pi\)
−0.215758 + 0.976447i \(0.569222\pi\)
\(108\) −1819.11 −0.0150072
\(109\) −199534. −1.60861 −0.804305 0.594216i \(-0.797462\pi\)
−0.804305 + 0.594216i \(0.797462\pi\)
\(110\) −15119.7 −0.119141
\(111\) 941.338 0.00725167
\(112\) 52099.3 0.392452
\(113\) 38000.0 0.279955 0.139977 0.990155i \(-0.455297\pi\)
0.139977 + 0.990155i \(0.455297\pi\)
\(114\) 337.299 0.00243082
\(115\) −13225.0 −0.0932505
\(116\) −58980.2 −0.406969
\(117\) −280067. −1.89146
\(118\) −114781. −0.758865
\(119\) −140957. −0.912469
\(120\) 374.344 0.00237311
\(121\) −138190. −0.858054
\(122\) −14689.2 −0.0893507
\(123\) −1508.69 −0.00899158
\(124\) 13900.7 0.0811861
\(125\) −15625.0 −0.0894427
\(126\) 197770. 1.10977
\(127\) −139632. −0.768204 −0.384102 0.923291i \(-0.625489\pi\)
−0.384102 + 0.923291i \(0.625489\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 1535.21 0.00812259
\(130\) 115280. 0.598266
\(131\) 79990.9 0.407251 0.203626 0.979049i \(-0.434727\pi\)
0.203626 + 0.979049i \(0.434727\pi\)
\(132\) −565.997 −0.00282735
\(133\) −73349.3 −0.359556
\(134\) −157994. −0.760112
\(135\) 2842.35 0.0134228
\(136\) 44327.5 0.205507
\(137\) 58350.3 0.265608 0.132804 0.991142i \(-0.457602\pi\)
0.132804 + 0.991142i \(0.457602\pi\)
\(138\) −495.070 −0.00221294
\(139\) −232905. −1.02245 −0.511226 0.859447i \(-0.670808\pi\)
−0.511226 + 0.859447i \(0.670808\pi\)
\(140\) −81405.1 −0.351020
\(141\) 3006.45 0.0127352
\(142\) −127550. −0.530834
\(143\) −174300. −0.712782
\(144\) −62194.0 −0.249944
\(145\) 92156.6 0.364004
\(146\) −11646.8 −0.0452194
\(147\) 5757.98 0.0219774
\(148\) 64374.6 0.241580
\(149\) 191123. 0.705258 0.352629 0.935763i \(-0.385288\pi\)
0.352629 + 0.935763i \(0.385288\pi\)
\(150\) −584.912 −0.00212257
\(151\) 89666.2 0.320027 0.160013 0.987115i \(-0.448846\pi\)
0.160013 + 0.987115i \(0.448846\pi\)
\(152\) 23066.6 0.0809795
\(153\) 168268. 0.581130
\(154\) 123082. 0.418209
\(155\) −21719.8 −0.0726151
\(156\) 4315.42 0.0141975
\(157\) −487729. −1.57917 −0.789586 0.613639i \(-0.789705\pi\)
−0.789586 + 0.613639i \(0.789705\pi\)
\(158\) −401682. −1.28009
\(159\) −2694.14 −0.00845136
\(160\) 25600.0 0.0790569
\(161\) 107658. 0.327328
\(162\) −236036. −0.706629
\(163\) −159582. −0.470453 −0.235226 0.971941i \(-0.575583\pi\)
−0.235226 + 0.971941i \(0.575583\pi\)
\(164\) −103173. −0.299542
\(165\) 884.371 0.00252886
\(166\) −308519. −0.868983
\(167\) −145695. −0.404254 −0.202127 0.979359i \(-0.564785\pi\)
−0.202127 + 0.979359i \(0.564785\pi\)
\(168\) −3047.35 −0.00833008
\(169\) 957648. 2.57922
\(170\) −69261.8 −0.183811
\(171\) 87561.4 0.228993
\(172\) 104988. 0.270593
\(173\) 461231. 1.17167 0.585833 0.810432i \(-0.300768\pi\)
0.585833 + 0.810432i \(0.300768\pi\)
\(174\) 3449.83 0.00863822
\(175\) 127195. 0.313962
\(176\) −38706.5 −0.0941894
\(177\) 6713.67 0.0161075
\(178\) −424636. −1.00454
\(179\) −105545. −0.246210 −0.123105 0.992394i \(-0.539285\pi\)
−0.123105 + 0.992394i \(0.539285\pi\)
\(180\) 97178.1 0.223556
\(181\) −176285. −0.399962 −0.199981 0.979800i \(-0.564088\pi\)
−0.199981 + 0.979800i \(0.564088\pi\)
\(182\) −938436. −2.10003
\(183\) 859.188 0.00189653
\(184\) −33856.0 −0.0737210
\(185\) −100585. −0.216076
\(186\) −813.068 −0.00172323
\(187\) 104722. 0.218995
\(188\) 205600. 0.424256
\(189\) −23138.2 −0.0471167
\(190\) −36041.6 −0.0724303
\(191\) −572948. −1.13640 −0.568201 0.822890i \(-0.692360\pi\)
−0.568201 + 0.822890i \(0.692360\pi\)
\(192\) 958.320 0.00187611
\(193\) 567106. 1.09590 0.547950 0.836511i \(-0.315408\pi\)
0.547950 + 0.836511i \(0.315408\pi\)
\(194\) 143506. 0.273756
\(195\) −6742.85 −0.0126986
\(196\) 393767. 0.732149
\(197\) −414063. −0.760154 −0.380077 0.924955i \(-0.624102\pi\)
−0.380077 + 0.924955i \(0.624102\pi\)
\(198\) −146931. −0.266348
\(199\) −945301. −1.69214 −0.846072 0.533068i \(-0.821039\pi\)
−0.846072 + 0.533068i \(0.821039\pi\)
\(200\) −40000.0 −0.0707107
\(201\) 9241.24 0.0161339
\(202\) −598077. −1.03128
\(203\) −750202. −1.27773
\(204\) −2592.77 −0.00436203
\(205\) 161208. 0.267919
\(206\) −741719. −1.21779
\(207\) −128518. −0.208467
\(208\) 295116. 0.472971
\(209\) 54493.9 0.0862943
\(210\) 4761.48 0.00745065
\(211\) 383647. 0.593234 0.296617 0.954997i \(-0.404142\pi\)
0.296617 + 0.954997i \(0.404142\pi\)
\(212\) −184242. −0.281546
\(213\) 7460.55 0.0112673
\(214\) 204417. 0.305128
\(215\) −164043. −0.242026
\(216\) 7276.42 0.0106117
\(217\) 176810. 0.254893
\(218\) 798136. 1.13746
\(219\) 681.236 0.000959815 0
\(220\) 60478.9 0.0842456
\(221\) −798448. −1.09968
\(222\) −3765.35 −0.00512771
\(223\) −453010. −0.610022 −0.305011 0.952349i \(-0.598660\pi\)
−0.305011 + 0.952349i \(0.598660\pi\)
\(224\) −208397. −0.277505
\(225\) −151841. −0.199955
\(226\) −152000. −0.197958
\(227\) 643854. 0.829322 0.414661 0.909976i \(-0.363900\pi\)
0.414661 + 0.909976i \(0.363900\pi\)
\(228\) −1349.20 −0.00171885
\(229\) 1.26959e6 1.59984 0.799920 0.600107i \(-0.204875\pi\)
0.799920 + 0.600107i \(0.204875\pi\)
\(230\) 52900.0 0.0659380
\(231\) −7199.23 −0.00887680
\(232\) 235921. 0.287771
\(233\) 1.22552e6 1.47887 0.739434 0.673229i \(-0.235093\pi\)
0.739434 + 0.673229i \(0.235093\pi\)
\(234\) 1.12027e6 1.33746
\(235\) −321250. −0.379466
\(236\) 459123. 0.536598
\(237\) 23494.9 0.0271708
\(238\) 563826. 0.645213
\(239\) −194741. −0.220528 −0.110264 0.993902i \(-0.535170\pi\)
−0.110264 + 0.993902i \(0.535170\pi\)
\(240\) −1497.38 −0.00167804
\(241\) 497293. 0.551531 0.275766 0.961225i \(-0.411069\pi\)
0.275766 + 0.961225i \(0.411069\pi\)
\(242\) 552762. 0.606736
\(243\) 41433.7 0.0450130
\(244\) 58756.7 0.0631805
\(245\) −615261. −0.654854
\(246\) 6034.74 0.00635800
\(247\) −415486. −0.433326
\(248\) −55602.7 −0.0574073
\(249\) 18045.6 0.0184448
\(250\) 62500.0 0.0632456
\(251\) 989940. 0.991801 0.495901 0.868379i \(-0.334838\pi\)
0.495901 + 0.868379i \(0.334838\pi\)
\(252\) −791079. −0.784727
\(253\) −79983.3 −0.0785594
\(254\) 558529. 0.543202
\(255\) 4051.21 0.00390152
\(256\) 65536.0 0.0625000
\(257\) 758424. 0.716274 0.358137 0.933669i \(-0.383412\pi\)
0.358137 + 0.933669i \(0.383412\pi\)
\(258\) −6140.86 −0.00574354
\(259\) 818816. 0.758468
\(260\) −461119. −0.423038
\(261\) 895561. 0.813755
\(262\) −319964. −0.287970
\(263\) 199181. 0.177565 0.0887826 0.996051i \(-0.471702\pi\)
0.0887826 + 0.996051i \(0.471702\pi\)
\(264\) 2263.99 0.00199924
\(265\) 287878. 0.251822
\(266\) 293397. 0.254245
\(267\) 24837.5 0.0213221
\(268\) 631975. 0.537480
\(269\) −684342. −0.576624 −0.288312 0.957537i \(-0.593094\pi\)
−0.288312 + 0.957537i \(0.593094\pi\)
\(270\) −11369.4 −0.00949136
\(271\) 642357. 0.531316 0.265658 0.964067i \(-0.414411\pi\)
0.265658 + 0.964067i \(0.414411\pi\)
\(272\) −177310. −0.145315
\(273\) 54890.2 0.0445747
\(274\) −233401. −0.187814
\(275\) −94498.3 −0.0753515
\(276\) 1980.28 0.00156478
\(277\) −2.49604e6 −1.95457 −0.977286 0.211924i \(-0.932027\pi\)
−0.977286 + 0.211924i \(0.932027\pi\)
\(278\) 931622. 0.722982
\(279\) −211069. −0.162336
\(280\) 325620. 0.248208
\(281\) −1.14932e6 −0.868314 −0.434157 0.900837i \(-0.642954\pi\)
−0.434157 + 0.900837i \(0.642954\pi\)
\(282\) −12025.8 −0.00900514
\(283\) −100173. −0.0743508 −0.0371754 0.999309i \(-0.511836\pi\)
−0.0371754 + 0.999309i \(0.511836\pi\)
\(284\) 510199. 0.375357
\(285\) 2108.12 0.00153738
\(286\) 697199. 0.504013
\(287\) −1.31232e6 −0.940448
\(288\) 248776. 0.176737
\(289\) −940137. −0.662135
\(290\) −368627. −0.257390
\(291\) −8393.81 −0.00581068
\(292\) 46587.2 0.0319749
\(293\) 1.22703e6 0.834998 0.417499 0.908677i \(-0.362907\pi\)
0.417499 + 0.908677i \(0.362907\pi\)
\(294\) −23031.9 −0.0155404
\(295\) −717380. −0.479948
\(296\) −257499. −0.170823
\(297\) 17190.2 0.0113081
\(298\) −764494. −0.498693
\(299\) 609830. 0.394485
\(300\) 2339.65 0.00150089
\(301\) 1.33540e6 0.849559
\(302\) −358665. −0.226293
\(303\) 34982.2 0.0218898
\(304\) −92266.5 −0.0572611
\(305\) −91807.4 −0.0565103
\(306\) −673073. −0.410921
\(307\) 2.32776e6 1.40959 0.704793 0.709413i \(-0.251040\pi\)
0.704793 + 0.709413i \(0.251040\pi\)
\(308\) −492329. −0.295719
\(309\) 43384.0 0.0258484
\(310\) 86879.3 0.0513466
\(311\) 1.48165e6 0.868652 0.434326 0.900756i \(-0.356987\pi\)
0.434326 + 0.900756i \(0.356987\pi\)
\(312\) −17261.7 −0.0100392
\(313\) −1.07449e6 −0.619928 −0.309964 0.950748i \(-0.600317\pi\)
−0.309964 + 0.950748i \(0.600317\pi\)
\(314\) 1.95092e6 1.11664
\(315\) 1.23606e6 0.701881
\(316\) 1.60673e6 0.905159
\(317\) −947703. −0.529693 −0.264846 0.964291i \(-0.585321\pi\)
−0.264846 + 0.964291i \(0.585321\pi\)
\(318\) 10776.5 0.00597602
\(319\) 557353. 0.306658
\(320\) −102400. −0.0559017
\(321\) −11956.6 −0.00647657
\(322\) −430633. −0.231456
\(323\) 249631. 0.133135
\(324\) 944146. 0.499662
\(325\) 720498. 0.378377
\(326\) 638330. 0.332660
\(327\) −46684.0 −0.0241434
\(328\) 412694. 0.211808
\(329\) 2.61514e6 1.33200
\(330\) −3537.48 −0.00178817
\(331\) 1.87583e6 0.941075 0.470537 0.882380i \(-0.344060\pi\)
0.470537 + 0.882380i \(0.344060\pi\)
\(332\) 1.23408e6 0.614464
\(333\) −977470. −0.483051
\(334\) 582781. 0.285851
\(335\) −987460. −0.480737
\(336\) 12189.4 0.00589026
\(337\) −3.58245e6 −1.71832 −0.859162 0.511703i \(-0.829015\pi\)
−0.859162 + 0.511703i \(0.829015\pi\)
\(338\) −3.83059e6 −1.82379
\(339\) 8890.67 0.00420180
\(340\) 277047. 0.129974
\(341\) −131359. −0.0611750
\(342\) −350245. −0.161922
\(343\) 1.58810e6 0.728858
\(344\) −419951. −0.191338
\(345\) −3094.19 −0.00139958
\(346\) −1.84493e6 −0.828492
\(347\) −3.93298e6 −1.75347 −0.876735 0.480973i \(-0.840283\pi\)
−0.876735 + 0.480973i \(0.840283\pi\)
\(348\) −13799.3 −0.00610814
\(349\) 1.49068e6 0.655118 0.327559 0.944831i \(-0.393774\pi\)
0.327559 + 0.944831i \(0.393774\pi\)
\(350\) −508782. −0.222004
\(351\) −131066. −0.0567836
\(352\) 154826. 0.0666020
\(353\) 1.78776e6 0.763610 0.381805 0.924243i \(-0.375303\pi\)
0.381805 + 0.924243i \(0.375303\pi\)
\(354\) −26854.7 −0.0113897
\(355\) −797186. −0.335729
\(356\) 1.69854e6 0.710316
\(357\) −32978.9 −0.0136951
\(358\) 422181. 0.174097
\(359\) −4.66089e6 −1.90868 −0.954340 0.298724i \(-0.903439\pi\)
−0.954340 + 0.298724i \(0.903439\pi\)
\(360\) −388712. −0.158078
\(361\) −2.34620e6 −0.947539
\(362\) 705139. 0.282816
\(363\) −32331.7 −0.0128784
\(364\) 3.75374e6 1.48495
\(365\) −72792.5 −0.0285993
\(366\) −3436.75 −0.00134105
\(367\) −2.73126e6 −1.05852 −0.529258 0.848461i \(-0.677530\pi\)
−0.529258 + 0.848461i \(0.677530\pi\)
\(368\) 135424. 0.0521286
\(369\) 1.56659e6 0.598950
\(370\) 402342. 0.152788
\(371\) −2.34348e6 −0.883946
\(372\) 3252.27 0.00121851
\(373\) 2.46023e6 0.915594 0.457797 0.889057i \(-0.348639\pi\)
0.457797 + 0.889057i \(0.348639\pi\)
\(374\) −418888. −0.154853
\(375\) −3655.70 −0.00134243
\(376\) −822399. −0.299994
\(377\) −4.24951e6 −1.53988
\(378\) 92552.8 0.0333166
\(379\) 760759. 0.272050 0.136025 0.990705i \(-0.456567\pi\)
0.136025 + 0.990705i \(0.456567\pi\)
\(380\) 144166. 0.0512159
\(381\) −32669.1 −0.0115299
\(382\) 2.29179e6 0.803557
\(383\) −450971. −0.157091 −0.0785456 0.996911i \(-0.525028\pi\)
−0.0785456 + 0.996911i \(0.525028\pi\)
\(384\) −3833.28 −0.00132661
\(385\) 769264. 0.264499
\(386\) −2.26842e6 −0.774918
\(387\) −1.59414e6 −0.541065
\(388\) −574022. −0.193575
\(389\) 3.98642e6 1.33570 0.667851 0.744295i \(-0.267214\pi\)
0.667851 + 0.744295i \(0.267214\pi\)
\(390\) 26971.4 0.00897929
\(391\) −366395. −0.121201
\(392\) −1.57507e6 −0.517707
\(393\) 18715.1 0.00611237
\(394\) 1.65625e6 0.537510
\(395\) −2.51051e6 −0.809599
\(396\) 587722. 0.188336
\(397\) 3.80676e6 1.21221 0.606106 0.795384i \(-0.292731\pi\)
0.606106 + 0.795384i \(0.292731\pi\)
\(398\) 3.78120e6 1.19653
\(399\) −17161.2 −0.00539652
\(400\) 160000. 0.0500000
\(401\) −3.32199e6 −1.03166 −0.515831 0.856691i \(-0.672517\pi\)
−0.515831 + 0.856691i \(0.672517\pi\)
\(402\) −36965.0 −0.0114084
\(403\) 1.00154e6 0.307189
\(404\) 2.39231e6 0.729228
\(405\) −1.47523e6 −0.446911
\(406\) 3.00081e6 0.903490
\(407\) −608329. −0.182034
\(408\) 10371.1 0.00308442
\(409\) 4.28210e6 1.26575 0.632876 0.774254i \(-0.281874\pi\)
0.632876 + 0.774254i \(0.281874\pi\)
\(410\) −644834. −0.189447
\(411\) 13651.9 0.00398648
\(412\) 2.96687e6 0.861105
\(413\) 5.83984e6 1.68471
\(414\) 514072. 0.147409
\(415\) −1.92824e6 −0.549593
\(416\) −1.18046e6 −0.334441
\(417\) −54491.7 −0.0153458
\(418\) −217976. −0.0610193
\(419\) −6.20611e6 −1.72697 −0.863484 0.504376i \(-0.831722\pi\)
−0.863484 + 0.504376i \(0.831722\pi\)
\(420\) −19045.9 −0.00526841
\(421\) 2.07048e6 0.569333 0.284666 0.958627i \(-0.408117\pi\)
0.284666 + 0.958627i \(0.408117\pi\)
\(422\) −1.53459e6 −0.419480
\(423\) −3.12184e6 −0.848321
\(424\) 736968. 0.199083
\(425\) −432886. −0.116252
\(426\) −29842.2 −0.00796722
\(427\) 747359. 0.198362
\(428\) −817667. −0.215758
\(429\) −40780.0 −0.0106980
\(430\) 656173. 0.171138
\(431\) −823282. −0.213479 −0.106740 0.994287i \(-0.534041\pi\)
−0.106740 + 0.994287i \(0.534041\pi\)
\(432\) −29105.7 −0.00750358
\(433\) −1.18003e6 −0.302463 −0.151231 0.988498i \(-0.548324\pi\)
−0.151231 + 0.988498i \(0.548324\pi\)
\(434\) −707242. −0.180237
\(435\) 21561.4 0.00546329
\(436\) −3.19255e6 −0.804305
\(437\) −190660. −0.0477591
\(438\) −2724.94 −0.000678691 0
\(439\) 851386. 0.210846 0.105423 0.994427i \(-0.466380\pi\)
0.105423 + 0.994427i \(0.466380\pi\)
\(440\) −241916. −0.0595706
\(441\) −5.97899e6 −1.46397
\(442\) 3.19379e6 0.777590
\(443\) 5.36112e6 1.29791 0.648957 0.760825i \(-0.275205\pi\)
0.648957 + 0.760825i \(0.275205\pi\)
\(444\) 15061.4 0.00362584
\(445\) −2.65397e6 −0.635326
\(446\) 1.81204e6 0.431351
\(447\) 44716.2 0.0105851
\(448\) 833588. 0.196226
\(449\) −7.95035e6 −1.86110 −0.930552 0.366160i \(-0.880672\pi\)
−0.930552 + 0.366160i \(0.880672\pi\)
\(450\) 607363. 0.141389
\(451\) 974971. 0.225710
\(452\) 608000. 0.139977
\(453\) 20978.7 0.00480324
\(454\) −2.57542e6 −0.586419
\(455\) −5.86522e6 −1.32818
\(456\) 5396.78 0.00121541
\(457\) 3.30600e6 0.740477 0.370239 0.928937i \(-0.379276\pi\)
0.370239 + 0.928937i \(0.379276\pi\)
\(458\) −5.07838e6 −1.13126
\(459\) 78746.6 0.0174462
\(460\) −211600. −0.0466252
\(461\) 2.00937e6 0.440359 0.220180 0.975459i \(-0.429336\pi\)
0.220180 + 0.975459i \(0.429336\pi\)
\(462\) 28796.9 0.00627684
\(463\) −2.90957e6 −0.630777 −0.315389 0.948963i \(-0.602135\pi\)
−0.315389 + 0.948963i \(0.602135\pi\)
\(464\) −943684. −0.203485
\(465\) −5081.67 −0.00108987
\(466\) −4.90207e6 −1.04572
\(467\) 2.93379e6 0.622496 0.311248 0.950329i \(-0.399253\pi\)
0.311248 + 0.950329i \(0.399253\pi\)
\(468\) −4.48106e6 −0.945729
\(469\) 8.03843e6 1.68748
\(470\) 1.28500e6 0.268323
\(471\) −114112. −0.0237016
\(472\) −1.83649e6 −0.379432
\(473\) −992115. −0.203896
\(474\) −93979.5 −0.0192127
\(475\) −225260. −0.0458089
\(476\) −2.25531e6 −0.456234
\(477\) 2.79755e6 0.562965
\(478\) 778966. 0.155937
\(479\) 7.67607e6 1.52862 0.764311 0.644848i \(-0.223079\pi\)
0.764311 + 0.644848i \(0.223079\pi\)
\(480\) 5989.50 0.00118655
\(481\) 4.63818e6 0.914082
\(482\) −1.98917e6 −0.389991
\(483\) 25188.3 0.00491281
\(484\) −2.21105e6 −0.429027
\(485\) 896909. 0.173139
\(486\) −165735. −0.0318290
\(487\) −1.04420e7 −1.99508 −0.997542 0.0700748i \(-0.977676\pi\)
−0.997542 + 0.0700748i \(0.977676\pi\)
\(488\) −235027. −0.0446754
\(489\) −37336.7 −0.00706096
\(490\) 2.46104e6 0.463052
\(491\) −2.99730e6 −0.561082 −0.280541 0.959842i \(-0.590514\pi\)
−0.280541 + 0.959842i \(0.590514\pi\)
\(492\) −24139.0 −0.00449579
\(493\) 2.55317e6 0.473111
\(494\) 1.66195e6 0.306408
\(495\) −918316. −0.168453
\(496\) 222411. 0.0405931
\(497\) 6.48951e6 1.17848
\(498\) −72182.6 −0.0130424
\(499\) 6.27374e6 1.12791 0.563956 0.825805i \(-0.309279\pi\)
0.563956 + 0.825805i \(0.309279\pi\)
\(500\) −250000. −0.0447214
\(501\) −34087.6 −0.00606739
\(502\) −3.95976e6 −0.701309
\(503\) −7.83976e6 −1.38160 −0.690801 0.723045i \(-0.742742\pi\)
−0.690801 + 0.723045i \(0.742742\pi\)
\(504\) 3.16432e6 0.554886
\(505\) −3.73798e6 −0.652242
\(506\) 319933. 0.0555499
\(507\) 224056. 0.0387112
\(508\) −2.23412e6 −0.384102
\(509\) −6.50183e6 −1.11235 −0.556175 0.831065i \(-0.687732\pi\)
−0.556175 + 0.831065i \(0.687732\pi\)
\(510\) −16204.8 −0.00275879
\(511\) 592568. 0.100389
\(512\) −262144. −0.0441942
\(513\) 40977.2 0.00687462
\(514\) −3.03370e6 −0.506482
\(515\) −4.63574e6 −0.770196
\(516\) 24563.4 0.00406130
\(517\) −1.94288e6 −0.319683
\(518\) −3.27527e6 −0.536318
\(519\) 107912. 0.0175854
\(520\) 1.84448e6 0.299133
\(521\) −2.34251e6 −0.378083 −0.189041 0.981969i \(-0.560538\pi\)
−0.189041 + 0.981969i \(0.560538\pi\)
\(522\) −3.58224e6 −0.575412
\(523\) −3.35596e6 −0.536491 −0.268245 0.963351i \(-0.586444\pi\)
−0.268245 + 0.963351i \(0.586444\pi\)
\(524\) 1.27985e6 0.203626
\(525\) 29759.3 0.00471220
\(526\) −796722. −0.125557
\(527\) −601741. −0.0943807
\(528\) −9055.96 −0.00141368
\(529\) 279841. 0.0434783
\(530\) −1.15151e6 −0.178065
\(531\) −6.97136e6 −1.07295
\(532\) −1.17359e6 −0.179778
\(533\) −7.43363e6 −1.13340
\(534\) −99349.9 −0.0150770
\(535\) 1.27761e6 0.192980
\(536\) −2.52790e6 −0.380056
\(537\) −24693.9 −0.00369533
\(538\) 2.73737e6 0.407735
\(539\) −3.72103e6 −0.551685
\(540\) 45477.7 0.00671141
\(541\) −5.51252e6 −0.809762 −0.404881 0.914369i \(-0.632687\pi\)
−0.404881 + 0.914369i \(0.632687\pi\)
\(542\) −2.56943e6 −0.375697
\(543\) −41244.5 −0.00600297
\(544\) 709241. 0.102753
\(545\) 4.98835e6 0.719392
\(546\) −219561. −0.0315191
\(547\) −1.20434e7 −1.72099 −0.860497 0.509456i \(-0.829847\pi\)
−0.860497 + 0.509456i \(0.829847\pi\)
\(548\) 933605. 0.132804
\(549\) −892167. −0.126333
\(550\) 377993. 0.0532816
\(551\) 1.32859e6 0.186428
\(552\) −7921.12 −0.00110647
\(553\) 2.04369e7 2.84185
\(554\) 9.98415e6 1.38209
\(555\) −23533.4 −0.00324305
\(556\) −3.72649e6 −0.511226
\(557\) 1.74232e6 0.237952 0.118976 0.992897i \(-0.462039\pi\)
0.118976 + 0.992897i \(0.462039\pi\)
\(558\) 844276. 0.114789
\(559\) 7.56434e6 1.02386
\(560\) −1.30248e6 −0.175510
\(561\) 24501.2 0.00328686
\(562\) 4.59730e6 0.613991
\(563\) 6.67328e6 0.887296 0.443648 0.896201i \(-0.353684\pi\)
0.443648 + 0.896201i \(0.353684\pi\)
\(564\) 48103.1 0.00636760
\(565\) −950001. −0.125200
\(566\) 400693. 0.0525739
\(567\) 1.20091e7 1.56875
\(568\) −2.04080e6 −0.265417
\(569\) −1.34670e7 −1.74377 −0.871887 0.489706i \(-0.837104\pi\)
−0.871887 + 0.489706i \(0.837104\pi\)
\(570\) −8432.47 −0.00108710
\(571\) 7.11055e6 0.912669 0.456334 0.889808i \(-0.349162\pi\)
0.456334 + 0.889808i \(0.349162\pi\)
\(572\) −2.78879e6 −0.356391
\(573\) −134050. −0.0170561
\(574\) 5.24928e6 0.664997
\(575\) 330625. 0.0417029
\(576\) −995104. −0.124972
\(577\) 5.30997e6 0.663977 0.331988 0.943283i \(-0.392281\pi\)
0.331988 + 0.943283i \(0.392281\pi\)
\(578\) 3.76055e6 0.468200
\(579\) 132683. 0.0164482
\(580\) 1.47451e6 0.182002
\(581\) 1.56969e7 1.92918
\(582\) 33575.3 0.00410877
\(583\) 1.74106e6 0.212149
\(584\) −186349. −0.0226097
\(585\) 7.00166e6 0.845885
\(586\) −4.90811e6 −0.590432
\(587\) −1.01272e7 −1.21309 −0.606544 0.795050i \(-0.707444\pi\)
−0.606544 + 0.795050i \(0.707444\pi\)
\(588\) 92127.7 0.0109887
\(589\) −313127. −0.0371905
\(590\) 2.86952e6 0.339375
\(591\) −96876.3 −0.0114090
\(592\) 1.02999e6 0.120790
\(593\) 1.40987e7 1.64642 0.823212 0.567734i \(-0.192180\pi\)
0.823212 + 0.567734i \(0.192180\pi\)
\(594\) −68760.9 −0.00799605
\(595\) 3.52391e6 0.408068
\(596\) 3.05797e6 0.352629
\(597\) −221167. −0.0253972
\(598\) −2.43932e6 −0.278943
\(599\) 1.33928e6 0.152512 0.0762562 0.997088i \(-0.475703\pi\)
0.0762562 + 0.997088i \(0.475703\pi\)
\(600\) −9358.60 −0.00106129
\(601\) −1.45405e7 −1.64207 −0.821036 0.570877i \(-0.806603\pi\)
−0.821036 + 0.570877i \(0.806603\pi\)
\(602\) −5.34158e6 −0.600729
\(603\) −9.59595e6 −1.07472
\(604\) 1.43466e6 0.160013
\(605\) 3.45476e6 0.383733
\(606\) −139929. −0.0154784
\(607\) 9.58016e6 1.05536 0.527680 0.849443i \(-0.323062\pi\)
0.527680 + 0.849443i \(0.323062\pi\)
\(608\) 369066. 0.0404897
\(609\) −175521. −0.0191772
\(610\) 367230. 0.0399588
\(611\) 1.48134e7 1.60529
\(612\) 2.69229e6 0.290565
\(613\) 3.59833e6 0.386767 0.193383 0.981123i \(-0.438054\pi\)
0.193383 + 0.981123i \(0.438054\pi\)
\(614\) −9.31102e6 −0.996728
\(615\) 37717.1 0.00402116
\(616\) 1.96932e6 0.209105
\(617\) −1.24752e7 −1.31928 −0.659639 0.751583i \(-0.729291\pi\)
−0.659639 + 0.751583i \(0.729291\pi\)
\(618\) −173536. −0.0182776
\(619\) −1.22762e7 −1.28777 −0.643884 0.765123i \(-0.722678\pi\)
−0.643884 + 0.765123i \(0.722678\pi\)
\(620\) −347517. −0.0363075
\(621\) −60144.2 −0.00625842
\(622\) −5.92661e6 −0.614229
\(623\) 2.16047e7 2.23012
\(624\) 69046.8 0.00709875
\(625\) 390625. 0.0400000
\(626\) 4.29796e6 0.438355
\(627\) 12749.7 0.00129518
\(628\) −7.80367e6 −0.789586
\(629\) −2.78669e6 −0.280842
\(630\) −4.94425e6 −0.496305
\(631\) 574528. 0.0574431 0.0287215 0.999587i \(-0.490856\pi\)
0.0287215 + 0.999587i \(0.490856\pi\)
\(632\) −6.42691e6 −0.640044
\(633\) 89760.0 0.00890376
\(634\) 3.79081e6 0.374549
\(635\) 3.49081e6 0.343551
\(636\) −43106.2 −0.00422568
\(637\) 2.83708e7 2.77028
\(638\) −2.22941e6 −0.216840
\(639\) −7.74691e6 −0.750544
\(640\) 409600. 0.0395285
\(641\) 1.25521e7 1.20663 0.603313 0.797504i \(-0.293847\pi\)
0.603313 + 0.797504i \(0.293847\pi\)
\(642\) 47826.4 0.00457962
\(643\) 4.31938e6 0.411997 0.205998 0.978552i \(-0.433956\pi\)
0.205998 + 0.978552i \(0.433956\pi\)
\(644\) 1.72253e6 0.163664
\(645\) −38380.3 −0.00363253
\(646\) −998522. −0.0941405
\(647\) −1.07445e7 −1.00908 −0.504539 0.863389i \(-0.668338\pi\)
−0.504539 + 0.863389i \(0.668338\pi\)
\(648\) −3.77658e6 −0.353314
\(649\) −4.33864e6 −0.404335
\(650\) −2.88199e6 −0.267553
\(651\) 41367.4 0.00382566
\(652\) −2.55332e6 −0.235226
\(653\) 1.54073e7 1.41398 0.706989 0.707225i \(-0.250053\pi\)
0.706989 + 0.707225i \(0.250053\pi\)
\(654\) 186736. 0.0170720
\(655\) −1.99977e6 −0.182128
\(656\) −1.65077e6 −0.149771
\(657\) −707384. −0.0639355
\(658\) −1.04605e7 −0.941867
\(659\) −3.65055e6 −0.327450 −0.163725 0.986506i \(-0.552351\pi\)
−0.163725 + 0.986506i \(0.552351\pi\)
\(660\) 14149.9 0.00126443
\(661\) 1.23719e7 1.10137 0.550685 0.834713i \(-0.314367\pi\)
0.550685 + 0.834713i \(0.314367\pi\)
\(662\) −7.50333e6 −0.665440
\(663\) −186809. −0.0165049
\(664\) −4.93630e6 −0.434492
\(665\) 1.83373e6 0.160798
\(666\) 3.90988e6 0.341568
\(667\) −1.95003e6 −0.169718
\(668\) −2.33113e6 −0.202127
\(669\) −105988. −0.00915574
\(670\) 3.94984e6 0.339932
\(671\) −555241. −0.0476075
\(672\) −48757.6 −0.00416504
\(673\) 8.32824e6 0.708787 0.354393 0.935096i \(-0.384687\pi\)
0.354393 + 0.935096i \(0.384687\pi\)
\(674\) 1.43298e7 1.21504
\(675\) −71058.8 −0.00600287
\(676\) 1.53224e7 1.28961
\(677\) 1.77897e6 0.149175 0.0745876 0.997214i \(-0.476236\pi\)
0.0745876 + 0.997214i \(0.476236\pi\)
\(678\) −35562.7 −0.00297112
\(679\) −7.30130e6 −0.607751
\(680\) −1.10819e6 −0.0919055
\(681\) 150639. 0.0124472
\(682\) 525436. 0.0432573
\(683\) −1.18219e7 −0.969695 −0.484847 0.874599i \(-0.661125\pi\)
−0.484847 + 0.874599i \(0.661125\pi\)
\(684\) 1.40098e6 0.114496
\(685\) −1.45876e6 −0.118784
\(686\) −6.35241e6 −0.515380
\(687\) 297041. 0.0240118
\(688\) 1.67980e6 0.135297
\(689\) −1.32746e7 −1.06530
\(690\) 12376.7 0.000989655 0
\(691\) 3.20554e6 0.255392 0.127696 0.991813i \(-0.459242\pi\)
0.127696 + 0.991813i \(0.459242\pi\)
\(692\) 7.37970e6 0.585833
\(693\) 7.47556e6 0.591304
\(694\) 1.57319e7 1.23989
\(695\) 5.82263e6 0.457254
\(696\) 55197.2 0.00431911
\(697\) 4.46624e6 0.348225
\(698\) −5.96270e6 −0.463239
\(699\) 286728. 0.0221961
\(700\) 2.03513e6 0.156981
\(701\) 4.59853e6 0.353447 0.176724 0.984261i \(-0.443450\pi\)
0.176724 + 0.984261i \(0.443450\pi\)
\(702\) 524265. 0.0401521
\(703\) −1.45010e6 −0.110665
\(704\) −619304. −0.0470947
\(705\) −75161.1 −0.00569535
\(706\) −7.15102e6 −0.539954
\(707\) 3.04291e7 2.28950
\(708\) 107419. 0.00805373
\(709\) 2.34840e7 1.75452 0.877258 0.480020i \(-0.159371\pi\)
0.877258 + 0.480020i \(0.159371\pi\)
\(710\) 3.18875e6 0.237396
\(711\) −2.43967e7 −1.80991
\(712\) −6.79418e6 −0.502269
\(713\) 459591. 0.0338570
\(714\) 131916. 0.00968391
\(715\) 4.35749e6 0.318766
\(716\) −1.68872e6 −0.123105
\(717\) −45562.7 −0.00330987
\(718\) 1.86436e7 1.34964
\(719\) −2.14856e7 −1.54997 −0.774987 0.631977i \(-0.782244\pi\)
−0.774987 + 0.631977i \(0.782244\pi\)
\(720\) 1.55485e6 0.111778
\(721\) 3.77373e7 2.70354
\(722\) 9.38480e6 0.670011
\(723\) 116349. 0.00827785
\(724\) −2.82056e6 −0.199981
\(725\) −2.30392e6 −0.162788
\(726\) 129327. 0.00910641
\(727\) −4.42772e6 −0.310702 −0.155351 0.987859i \(-0.549651\pi\)
−0.155351 + 0.987859i \(0.549651\pi\)
\(728\) −1.50150e7 −1.05002
\(729\) −1.43295e7 −0.998649
\(730\) 291170. 0.0202227
\(731\) −4.54477e6 −0.314571
\(732\) 13747.0 0.000948267 0
\(733\) −2.64063e7 −1.81530 −0.907650 0.419729i \(-0.862125\pi\)
−0.907650 + 0.419729i \(0.862125\pi\)
\(734\) 1.09250e7 0.748484
\(735\) −143950. −0.00982861
\(736\) −541696. −0.0368605
\(737\) −5.97205e6 −0.405000
\(738\) −6.26637e6 −0.423521
\(739\) 2.19652e7 1.47953 0.739766 0.672864i \(-0.234936\pi\)
0.739766 + 0.672864i \(0.234936\pi\)
\(740\) −1.60937e6 −0.108038
\(741\) −97209.2 −0.00650372
\(742\) 9.37390e6 0.625044
\(743\) −128787. −0.00855857 −0.00427928 0.999991i \(-0.501362\pi\)
−0.00427928 + 0.999991i \(0.501362\pi\)
\(744\) −13009.1 −0.000861617 0
\(745\) −4.77809e6 −0.315401
\(746\) −9.84091e6 −0.647423
\(747\) −1.87383e7 −1.22865
\(748\) 1.67555e6 0.109497
\(749\) −1.04004e7 −0.677398
\(750\) 14622.8 0.000949243 0
\(751\) 1.90153e7 1.23028 0.615140 0.788418i \(-0.289100\pi\)
0.615140 + 0.788418i \(0.289100\pi\)
\(752\) 3.28960e6 0.212128
\(753\) 231611. 0.0148858
\(754\) 1.69981e7 1.08886
\(755\) −2.24165e6 −0.143120
\(756\) −370211. −0.0235584
\(757\) 2.12542e7 1.34804 0.674022 0.738711i \(-0.264565\pi\)
0.674022 + 0.738711i \(0.264565\pi\)
\(758\) −3.04303e6 −0.192368
\(759\) −18713.3 −0.00117909
\(760\) −576666. −0.0362151
\(761\) 2.02918e7 1.27016 0.635081 0.772446i \(-0.280967\pi\)
0.635081 + 0.772446i \(0.280967\pi\)
\(762\) 130676. 0.00815285
\(763\) −4.06077e7 −2.52521
\(764\) −9.16717e6 −0.568201
\(765\) −4.20671e6 −0.259889
\(766\) 1.80388e6 0.111080
\(767\) 3.30797e7 2.03036
\(768\) 15333.1 0.000938054 0
\(769\) −1.45513e7 −0.887333 −0.443667 0.896192i \(-0.646323\pi\)
−0.443667 + 0.896192i \(0.646323\pi\)
\(770\) −3.07706e6 −0.187029
\(771\) 177445. 0.0107505
\(772\) 9.07370e6 0.547950
\(773\) −2.07604e7 −1.24964 −0.624822 0.780767i \(-0.714829\pi\)
−0.624822 + 0.780767i \(0.714829\pi\)
\(774\) 6.37656e6 0.382591
\(775\) 542995. 0.0324745
\(776\) 2.29609e6 0.136878
\(777\) 191574. 0.0113837
\(778\) −1.59457e7 −0.944484
\(779\) 2.32408e6 0.137217
\(780\) −107886. −0.00634932
\(781\) −4.82129e6 −0.282837
\(782\) 1.46558e6 0.0857023
\(783\) 419107. 0.0244298
\(784\) 6.30027e6 0.366074
\(785\) 1.21932e7 0.706228
\(786\) −74860.2 −0.00432210
\(787\) 1.86429e7 1.07294 0.536470 0.843919i \(-0.319757\pi\)
0.536470 + 0.843919i \(0.319757\pi\)
\(788\) −6.62502e6 −0.380077
\(789\) 46601.3 0.00266505
\(790\) 1.00421e7 0.572473
\(791\) 7.73349e6 0.439475
\(792\) −2.35089e6 −0.133174
\(793\) 4.23341e6 0.239060
\(794\) −1.52270e7 −0.857164
\(795\) 67353.4 0.00377956
\(796\) −1.51248e7 −0.846072
\(797\) −2.88725e6 −0.161005 −0.0805024 0.996754i \(-0.525652\pi\)
−0.0805024 + 0.996754i \(0.525652\pi\)
\(798\) 68644.6 0.00381592
\(799\) −8.90013e6 −0.493207
\(800\) −640000. −0.0353553
\(801\) −2.57908e7 −1.42031
\(802\) 1.32879e7 0.729495
\(803\) −440241. −0.0240936
\(804\) 147860. 0.00806697
\(805\) −2.69146e6 −0.146385
\(806\) −4.00617e6 −0.217216
\(807\) −160112. −0.00865446
\(808\) −9.56923e6 −0.515642
\(809\) 1.17399e7 0.630659 0.315330 0.948982i \(-0.397885\pi\)
0.315330 + 0.948982i \(0.397885\pi\)
\(810\) 5.90091e6 0.316014
\(811\) −3.53820e7 −1.88899 −0.944496 0.328524i \(-0.893449\pi\)
−0.944496 + 0.328524i \(0.893449\pi\)
\(812\) −1.20032e7 −0.638864
\(813\) 150289. 0.00797445
\(814\) 2.43332e6 0.128718
\(815\) 3.98956e6 0.210393
\(816\) −41484.4 −0.00218102
\(817\) −2.36495e6 −0.123956
\(818\) −1.71284e7 −0.895021
\(819\) −5.69971e7 −2.96923
\(820\) 2.57934e6 0.133959
\(821\) −3.04709e7 −1.57771 −0.788855 0.614579i \(-0.789326\pi\)
−0.788855 + 0.614579i \(0.789326\pi\)
\(822\) −54607.7 −0.00281887
\(823\) 7.41573e6 0.381640 0.190820 0.981625i \(-0.438885\pi\)
0.190820 + 0.981625i \(0.438885\pi\)
\(824\) −1.18675e7 −0.608893
\(825\) −22109.3 −0.00113094
\(826\) −2.33594e7 −1.19127
\(827\) −2.84029e7 −1.44411 −0.722053 0.691838i \(-0.756801\pi\)
−0.722053 + 0.691838i \(0.756801\pi\)
\(828\) −2.05629e6 −0.104234
\(829\) −7.05907e6 −0.356748 −0.178374 0.983963i \(-0.557084\pi\)
−0.178374 + 0.983963i \(0.557084\pi\)
\(830\) 7.71297e6 0.388621
\(831\) −583985. −0.0293359
\(832\) 4.72186e6 0.236485
\(833\) −1.70456e7 −0.851139
\(834\) 217967. 0.0108511
\(835\) 3.64238e6 0.180788
\(836\) 871902. 0.0431471
\(837\) −98776.6 −0.00487350
\(838\) 2.48244e7 1.22115
\(839\) 5.57054e6 0.273207 0.136604 0.990626i \(-0.456381\pi\)
0.136604 + 0.990626i \(0.456381\pi\)
\(840\) 76183.8 0.00372532
\(841\) −6.92260e6 −0.337504
\(842\) −8.28192e6 −0.402579
\(843\) −268901. −0.0130324
\(844\) 6.13836e6 0.296617
\(845\) −2.39412e7 −1.15346
\(846\) 1.24874e7 0.599853
\(847\) −2.81235e7 −1.34698
\(848\) −2.94787e6 −0.140773
\(849\) −23437.0 −0.00111592
\(850\) 1.73154e6 0.0822028
\(851\) 2.12839e6 0.100746
\(852\) 119369. 0.00563367
\(853\) 9.71741e6 0.457275 0.228638 0.973512i \(-0.426573\pi\)
0.228638 + 0.973512i \(0.426573\pi\)
\(854\) −2.98944e6 −0.140263
\(855\) −2.18903e6 −0.102409
\(856\) 3.27067e6 0.152564
\(857\) −8.28472e6 −0.385324 −0.192662 0.981265i \(-0.561712\pi\)
−0.192662 + 0.981265i \(0.561712\pi\)
\(858\) 163120. 0.00756465
\(859\) −2.43156e7 −1.12435 −0.562177 0.827017i \(-0.690036\pi\)
−0.562177 + 0.827017i \(0.690036\pi\)
\(860\) −2.62469e6 −0.121013
\(861\) −307037. −0.0141150
\(862\) 3.29313e6 0.150952
\(863\) 2.71765e7 1.24213 0.621064 0.783760i \(-0.286701\pi\)
0.621064 + 0.783760i \(0.286701\pi\)
\(864\) 116423. 0.00530583
\(865\) −1.15308e7 −0.523985
\(866\) 4.72010e6 0.213873
\(867\) −219959. −0.00993789
\(868\) 2.82897e6 0.127447
\(869\) −1.51833e7 −0.682051
\(870\) −86245.7 −0.00386313
\(871\) 4.55337e7 2.03370
\(872\) 1.27702e7 0.568730
\(873\) 8.71600e6 0.387063
\(874\) 762640. 0.0337708
\(875\) −3.17989e6 −0.140408
\(876\) 10899.8 0.000479907 0
\(877\) 6.70848e6 0.294527 0.147264 0.989097i \(-0.452953\pi\)
0.147264 + 0.989097i \(0.452953\pi\)
\(878\) −3.40554e6 −0.149091
\(879\) 287081. 0.0125324
\(880\) 967662. 0.0421228
\(881\) 9.51261e6 0.412914 0.206457 0.978456i \(-0.433807\pi\)
0.206457 + 0.978456i \(0.433807\pi\)
\(882\) 2.39160e7 1.03518
\(883\) −2.23053e7 −0.962732 −0.481366 0.876520i \(-0.659859\pi\)
−0.481366 + 0.876520i \(0.659859\pi\)
\(884\) −1.27752e7 −0.549839
\(885\) −167842. −0.00720347
\(886\) −2.14445e7 −0.917764
\(887\) 1.01123e7 0.431559 0.215780 0.976442i \(-0.430771\pi\)
0.215780 + 0.976442i \(0.430771\pi\)
\(888\) −60245.6 −0.00256385
\(889\) −2.84170e7 −1.20593
\(890\) 1.06159e7 0.449243
\(891\) −8.92201e6 −0.376503
\(892\) −7.24816e6 −0.305011
\(893\) −4.63134e6 −0.194347
\(894\) −178865. −0.00748481
\(895\) 2.63863e6 0.110109
\(896\) −3.33435e6 −0.138753
\(897\) 142679. 0.00592077
\(898\) 3.18014e7 1.31600
\(899\) −3.20260e6 −0.132161
\(900\) −2.42945e6 −0.0999775
\(901\) 7.97559e6 0.327303
\(902\) −3.89988e6 −0.159601
\(903\) 312436. 0.0127509
\(904\) −2.43200e6 −0.0989789
\(905\) 4.40712e6 0.178868
\(906\) −83915.0 −0.00339640
\(907\) 4.17244e7 1.68412 0.842058 0.539386i \(-0.181344\pi\)
0.842058 + 0.539386i \(0.181344\pi\)
\(908\) 1.03017e7 0.414661
\(909\) −3.63250e7 −1.45813
\(910\) 2.34609e7 0.939163
\(911\) 3.58922e6 0.143286 0.0716431 0.997430i \(-0.477176\pi\)
0.0716431 + 0.997430i \(0.477176\pi\)
\(912\) −21587.1 −0.000859424 0
\(913\) −1.16618e7 −0.463008
\(914\) −1.32240e7 −0.523596
\(915\) −21479.7 −0.000848156 0
\(916\) 2.03135e7 0.799920
\(917\) 1.62792e7 0.639306
\(918\) −314986. −0.0123363
\(919\) −4.74566e7 −1.85356 −0.926782 0.375599i \(-0.877437\pi\)
−0.926782 + 0.375599i \(0.877437\pi\)
\(920\) 846400. 0.0329690
\(921\) 544613. 0.0211563
\(922\) −8.03747e6 −0.311381
\(923\) 3.67598e7 1.42026
\(924\) −115188. −0.00443840
\(925\) 2.51463e6 0.0966319
\(926\) 1.16383e7 0.446027
\(927\) −4.50493e7 −1.72182
\(928\) 3.77474e6 0.143885
\(929\) 3.32561e7 1.26425 0.632124 0.774867i \(-0.282183\pi\)
0.632124 + 0.774867i \(0.282183\pi\)
\(930\) 20326.7 0.000770654 0
\(931\) −8.87000e6 −0.335389
\(932\) 1.96083e7 0.739434
\(933\) 346655. 0.0130375
\(934\) −1.17352e7 −0.440171
\(935\) −2.61805e6 −0.0979374
\(936\) 1.79243e7 0.668731
\(937\) −1.92009e7 −0.714450 −0.357225 0.934018i \(-0.616277\pi\)
−0.357225 + 0.934018i \(0.616277\pi\)
\(938\) −3.21537e7 −1.19323
\(939\) −251393. −0.00930441
\(940\) −5.13999e6 −0.189733
\(941\) 3.49771e7 1.28768 0.643842 0.765158i \(-0.277339\pi\)
0.643842 + 0.765158i \(0.277339\pi\)
\(942\) 456446. 0.0167595
\(943\) −3.41117e6 −0.124918
\(944\) 7.34597e6 0.268299
\(945\) 578455. 0.0210712
\(946\) 3.96846e6 0.144176
\(947\) −9.14501e6 −0.331367 −0.165683 0.986179i \(-0.552983\pi\)
−0.165683 + 0.986179i \(0.552983\pi\)
\(948\) 375918. 0.0135854
\(949\) 3.35660e6 0.120986
\(950\) 901040. 0.0323918
\(951\) −221729. −0.00795008
\(952\) 9.02122e6 0.322606
\(953\) 4.37224e7 1.55945 0.779725 0.626122i \(-0.215359\pi\)
0.779725 + 0.626122i \(0.215359\pi\)
\(954\) −1.11902e7 −0.398076
\(955\) 1.43237e7 0.508214
\(956\) −3.11586e6 −0.110264
\(957\) 130401. 0.00460258
\(958\) −3.07043e7 −1.08090
\(959\) 1.18750e7 0.416954
\(960\) −23958.0 −0.000839021 0
\(961\) −2.78744e7 −0.973635
\(962\) −1.85527e7 −0.646353
\(963\) 1.24155e7 0.431419
\(964\) 7.95669e6 0.275766
\(965\) −1.41776e7 −0.490101
\(966\) −100753. −0.00347388
\(967\) −1.07614e7 −0.370087 −0.185044 0.982730i \(-0.559243\pi\)
−0.185044 + 0.982730i \(0.559243\pi\)
\(968\) 8.84419e6 0.303368
\(969\) 58404.8 0.00199820
\(970\) −3.58764e6 −0.122428
\(971\) −3.44853e7 −1.17378 −0.586889 0.809668i \(-0.699647\pi\)
−0.586889 + 0.809668i \(0.699647\pi\)
\(972\) 662940. 0.0225065
\(973\) −4.73992e7 −1.60505
\(974\) 4.17680e7 1.41074
\(975\) 168571. 0.00567900
\(976\) 940108. 0.0315902
\(977\) 2.92695e7 0.981022 0.490511 0.871435i \(-0.336810\pi\)
0.490511 + 0.871435i \(0.336810\pi\)
\(978\) 149347. 0.00499285
\(979\) −1.60509e7 −0.535234
\(980\) −9.84418e6 −0.327427
\(981\) 4.84759e7 1.60825
\(982\) 1.19892e7 0.396745
\(983\) −5.73299e7 −1.89233 −0.946166 0.323681i \(-0.895080\pi\)
−0.946166 + 0.323681i \(0.895080\pi\)
\(984\) 96555.9 0.00317900
\(985\) 1.03516e7 0.339951
\(986\) −1.02127e7 −0.334540
\(987\) 611850. 0.0199918
\(988\) −6.64778e6 −0.216663
\(989\) 3.47115e6 0.112845
\(990\) 3.67326e6 0.119114
\(991\) −4.26292e7 −1.37887 −0.689435 0.724347i \(-0.742141\pi\)
−0.689435 + 0.724347i \(0.742141\pi\)
\(992\) −889644. −0.0287036
\(993\) 438879. 0.0141245
\(994\) −2.59580e7 −0.833308
\(995\) 2.36325e7 0.756750
\(996\) 288730. 0.00922240
\(997\) −1.37248e7 −0.437288 −0.218644 0.975805i \(-0.570163\pi\)
−0.218644 + 0.975805i \(0.570163\pi\)
\(998\) −2.50949e7 −0.797554
\(999\) −457439. −0.0145017
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 230.6.a.g.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.6.a.g.1.3 5 1.1 even 1 trivial