Properties

Label 230.6.a
Level $230$
Weight $6$
Character orbit 230.a
Rep. character $\chi_{230}(1,\cdot)$
Character field $\Q$
Dimension $34$
Newform subspaces $9$
Sturm bound $216$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(216\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(230))\).

Total New Old
Modular forms 184 34 150
Cusp forms 176 34 142
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(20\)\(3\)\(17\)\(19\)\(3\)\(16\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(25\)\(5\)\(20\)\(24\)\(5\)\(19\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(25\)\(5\)\(20\)\(24\)\(5\)\(19\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(22\)\(3\)\(19\)\(21\)\(3\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(24\)\(6\)\(18\)\(23\)\(6\)\(17\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(22\)\(3\)\(19\)\(21\)\(3\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(23\)\(3\)\(20\)\(22\)\(3\)\(19\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(23\)\(6\)\(17\)\(22\)\(6\)\(16\)\(1\)\(0\)\(1\)
Plus space\(+\)\(87\)\(12\)\(75\)\(83\)\(12\)\(71\)\(4\)\(0\)\(4\)
Minus space\(-\)\(97\)\(22\)\(75\)\(93\)\(22\)\(71\)\(4\)\(0\)\(4\)

Trace form

\( 34 q + 8 q^{2} - 8 q^{3} + 544 q^{4} + 16 q^{6} + 624 q^{7} + 128 q^{8} + 2502 q^{9} + 156 q^{11} - 128 q^{12} + 580 q^{13} + 352 q^{14} - 2200 q^{15} + 8704 q^{16} - 3172 q^{17} + 5800 q^{18} + 4428 q^{19}+ \cdots + 776372 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(230))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 23
230.6.a.a 230.a 1.a $1$ $36.888$ \(\Q\) None 230.6.a.a \(-4\) \(8\) \(-25\) \(199\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+8q^{3}+2^{4}q^{4}-5^{2}q^{5}-2^{5}q^{6}+\cdots\)
230.6.a.b 230.a 1.a $2$ $36.888$ \(\Q(\sqrt{2}) \) None 230.6.a.b \(-8\) \(6\) \(-50\) \(-164\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+(3+6\beta )q^{3}+2^{4}q^{4}-5^{2}q^{5}+\cdots\)
230.6.a.c 230.a 1.a $3$ $36.888$ 3.3.27980.1 None 230.6.a.c \(-12\) \(-26\) \(75\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-9+\beta _{2})q^{3}+2^{4}q^{4}+5^{2}q^{5}+\cdots\)
230.6.a.d 230.a 1.a $3$ $36.888$ 3.3.27980.1 None 230.6.a.d \(12\) \(-34\) \(75\) \(-121\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+(-11-\beta _{2})q^{3}+2^{4}q^{4}+5^{2}q^{5}+\cdots\)
230.6.a.e 230.a 1.a $3$ $36.888$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 230.6.a.e \(12\) \(6\) \(-75\) \(5\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+(2-\beta _{1})q^{3}+2^{4}q^{4}-5^{2}q^{5}+\cdots\)
230.6.a.f 230.a 1.a $5$ $36.888$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 230.6.a.f \(-20\) \(1\) \(125\) \(102\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+\beta _{1}q^{3}+2^{4}q^{4}+5^{2}q^{5}-4\beta _{1}q^{6}+\cdots\)
230.6.a.g 230.a 1.a $5$ $36.888$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 230.6.a.g \(-20\) \(5\) \(-125\) \(130\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+(1+\beta _{1})q^{3}+2^{4}q^{4}-5^{2}q^{5}+\cdots\)
230.6.a.h 230.a 1.a $6$ $36.888$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 230.6.a.h \(24\) \(11\) \(150\) \(366\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+(2-\beta _{1})q^{3}+2^{4}q^{4}+5^{2}q^{5}+\cdots\)
230.6.a.i 230.a 1.a $6$ $36.888$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 230.6.a.i \(24\) \(15\) \(-150\) \(106\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+(2+\beta _{1})q^{3}+2^{4}q^{4}-5^{2}q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(230))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(230)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 2}\)