Defining parameters
| Level: | \( N \) | \(=\) | \( 230 = 2 \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 230.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(216\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(230))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 184 | 34 | 150 |
| Cusp forms | 176 | 34 | 142 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(20\) | \(3\) | \(17\) | \(19\) | \(3\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(25\) | \(5\) | \(20\) | \(24\) | \(5\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(25\) | \(5\) | \(20\) | \(24\) | \(5\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(22\) | \(3\) | \(19\) | \(21\) | \(3\) | \(18\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(24\) | \(6\) | \(18\) | \(23\) | \(6\) | \(17\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(22\) | \(3\) | \(19\) | \(21\) | \(3\) | \(18\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(23\) | \(3\) | \(20\) | \(22\) | \(3\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(23\) | \(6\) | \(17\) | \(22\) | \(6\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(87\) | \(12\) | \(75\) | \(83\) | \(12\) | \(71\) | \(4\) | \(0\) | \(4\) | |||||
| Minus space | \(-\) | \(97\) | \(22\) | \(75\) | \(93\) | \(22\) | \(71\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(230))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(230))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(230)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 2}\)