Properties

Label 230.6.a.e.1.2
Level $230$
Weight $6$
Character 230.1
Self dual yes
Analytic conductor $36.888$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [230,6,Mod(1,230)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("230.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(230, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,12,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.8882785570\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 403x - 1230 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.12806\) of defining polynomial
Character \(\chi\) \(=\) 230.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +5.12806 q^{3} +16.0000 q^{4} -25.0000 q^{5} +20.5122 q^{6} +104.519 q^{7} +64.0000 q^{8} -216.703 q^{9} -100.000 q^{10} -489.208 q^{11} +82.0489 q^{12} -424.080 q^{13} +418.077 q^{14} -128.201 q^{15} +256.000 q^{16} -320.259 q^{17} -866.812 q^{18} -1684.51 q^{19} -400.000 q^{20} +535.980 q^{21} -1956.83 q^{22} +529.000 q^{23} +328.196 q^{24} +625.000 q^{25} -1696.32 q^{26} -2357.38 q^{27} +1672.31 q^{28} +126.359 q^{29} -512.806 q^{30} +6436.31 q^{31} +1024.00 q^{32} -2508.69 q^{33} -1281.03 q^{34} -2612.98 q^{35} -3467.25 q^{36} -10974.5 q^{37} -6738.05 q^{38} -2174.71 q^{39} -1600.00 q^{40} -2394.04 q^{41} +2143.92 q^{42} -8655.60 q^{43} -7827.33 q^{44} +5417.58 q^{45} +2116.00 q^{46} -25099.9 q^{47} +1312.78 q^{48} -5882.75 q^{49} +2500.00 q^{50} -1642.31 q^{51} -6785.28 q^{52} -4255.25 q^{53} -9429.53 q^{54} +12230.2 q^{55} +6689.22 q^{56} -8638.28 q^{57} +505.438 q^{58} +42758.6 q^{59} -2051.22 q^{60} -13450.6 q^{61} +25745.2 q^{62} -22649.6 q^{63} +4096.00 q^{64} +10602.0 q^{65} -10034.8 q^{66} +46832.2 q^{67} -5124.14 q^{68} +2712.74 q^{69} -10451.9 q^{70} +4120.28 q^{71} -13869.0 q^{72} -66925.5 q^{73} -43897.8 q^{74} +3205.04 q^{75} -26952.2 q^{76} -51131.6 q^{77} -8698.83 q^{78} -57340.7 q^{79} -6400.00 q^{80} +40570.0 q^{81} -9576.15 q^{82} +119870. q^{83} +8575.68 q^{84} +8006.47 q^{85} -34622.4 q^{86} +647.978 q^{87} -31309.3 q^{88} -85802.5 q^{89} +21670.3 q^{90} -44324.5 q^{91} +8464.00 q^{92} +33005.8 q^{93} -100400. q^{94} +42112.8 q^{95} +5251.13 q^{96} -23217.4 q^{97} -23531.0 q^{98} +106013. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} + 6 q^{3} + 48 q^{4} - 75 q^{5} + 24 q^{6} + 5 q^{7} + 192 q^{8} + 89 q^{9} - 300 q^{10} - 962 q^{11} + 96 q^{12} - 776 q^{13} + 20 q^{14} - 150 q^{15} + 768 q^{16} - 2317 q^{17} + 356 q^{18}+ \cdots + 24042 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 5.12806 0.328965 0.164483 0.986380i \(-0.447405\pi\)
0.164483 + 0.986380i \(0.447405\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 20.5122 0.232613
\(7\) 104.519 0.806215 0.403107 0.915153i \(-0.367930\pi\)
0.403107 + 0.915153i \(0.367930\pi\)
\(8\) 64.0000 0.353553
\(9\) −216.703 −0.891782
\(10\) −100.000 −0.316228
\(11\) −489.208 −1.21902 −0.609512 0.792777i \(-0.708635\pi\)
−0.609512 + 0.792777i \(0.708635\pi\)
\(12\) 82.0489 0.164483
\(13\) −424.080 −0.695969 −0.347984 0.937500i \(-0.613134\pi\)
−0.347984 + 0.937500i \(0.613134\pi\)
\(14\) 418.077 0.570080
\(15\) −128.201 −0.147118
\(16\) 256.000 0.250000
\(17\) −320.259 −0.268769 −0.134384 0.990929i \(-0.542906\pi\)
−0.134384 + 0.990929i \(0.542906\pi\)
\(18\) −866.812 −0.630585
\(19\) −1684.51 −1.07051 −0.535255 0.844691i \(-0.679784\pi\)
−0.535255 + 0.844691i \(0.679784\pi\)
\(20\) −400.000 −0.223607
\(21\) 535.980 0.265216
\(22\) −1956.83 −0.861980
\(23\) 529.000 0.208514
\(24\) 328.196 0.116307
\(25\) 625.000 0.200000
\(26\) −1696.32 −0.492124
\(27\) −2357.38 −0.622330
\(28\) 1672.31 0.403107
\(29\) 126.359 0.0279005 0.0139503 0.999903i \(-0.495559\pi\)
0.0139503 + 0.999903i \(0.495559\pi\)
\(30\) −512.806 −0.104028
\(31\) 6436.31 1.20291 0.601454 0.798907i \(-0.294588\pi\)
0.601454 + 0.798907i \(0.294588\pi\)
\(32\) 1024.00 0.176777
\(33\) −2508.69 −0.401016
\(34\) −1281.03 −0.190048
\(35\) −2612.98 −0.360550
\(36\) −3467.25 −0.445891
\(37\) −10974.5 −1.31789 −0.658944 0.752192i \(-0.728997\pi\)
−0.658944 + 0.752192i \(0.728997\pi\)
\(38\) −6738.05 −0.756965
\(39\) −2174.71 −0.228949
\(40\) −1600.00 −0.158114
\(41\) −2394.04 −0.222419 −0.111209 0.993797i \(-0.535472\pi\)
−0.111209 + 0.993797i \(0.535472\pi\)
\(42\) 2143.92 0.187536
\(43\) −8655.60 −0.713881 −0.356941 0.934127i \(-0.616180\pi\)
−0.356941 + 0.934127i \(0.616180\pi\)
\(44\) −7827.33 −0.609512
\(45\) 5417.58 0.398817
\(46\) 2116.00 0.147442
\(47\) −25099.9 −1.65740 −0.828701 0.559691i \(-0.810920\pi\)
−0.828701 + 0.559691i \(0.810920\pi\)
\(48\) 1312.78 0.0822413
\(49\) −5882.75 −0.350018
\(50\) 2500.00 0.141421
\(51\) −1642.31 −0.0884155
\(52\) −6785.28 −0.347984
\(53\) −4255.25 −0.208083 −0.104041 0.994573i \(-0.533177\pi\)
−0.104041 + 0.994573i \(0.533177\pi\)
\(54\) −9429.53 −0.440054
\(55\) 12230.2 0.545164
\(56\) 6689.22 0.285040
\(57\) −8638.28 −0.352160
\(58\) 505.438 0.0197287
\(59\) 42758.6 1.59917 0.799584 0.600555i \(-0.205054\pi\)
0.799584 + 0.600555i \(0.205054\pi\)
\(60\) −2051.22 −0.0735588
\(61\) −13450.6 −0.462825 −0.231413 0.972856i \(-0.574335\pi\)
−0.231413 + 0.972856i \(0.574335\pi\)
\(62\) 25745.2 0.850585
\(63\) −22649.6 −0.718968
\(64\) 4096.00 0.125000
\(65\) 10602.0 0.311247
\(66\) −10034.8 −0.283561
\(67\) 46832.2 1.27455 0.637276 0.770635i \(-0.280061\pi\)
0.637276 + 0.770635i \(0.280061\pi\)
\(68\) −5124.14 −0.134384
\(69\) 2712.74 0.0685940
\(70\) −10451.9 −0.254947
\(71\) 4120.28 0.0970020 0.0485010 0.998823i \(-0.484556\pi\)
0.0485010 + 0.998823i \(0.484556\pi\)
\(72\) −13869.0 −0.315293
\(73\) −66925.5 −1.46989 −0.734945 0.678127i \(-0.762792\pi\)
−0.734945 + 0.678127i \(0.762792\pi\)
\(74\) −43897.8 −0.931887
\(75\) 3205.04 0.0657930
\(76\) −26952.2 −0.535255
\(77\) −51131.6 −0.982795
\(78\) −8698.83 −0.161892
\(79\) −57340.7 −1.03370 −0.516851 0.856076i \(-0.672896\pi\)
−0.516851 + 0.856076i \(0.672896\pi\)
\(80\) −6400.00 −0.111803
\(81\) 40570.0 0.687057
\(82\) −9576.15 −0.157274
\(83\) 119870. 1.90992 0.954959 0.296737i \(-0.0958985\pi\)
0.954959 + 0.296737i \(0.0958985\pi\)
\(84\) 8575.68 0.132608
\(85\) 8006.47 0.120197
\(86\) −34622.4 −0.504790
\(87\) 647.978 0.00917830
\(88\) −31309.3 −0.430990
\(89\) −85802.5 −1.14822 −0.574110 0.818778i \(-0.694652\pi\)
−0.574110 + 0.818778i \(0.694652\pi\)
\(90\) 21670.3 0.282006
\(91\) −44324.5 −0.561100
\(92\) 8464.00 0.104257
\(93\) 33005.8 0.395715
\(94\) −100400. −1.17196
\(95\) 42112.8 0.478746
\(96\) 5251.13 0.0581534
\(97\) −23217.4 −0.250544 −0.125272 0.992122i \(-0.539980\pi\)
−0.125272 + 0.992122i \(0.539980\pi\)
\(98\) −23531.0 −0.247500
\(99\) 106013. 1.08710
\(100\) 10000.0 0.100000
\(101\) −53571.5 −0.522553 −0.261276 0.965264i \(-0.584143\pi\)
−0.261276 + 0.965264i \(0.584143\pi\)
\(102\) −6569.22 −0.0625192
\(103\) −74243.3 −0.689547 −0.344774 0.938686i \(-0.612044\pi\)
−0.344774 + 0.938686i \(0.612044\pi\)
\(104\) −27141.1 −0.246062
\(105\) −13399.5 −0.118608
\(106\) −17021.0 −0.147137
\(107\) −8236.50 −0.0695478 −0.0347739 0.999395i \(-0.511071\pi\)
−0.0347739 + 0.999395i \(0.511071\pi\)
\(108\) −37718.1 −0.311165
\(109\) 34585.4 0.278822 0.139411 0.990235i \(-0.455479\pi\)
0.139411 + 0.990235i \(0.455479\pi\)
\(110\) 48920.8 0.385489
\(111\) −56277.6 −0.433539
\(112\) 26756.9 0.201554
\(113\) 234561. 1.72806 0.864031 0.503438i \(-0.167932\pi\)
0.864031 + 0.503438i \(0.167932\pi\)
\(114\) −34553.1 −0.249015
\(115\) −13225.0 −0.0932505
\(116\) 2021.75 0.0139503
\(117\) 91899.5 0.620652
\(118\) 171035. 1.13078
\(119\) −33473.2 −0.216685
\(120\) −8204.89 −0.0520139
\(121\) 78273.8 0.486019
\(122\) −53802.4 −0.327267
\(123\) −12276.8 −0.0731680
\(124\) 102981. 0.601454
\(125\) −15625.0 −0.0894427
\(126\) −90598.5 −0.508387
\(127\) −212332. −1.16817 −0.584084 0.811693i \(-0.698546\pi\)
−0.584084 + 0.811693i \(0.698546\pi\)
\(128\) 16384.0 0.0883883
\(129\) −44386.4 −0.234842
\(130\) 42408.0 0.220085
\(131\) 311950. 1.58820 0.794102 0.607784i \(-0.207941\pi\)
0.794102 + 0.607784i \(0.207941\pi\)
\(132\) −40139.0 −0.200508
\(133\) −176064. −0.863061
\(134\) 187329. 0.901245
\(135\) 58934.6 0.278315
\(136\) −20496.6 −0.0950241
\(137\) −110712. −0.503957 −0.251978 0.967733i \(-0.581081\pi\)
−0.251978 + 0.967733i \(0.581081\pi\)
\(138\) 10851.0 0.0485033
\(139\) 264616. 1.16166 0.580830 0.814025i \(-0.302728\pi\)
0.580830 + 0.814025i \(0.302728\pi\)
\(140\) −41807.7 −0.180275
\(141\) −128714. −0.545228
\(142\) 16481.1 0.0685908
\(143\) 207464. 0.848402
\(144\) −55476.0 −0.222945
\(145\) −3158.99 −0.0124775
\(146\) −267702. −1.03937
\(147\) −30167.1 −0.115144
\(148\) −175591. −0.658944
\(149\) −20423.4 −0.0753639 −0.0376820 0.999290i \(-0.511997\pi\)
−0.0376820 + 0.999290i \(0.511997\pi\)
\(150\) 12820.1 0.0465227
\(151\) 336425. 1.20073 0.600366 0.799726i \(-0.295022\pi\)
0.600366 + 0.799726i \(0.295022\pi\)
\(152\) −107809. −0.378482
\(153\) 69401.0 0.239683
\(154\) −204527. −0.694941
\(155\) −160908. −0.537957
\(156\) −34795.3 −0.114475
\(157\) 460283. 1.49031 0.745153 0.666893i \(-0.232376\pi\)
0.745153 + 0.666893i \(0.232376\pi\)
\(158\) −229363. −0.730937
\(159\) −21821.2 −0.0684519
\(160\) −25600.0 −0.0790569
\(161\) 55290.6 0.168107
\(162\) 162280. 0.485823
\(163\) −541579. −1.59659 −0.798294 0.602267i \(-0.794264\pi\)
−0.798294 + 0.602267i \(0.794264\pi\)
\(164\) −38304.6 −0.111209
\(165\) 62717.2 0.179340
\(166\) 479480. 1.35052
\(167\) 94938.7 0.263422 0.131711 0.991288i \(-0.457953\pi\)
0.131711 + 0.991288i \(0.457953\pi\)
\(168\) 34302.7 0.0937682
\(169\) −191449. −0.515628
\(170\) 32025.9 0.0849921
\(171\) 365039. 0.954661
\(172\) −138490. −0.356941
\(173\) −145374. −0.369294 −0.184647 0.982805i \(-0.559114\pi\)
−0.184647 + 0.982805i \(0.559114\pi\)
\(174\) 2591.91 0.00649004
\(175\) 65324.5 0.161243
\(176\) −125237. −0.304756
\(177\) 219269. 0.526070
\(178\) −343210. −0.811914
\(179\) 398105. 0.928678 0.464339 0.885658i \(-0.346292\pi\)
0.464339 + 0.885658i \(0.346292\pi\)
\(180\) 86681.2 0.199409
\(181\) 435143. 0.987269 0.493635 0.869669i \(-0.335668\pi\)
0.493635 + 0.869669i \(0.335668\pi\)
\(182\) −177298. −0.396758
\(183\) −68975.5 −0.152253
\(184\) 33856.0 0.0737210
\(185\) 274361. 0.589377
\(186\) 132023. 0.279813
\(187\) 156673. 0.327635
\(188\) −401599. −0.828701
\(189\) −246392. −0.501732
\(190\) 168451. 0.338525
\(191\) 488032. 0.967976 0.483988 0.875075i \(-0.339188\pi\)
0.483988 + 0.875075i \(0.339188\pi\)
\(192\) 21004.5 0.0411206
\(193\) 316888. 0.612367 0.306184 0.951972i \(-0.400948\pi\)
0.306184 + 0.951972i \(0.400948\pi\)
\(194\) −92869.6 −0.177161
\(195\) 54367.7 0.102389
\(196\) −94124.0 −0.175009
\(197\) 904711. 1.66090 0.830451 0.557091i \(-0.188083\pi\)
0.830451 + 0.557091i \(0.188083\pi\)
\(198\) 424052. 0.768698
\(199\) −952131. −1.70437 −0.852185 0.523240i \(-0.824723\pi\)
−0.852185 + 0.523240i \(0.824723\pi\)
\(200\) 40000.0 0.0707107
\(201\) 240158. 0.419283
\(202\) −214286. −0.369500
\(203\) 13207.0 0.0224938
\(204\) −26276.9 −0.0442077
\(205\) 59850.9 0.0994687
\(206\) −296973. −0.487584
\(207\) −114636. −0.185949
\(208\) −108565. −0.173992
\(209\) 824078. 1.30498
\(210\) −53598.0 −0.0838688
\(211\) 281552. 0.435365 0.217682 0.976020i \(-0.430150\pi\)
0.217682 + 0.976020i \(0.430150\pi\)
\(212\) −68084.0 −0.104041
\(213\) 21129.0 0.0319103
\(214\) −32946.0 −0.0491777
\(215\) 216390. 0.319257
\(216\) −150873. −0.220027
\(217\) 672717. 0.969802
\(218\) 138342. 0.197157
\(219\) −343198. −0.483542
\(220\) 195683. 0.272582
\(221\) 135815. 0.187055
\(222\) −225110. −0.306558
\(223\) 232188. 0.312663 0.156332 0.987705i \(-0.450033\pi\)
0.156332 + 0.987705i \(0.450033\pi\)
\(224\) 107028. 0.142520
\(225\) −135439. −0.178356
\(226\) 938243. 1.22192
\(227\) 197153. 0.253945 0.126972 0.991906i \(-0.459474\pi\)
0.126972 + 0.991906i \(0.459474\pi\)
\(228\) −138213. −0.176080
\(229\) −455428. −0.573893 −0.286946 0.957947i \(-0.592640\pi\)
−0.286946 + 0.957947i \(0.592640\pi\)
\(230\) −52900.0 −0.0659380
\(231\) −262206. −0.323305
\(232\) 8087.00 0.00986433
\(233\) −126870. −0.153098 −0.0765492 0.997066i \(-0.524390\pi\)
−0.0765492 + 0.997066i \(0.524390\pi\)
\(234\) 367598. 0.438867
\(235\) 627499. 0.741213
\(236\) 684138. 0.799584
\(237\) −294046. −0.340052
\(238\) −133893. −0.153220
\(239\) −1.65192e6 −1.87066 −0.935330 0.353777i \(-0.884897\pi\)
−0.935330 + 0.353777i \(0.884897\pi\)
\(240\) −32819.6 −0.0367794
\(241\) −1.32764e6 −1.47244 −0.736220 0.676743i \(-0.763391\pi\)
−0.736220 + 0.676743i \(0.763391\pi\)
\(242\) 313095. 0.343667
\(243\) 780890. 0.848348
\(244\) −215210. −0.231413
\(245\) 147069. 0.156533
\(246\) −49107.1 −0.0517376
\(247\) 714369. 0.745041
\(248\) 411924. 0.425292
\(249\) 614700. 0.628296
\(250\) −62500.0 −0.0632456
\(251\) −350486. −0.351145 −0.175572 0.984467i \(-0.556178\pi\)
−0.175572 + 0.984467i \(0.556178\pi\)
\(252\) −362394. −0.359484
\(253\) −258791. −0.254184
\(254\) −849327. −0.826020
\(255\) 41057.6 0.0395406
\(256\) 65536.0 0.0625000
\(257\) −668229. −0.631092 −0.315546 0.948910i \(-0.602188\pi\)
−0.315546 + 0.948910i \(0.602188\pi\)
\(258\) −177546. −0.166058
\(259\) −1.14704e6 −1.06250
\(260\) 169632. 0.155623
\(261\) −27382.5 −0.0248812
\(262\) 1.24780e6 1.12303
\(263\) −1.84958e6 −1.64886 −0.824431 0.565962i \(-0.808505\pi\)
−0.824431 + 0.565962i \(0.808505\pi\)
\(264\) −160556. −0.141781
\(265\) 106381. 0.0930573
\(266\) −704256. −0.610276
\(267\) −440000. −0.377724
\(268\) 749316. 0.637276
\(269\) −276109. −0.232649 −0.116324 0.993211i \(-0.537111\pi\)
−0.116324 + 0.993211i \(0.537111\pi\)
\(270\) 235738. 0.196798
\(271\) 1.74330e6 1.44194 0.720972 0.692964i \(-0.243695\pi\)
0.720972 + 0.692964i \(0.243695\pi\)
\(272\) −81986.2 −0.0671922
\(273\) −227299. −0.184582
\(274\) −442848. −0.356351
\(275\) −305755. −0.243805
\(276\) 43403.9 0.0342970
\(277\) 1.57020e6 1.22958 0.614790 0.788691i \(-0.289241\pi\)
0.614790 + 0.788691i \(0.289241\pi\)
\(278\) 1.05846e6 0.821418
\(279\) −1.39477e6 −1.07273
\(280\) −167231. −0.127474
\(281\) −426078. −0.321902 −0.160951 0.986962i \(-0.551456\pi\)
−0.160951 + 0.986962i \(0.551456\pi\)
\(282\) −514856. −0.385534
\(283\) −683597. −0.507381 −0.253691 0.967285i \(-0.581644\pi\)
−0.253691 + 0.967285i \(0.581644\pi\)
\(284\) 65924.4 0.0485010
\(285\) 215957. 0.157491
\(286\) 829854. 0.599911
\(287\) −250223. −0.179317
\(288\) −221904. −0.157646
\(289\) −1.31729e6 −0.927763
\(290\) −12635.9 −0.00882293
\(291\) −119060. −0.0824203
\(292\) −1.07081e6 −0.734945
\(293\) −1.08021e6 −0.735088 −0.367544 0.930006i \(-0.619801\pi\)
−0.367544 + 0.930006i \(0.619801\pi\)
\(294\) −120668. −0.0814188
\(295\) −1.06897e6 −0.715169
\(296\) −702365. −0.465944
\(297\) 1.15325e6 0.758635
\(298\) −81693.8 −0.0532903
\(299\) −224338. −0.145120
\(300\) 51280.6 0.0328965
\(301\) −904676. −0.575542
\(302\) 1.34570e6 0.849045
\(303\) −274718. −0.171902
\(304\) −431236. −0.267627
\(305\) 336265. 0.206982
\(306\) 277604. 0.169482
\(307\) −1.91426e6 −1.15919 −0.579596 0.814904i \(-0.696789\pi\)
−0.579596 + 0.814904i \(0.696789\pi\)
\(308\) −818106. −0.491397
\(309\) −380724. −0.226837
\(310\) −643631. −0.380393
\(311\) −1.21503e6 −0.712337 −0.356168 0.934422i \(-0.615917\pi\)
−0.356168 + 0.934422i \(0.615917\pi\)
\(312\) −139181. −0.0809458
\(313\) −1.36860e6 −0.789616 −0.394808 0.918764i \(-0.629189\pi\)
−0.394808 + 0.918764i \(0.629189\pi\)
\(314\) 1.84113e6 1.05381
\(315\) 566240. 0.321532
\(316\) −917451. −0.516851
\(317\) −56127.9 −0.0313712 −0.0156856 0.999877i \(-0.504993\pi\)
−0.0156856 + 0.999877i \(0.504993\pi\)
\(318\) −87284.7 −0.0484028
\(319\) −61816.1 −0.0340114
\(320\) −102400. −0.0559017
\(321\) −42237.3 −0.0228788
\(322\) 221162. 0.118870
\(323\) 539480. 0.287719
\(324\) 649121. 0.343529
\(325\) −265050. −0.139194
\(326\) −2.16632e6 −1.12896
\(327\) 177356. 0.0917227
\(328\) −153218. −0.0786369
\(329\) −2.62342e6 −1.33622
\(330\) 250869. 0.126812
\(331\) 675416. 0.338845 0.169423 0.985543i \(-0.445810\pi\)
0.169423 + 0.985543i \(0.445810\pi\)
\(332\) 1.91792e6 0.954959
\(333\) 2.37820e6 1.17527
\(334\) 379755. 0.186268
\(335\) −1.17081e6 −0.569997
\(336\) 137211. 0.0663041
\(337\) 1.07147e6 0.513933 0.256967 0.966420i \(-0.417277\pi\)
0.256967 + 0.966420i \(0.417277\pi\)
\(338\) −765796. −0.364604
\(339\) 1.20284e6 0.568472
\(340\) 128103. 0.0600985
\(341\) −3.14870e6 −1.46637
\(342\) 1.46016e6 0.675047
\(343\) −2.37151e6 −1.08840
\(344\) −553958. −0.252395
\(345\) −67818.6 −0.0306761
\(346\) −581498. −0.261131
\(347\) 1.99569e6 0.889754 0.444877 0.895592i \(-0.353247\pi\)
0.444877 + 0.895592i \(0.353247\pi\)
\(348\) 10367.7 0.00458915
\(349\) −1.97861e6 −0.869555 −0.434778 0.900538i \(-0.643173\pi\)
−0.434778 + 0.900538i \(0.643173\pi\)
\(350\) 261298. 0.114016
\(351\) 999720. 0.433122
\(352\) −500949. −0.215495
\(353\) −792209. −0.338378 −0.169189 0.985584i \(-0.554115\pi\)
−0.169189 + 0.985584i \(0.554115\pi\)
\(354\) 877075. 0.371988
\(355\) −103007. −0.0433806
\(356\) −1.37284e6 −0.574110
\(357\) −171652. −0.0712819
\(358\) 1.59242e6 0.656675
\(359\) −2.31691e6 −0.948796 −0.474398 0.880310i \(-0.657334\pi\)
−0.474398 + 0.880310i \(0.657334\pi\)
\(360\) 346725. 0.141003
\(361\) 361487. 0.145991
\(362\) 1.74057e6 0.698105
\(363\) 401393. 0.159883
\(364\) −709192. −0.280550
\(365\) 1.67314e6 0.657355
\(366\) −275902. −0.107659
\(367\) 1.10314e6 0.427530 0.213765 0.976885i \(-0.431427\pi\)
0.213765 + 0.976885i \(0.431427\pi\)
\(368\) 135424. 0.0521286
\(369\) 518795. 0.198349
\(370\) 1.09745e6 0.416753
\(371\) −444755. −0.167759
\(372\) 528092. 0.197857
\(373\) −216080. −0.0804161 −0.0402081 0.999191i \(-0.512802\pi\)
−0.0402081 + 0.999191i \(0.512802\pi\)
\(374\) 626693. 0.231673
\(375\) −80125.9 −0.0294235
\(376\) −1.60640e6 −0.585980
\(377\) −53586.5 −0.0194179
\(378\) −985567. −0.354778
\(379\) −5.01720e6 −1.79417 −0.897084 0.441860i \(-0.854319\pi\)
−0.897084 + 0.441860i \(0.854319\pi\)
\(380\) 673805. 0.239373
\(381\) −1.08885e6 −0.384287
\(382\) 1.95213e6 0.684463
\(383\) −1.66886e6 −0.581329 −0.290664 0.956825i \(-0.593876\pi\)
−0.290664 + 0.956825i \(0.593876\pi\)
\(384\) 84018.1 0.0290767
\(385\) 1.27829e6 0.439519
\(386\) 1.26755e6 0.433009
\(387\) 1.87569e6 0.636626
\(388\) −371478. −0.125272
\(389\) −1.22486e6 −0.410403 −0.205202 0.978720i \(-0.565785\pi\)
−0.205202 + 0.978720i \(0.565785\pi\)
\(390\) 217471. 0.0724002
\(391\) −169417. −0.0560421
\(392\) −376496. −0.123750
\(393\) 1.59970e6 0.522464
\(394\) 3.61884e6 1.17444
\(395\) 1.43352e6 0.462285
\(396\) 1.69621e6 0.543552
\(397\) 2.61435e6 0.832507 0.416254 0.909249i \(-0.363343\pi\)
0.416254 + 0.909249i \(0.363343\pi\)
\(398\) −3.80852e6 −1.20517
\(399\) −902866. −0.283917
\(400\) 160000. 0.0500000
\(401\) −417138. −0.129545 −0.0647723 0.997900i \(-0.520632\pi\)
−0.0647723 + 0.997900i \(0.520632\pi\)
\(402\) 960633. 0.296478
\(403\) −2.72951e6 −0.837186
\(404\) −857143. −0.261276
\(405\) −1.01425e6 −0.307261
\(406\) 52827.9 0.0159055
\(407\) 5.36879e6 1.60654
\(408\) −105108. −0.0312596
\(409\) 3.54344e6 1.04741 0.523704 0.851900i \(-0.324550\pi\)
0.523704 + 0.851900i \(0.324550\pi\)
\(410\) 239404. 0.0703350
\(411\) −567737. −0.165784
\(412\) −1.18789e6 −0.344774
\(413\) 4.46910e6 1.28927
\(414\) −458544. −0.131486
\(415\) −2.99675e6 −0.854142
\(416\) −434258. −0.123031
\(417\) 1.35697e6 0.382146
\(418\) 3.29631e6 0.922758
\(419\) −4.74678e6 −1.32088 −0.660442 0.750877i \(-0.729631\pi\)
−0.660442 + 0.750877i \(0.729631\pi\)
\(420\) −214392. −0.0593042
\(421\) −1.46862e6 −0.403836 −0.201918 0.979402i \(-0.564717\pi\)
−0.201918 + 0.979402i \(0.564717\pi\)
\(422\) 1.12621e6 0.307849
\(423\) 5.43923e6 1.47804
\(424\) −272336. −0.0735683
\(425\) −200162. −0.0537537
\(426\) 84516.1 0.0225640
\(427\) −1.40585e6 −0.373137
\(428\) −131784. −0.0347739
\(429\) 1.06389e6 0.279095
\(430\) 865560. 0.225749
\(431\) −5.31826e6 −1.37904 −0.689520 0.724267i \(-0.742178\pi\)
−0.689520 + 0.724267i \(0.742178\pi\)
\(432\) −603490. −0.155583
\(433\) −2.69027e6 −0.689565 −0.344783 0.938683i \(-0.612047\pi\)
−0.344783 + 0.938683i \(0.612047\pi\)
\(434\) 2.69087e6 0.685754
\(435\) −16199.5 −0.00410466
\(436\) 553367. 0.139411
\(437\) −891108. −0.223217
\(438\) −1.37279e6 −0.341916
\(439\) −505170. −0.125105 −0.0625527 0.998042i \(-0.519924\pi\)
−0.0625527 + 0.998042i \(0.519924\pi\)
\(440\) 782733. 0.192745
\(441\) 1.27481e6 0.312140
\(442\) 543262. 0.132268
\(443\) −86611.2 −0.0209684 −0.0104842 0.999945i \(-0.503337\pi\)
−0.0104842 + 0.999945i \(0.503337\pi\)
\(444\) −900442. −0.216770
\(445\) 2.14506e6 0.513499
\(446\) 928751. 0.221086
\(447\) −104733. −0.0247921
\(448\) 428110. 0.100777
\(449\) 4.57903e6 1.07191 0.535954 0.844247i \(-0.319952\pi\)
0.535954 + 0.844247i \(0.319952\pi\)
\(450\) −541758. −0.126117
\(451\) 1.17118e6 0.271134
\(452\) 3.75297e6 0.864031
\(453\) 1.72521e6 0.394999
\(454\) 788614. 0.179566
\(455\) 1.10811e6 0.250932
\(456\) −552850. −0.124507
\(457\) 4.75445e6 1.06490 0.532452 0.846460i \(-0.321271\pi\)
0.532452 + 0.846460i \(0.321271\pi\)
\(458\) −1.82171e6 −0.405804
\(459\) 754973. 0.167263
\(460\) −211600. −0.0466252
\(461\) 8.68028e6 1.90231 0.951155 0.308714i \(-0.0998987\pi\)
0.951155 + 0.308714i \(0.0998987\pi\)
\(462\) −1.04882e6 −0.228611
\(463\) 5.09262e6 1.10405 0.552025 0.833827i \(-0.313855\pi\)
0.552025 + 0.833827i \(0.313855\pi\)
\(464\) 32348.0 0.00697514
\(465\) −825144. −0.176969
\(466\) −507481. −0.108257
\(467\) 4.02408e6 0.853836 0.426918 0.904290i \(-0.359599\pi\)
0.426918 + 0.904290i \(0.359599\pi\)
\(468\) 1.47039e6 0.310326
\(469\) 4.89486e6 1.02756
\(470\) 2.50999e6 0.524117
\(471\) 2.36036e6 0.490259
\(472\) 2.73655e6 0.565391
\(473\) 4.23439e6 0.870238
\(474\) −1.17619e6 −0.240453
\(475\) −1.05282e6 −0.214102
\(476\) −535571. −0.108343
\(477\) 922126. 0.185564
\(478\) −6.60769e6 −1.32276
\(479\) −1.74790e6 −0.348080 −0.174040 0.984739i \(-0.555682\pi\)
−0.174040 + 0.984739i \(0.555682\pi\)
\(480\) −131278. −0.0260070
\(481\) 4.65405e6 0.917209
\(482\) −5.31056e6 −1.04117
\(483\) 283534. 0.0553015
\(484\) 1.25238e6 0.243009
\(485\) 580435. 0.112047
\(486\) 3.12356e6 0.599873
\(487\) −4.42380e6 −0.845226 −0.422613 0.906310i \(-0.638887\pi\)
−0.422613 + 0.906310i \(0.638887\pi\)
\(488\) −860838. −0.163633
\(489\) −2.77725e6 −0.525222
\(490\) 588275. 0.110685
\(491\) 1.47947e6 0.276951 0.138476 0.990366i \(-0.455780\pi\)
0.138476 + 0.990366i \(0.455780\pi\)
\(492\) −196428. −0.0365840
\(493\) −40467.7 −0.00749879
\(494\) 2.85748e6 0.526824
\(495\) −2.65032e6 −0.486167
\(496\) 1.64769e6 0.300727
\(497\) 430648. 0.0782044
\(498\) 2.45880e6 0.444273
\(499\) −5.17679e6 −0.930698 −0.465349 0.885127i \(-0.654071\pi\)
−0.465349 + 0.885127i \(0.654071\pi\)
\(500\) −250000. −0.0447214
\(501\) 486851. 0.0866567
\(502\) −1.40194e6 −0.248297
\(503\) 4.58821e6 0.808581 0.404291 0.914631i \(-0.367518\pi\)
0.404291 + 0.914631i \(0.367518\pi\)
\(504\) −1.44958e6 −0.254193
\(505\) 1.33929e6 0.233693
\(506\) −1.03516e6 −0.179735
\(507\) −981761. −0.169623
\(508\) −3.39731e6 −0.584084
\(509\) −268539. −0.0459423 −0.0229711 0.999736i \(-0.507313\pi\)
−0.0229711 + 0.999736i \(0.507313\pi\)
\(510\) 164231. 0.0279594
\(511\) −6.99500e6 −1.18505
\(512\) 262144. 0.0441942
\(513\) 3.97104e6 0.666210
\(514\) −2.67292e6 −0.446249
\(515\) 1.85608e6 0.308375
\(516\) −710183. −0.117421
\(517\) 1.22791e7 2.02041
\(518\) −4.58816e6 −0.751301
\(519\) −745488. −0.121485
\(520\) 678528. 0.110042
\(521\) −4.43206e6 −0.715337 −0.357669 0.933849i \(-0.616428\pi\)
−0.357669 + 0.933849i \(0.616428\pi\)
\(522\) −109530. −0.0175937
\(523\) −5.86604e6 −0.937758 −0.468879 0.883263i \(-0.655342\pi\)
−0.468879 + 0.883263i \(0.655342\pi\)
\(524\) 4.99120e6 0.794102
\(525\) 334988. 0.0530433
\(526\) −7.39833e6 −1.16592
\(527\) −2.06128e6 −0.323304
\(528\) −642224. −0.100254
\(529\) 279841. 0.0434783
\(530\) 425525. 0.0658015
\(531\) −9.26593e6 −1.42611
\(532\) −2.81702e6 −0.431530
\(533\) 1.01526e6 0.154796
\(534\) −1.76000e6 −0.267091
\(535\) 205913. 0.0311027
\(536\) 2.99726e6 0.450622
\(537\) 2.04151e6 0.305503
\(538\) −1.10444e6 −0.164507
\(539\) 2.87789e6 0.426680
\(540\) 942953. 0.139157
\(541\) −1.11245e7 −1.63413 −0.817066 0.576544i \(-0.804401\pi\)
−0.817066 + 0.576544i \(0.804401\pi\)
\(542\) 6.97320e6 1.01961
\(543\) 2.23144e6 0.324777
\(544\) −327945. −0.0475120
\(545\) −864636. −0.124693
\(546\) −909194. −0.130519
\(547\) −8.58501e6 −1.22680 −0.613398 0.789774i \(-0.710198\pi\)
−0.613398 + 0.789774i \(0.710198\pi\)
\(548\) −1.77139e6 −0.251978
\(549\) 2.91479e6 0.412739
\(550\) −1.22302e6 −0.172396
\(551\) −212854. −0.0298678
\(552\) 173616. 0.0242516
\(553\) −5.99320e6 −0.833385
\(554\) 6.28082e6 0.869444
\(555\) 1.40694e6 0.193885
\(556\) 4.23386e6 0.580830
\(557\) 6.88488e6 0.940283 0.470142 0.882591i \(-0.344203\pi\)
0.470142 + 0.882591i \(0.344203\pi\)
\(558\) −5.57907e6 −0.758536
\(559\) 3.67067e6 0.496839
\(560\) −668922. −0.0901375
\(561\) 803429. 0.107781
\(562\) −1.70431e6 −0.227619
\(563\) −7.98545e6 −1.06177 −0.530883 0.847445i \(-0.678139\pi\)
−0.530883 + 0.847445i \(0.678139\pi\)
\(564\) −2.05942e6 −0.272614
\(565\) −5.86402e6 −0.772813
\(566\) −2.73439e6 −0.358773
\(567\) 4.24035e6 0.553916
\(568\) 263698. 0.0342954
\(569\) −8.70908e6 −1.12769 −0.563847 0.825879i \(-0.690679\pi\)
−0.563847 + 0.825879i \(0.690679\pi\)
\(570\) 863828. 0.111363
\(571\) −3.30076e6 −0.423665 −0.211833 0.977306i \(-0.567943\pi\)
−0.211833 + 0.977306i \(0.567943\pi\)
\(572\) 3.31942e6 0.424201
\(573\) 2.50266e6 0.318430
\(574\) −1.00089e6 −0.126796
\(575\) 330625. 0.0417029
\(576\) −887616. −0.111473
\(577\) −7.08072e6 −0.885397 −0.442699 0.896671i \(-0.645979\pi\)
−0.442699 + 0.896671i \(0.645979\pi\)
\(578\) −5.26917e6 −0.656028
\(579\) 1.62502e6 0.201447
\(580\) −50543.8 −0.00623875
\(581\) 1.25287e7 1.53980
\(582\) −476241. −0.0582799
\(583\) 2.08170e6 0.253658
\(584\) −4.28323e6 −0.519684
\(585\) −2.29749e6 −0.277564
\(586\) −4.32084e6 −0.519786
\(587\) 1.03908e7 1.24467 0.622337 0.782749i \(-0.286183\pi\)
0.622337 + 0.782749i \(0.286183\pi\)
\(588\) −482673. −0.0575718
\(589\) −1.08420e7 −1.28772
\(590\) −4.27586e6 −0.505701
\(591\) 4.63941e6 0.546379
\(592\) −2.80946e6 −0.329472
\(593\) 2.83849e6 0.331474 0.165737 0.986170i \(-0.447000\pi\)
0.165737 + 0.986170i \(0.447000\pi\)
\(594\) 4.61301e6 0.536436
\(595\) 836829. 0.0969046
\(596\) −326775. −0.0376820
\(597\) −4.88258e6 −0.560678
\(598\) −897354. −0.102615
\(599\) 2.47797e6 0.282182 0.141091 0.989997i \(-0.454939\pi\)
0.141091 + 0.989997i \(0.454939\pi\)
\(600\) 205122. 0.0232613
\(601\) 8.09718e6 0.914423 0.457212 0.889358i \(-0.348848\pi\)
0.457212 + 0.889358i \(0.348848\pi\)
\(602\) −3.61870e6 −0.406969
\(603\) −1.01487e7 −1.13662
\(604\) 5.38280e6 0.600366
\(605\) −1.95685e6 −0.217354
\(606\) −1.09887e6 −0.121553
\(607\) −8.85118e6 −0.975056 −0.487528 0.873107i \(-0.662101\pi\)
−0.487528 + 0.873107i \(0.662101\pi\)
\(608\) −1.72494e6 −0.189241
\(609\) 67726.2 0.00739968
\(610\) 1.34506e6 0.146358
\(611\) 1.06444e7 1.15350
\(612\) 1.11042e6 0.119842
\(613\) 5.10106e6 0.548289 0.274144 0.961689i \(-0.411605\pi\)
0.274144 + 0.961689i \(0.411605\pi\)
\(614\) −7.65704e6 −0.819672
\(615\) 306919. 0.0327217
\(616\) −3.27242e6 −0.347470
\(617\) −1.14098e7 −1.20660 −0.603301 0.797514i \(-0.706148\pi\)
−0.603301 + 0.797514i \(0.706148\pi\)
\(618\) −1.52290e6 −0.160398
\(619\) −1.16321e7 −1.22020 −0.610099 0.792325i \(-0.708870\pi\)
−0.610099 + 0.792325i \(0.708870\pi\)
\(620\) −2.57452e6 −0.268978
\(621\) −1.24706e6 −0.129765
\(622\) −4.86011e6 −0.503698
\(623\) −8.96800e6 −0.925712
\(624\) −556725. −0.0572373
\(625\) 390625. 0.0400000
\(626\) −5.47440e6 −0.558343
\(627\) 4.22592e6 0.429292
\(628\) 7.36452e6 0.745153
\(629\) 3.51466e6 0.354207
\(630\) 2.26496e6 0.227358
\(631\) −5.32018e6 −0.531928 −0.265964 0.963983i \(-0.585690\pi\)
−0.265964 + 0.963983i \(0.585690\pi\)
\(632\) −3.66980e6 −0.365469
\(633\) 1.44382e6 0.143220
\(634\) −224512. −0.0221828
\(635\) 5.30829e6 0.522421
\(636\) −349139. −0.0342259
\(637\) 2.49476e6 0.243601
\(638\) −247264. −0.0240497
\(639\) −892877. −0.0865046
\(640\) −409600. −0.0395285
\(641\) −4.97864e6 −0.478592 −0.239296 0.970947i \(-0.576917\pi\)
−0.239296 + 0.970947i \(0.576917\pi\)
\(642\) −168949. −0.0161777
\(643\) −1.29254e7 −1.23287 −0.616435 0.787405i \(-0.711424\pi\)
−0.616435 + 0.787405i \(0.711424\pi\)
\(644\) 884650. 0.0840537
\(645\) 1.10966e6 0.105025
\(646\) 2.15792e6 0.203448
\(647\) 1.69341e7 1.59038 0.795190 0.606360i \(-0.207371\pi\)
0.795190 + 0.606360i \(0.207371\pi\)
\(648\) 2.59648e6 0.242911
\(649\) −2.09179e7 −1.94942
\(650\) −1.06020e6 −0.0984248
\(651\) 3.44973e6 0.319031
\(652\) −8.66527e6 −0.798294
\(653\) 8.08392e6 0.741889 0.370945 0.928655i \(-0.379034\pi\)
0.370945 + 0.928655i \(0.379034\pi\)
\(654\) 709425. 0.0648577
\(655\) −7.79874e6 −0.710267
\(656\) −612874. −0.0556047
\(657\) 1.45030e7 1.31082
\(658\) −1.04937e7 −0.944852
\(659\) 8.35712e6 0.749624 0.374812 0.927101i \(-0.377707\pi\)
0.374812 + 0.927101i \(0.377707\pi\)
\(660\) 1.00348e6 0.0896699
\(661\) 1.61532e7 1.43799 0.718995 0.695016i \(-0.244603\pi\)
0.718995 + 0.695016i \(0.244603\pi\)
\(662\) 2.70167e6 0.239600
\(663\) 696469. 0.0615344
\(664\) 7.67167e6 0.675258
\(665\) 4.40160e6 0.385972
\(666\) 9.51279e6 0.831040
\(667\) 66844.1 0.00581767
\(668\) 1.51902e6 0.131711
\(669\) 1.19067e6 0.102855
\(670\) −4.68322e6 −0.403049
\(671\) 6.58015e6 0.564195
\(672\) 548844. 0.0468841
\(673\) 1.10004e7 0.936201 0.468100 0.883675i \(-0.344939\pi\)
0.468100 + 0.883675i \(0.344939\pi\)
\(674\) 4.28589e6 0.363406
\(675\) −1.47336e6 −0.124466
\(676\) −3.06318e6 −0.257814
\(677\) −4.52303e6 −0.379279 −0.189639 0.981854i \(-0.560732\pi\)
−0.189639 + 0.981854i \(0.560732\pi\)
\(678\) 4.81137e6 0.401970
\(679\) −2.42666e6 −0.201992
\(680\) 512414. 0.0424961
\(681\) 1.01101e6 0.0835390
\(682\) −1.25948e7 −1.03688
\(683\) 3.46082e6 0.283875 0.141937 0.989876i \(-0.454667\pi\)
0.141937 + 0.989876i \(0.454667\pi\)
\(684\) 5.84063e6 0.477331
\(685\) 2.76780e6 0.225376
\(686\) −9.48605e6 −0.769618
\(687\) −2.33546e6 −0.188791
\(688\) −2.21583e6 −0.178470
\(689\) 1.80457e6 0.144819
\(690\) −271274. −0.0216913
\(691\) −4.28867e6 −0.341687 −0.170843 0.985298i \(-0.554649\pi\)
−0.170843 + 0.985298i \(0.554649\pi\)
\(692\) −2.32599e6 −0.184647
\(693\) 1.10804e7 0.876439
\(694\) 7.98277e6 0.629151
\(695\) −6.61540e6 −0.519510
\(696\) 41470.6 0.00324502
\(697\) 766711. 0.0597792
\(698\) −7.91445e6 −0.614869
\(699\) −650599. −0.0503640
\(700\) 1.04519e6 0.0806215
\(701\) −4.42265e6 −0.339929 −0.169964 0.985450i \(-0.554365\pi\)
−0.169964 + 0.985450i \(0.554365\pi\)
\(702\) 3.99888e6 0.306264
\(703\) 1.84866e7 1.41081
\(704\) −2.00380e6 −0.152378
\(705\) 3.21785e6 0.243833
\(706\) −3.16883e6 −0.239270
\(707\) −5.59924e6 −0.421290
\(708\) 3.50830e6 0.263035
\(709\) 1.59675e7 1.19295 0.596473 0.802633i \(-0.296568\pi\)
0.596473 + 0.802633i \(0.296568\pi\)
\(710\) −412028. −0.0306747
\(711\) 1.24259e7 0.921836
\(712\) −5.49136e6 −0.405957
\(713\) 3.40481e6 0.250824
\(714\) −686609. −0.0504039
\(715\) −5.18659e6 −0.379417
\(716\) 6.36968e6 0.464339
\(717\) −8.47115e6 −0.615382
\(718\) −9.26764e6 −0.670900
\(719\) −2.55631e6 −0.184413 −0.0922064 0.995740i \(-0.529392\pi\)
−0.0922064 + 0.995740i \(0.529392\pi\)
\(720\) 1.38690e6 0.0997043
\(721\) −7.75984e6 −0.555923
\(722\) 1.44595e6 0.103231
\(723\) −6.80821e6 −0.484381
\(724\) 6.96229e6 0.493635
\(725\) 78974.6 0.00558011
\(726\) 1.60557e6 0.113054
\(727\) −1.18418e7 −0.830961 −0.415481 0.909602i \(-0.636387\pi\)
−0.415481 + 0.909602i \(0.636387\pi\)
\(728\) −2.83677e6 −0.198379
\(729\) −5.85407e6 −0.407980
\(730\) 6.69255e6 0.464820
\(731\) 2.77203e6 0.191869
\(732\) −1.10361e6 −0.0761267
\(733\) 1.04357e7 0.717398 0.358699 0.933453i \(-0.383220\pi\)
0.358699 + 0.933453i \(0.383220\pi\)
\(734\) 4.41257e6 0.302309
\(735\) 754177. 0.0514938
\(736\) 541696. 0.0368605
\(737\) −2.29107e7 −1.55371
\(738\) 2.07518e6 0.140254
\(739\) −9.37320e6 −0.631360 −0.315680 0.948866i \(-0.602233\pi\)
−0.315680 + 0.948866i \(0.602233\pi\)
\(740\) 4.38978e6 0.294689
\(741\) 3.66333e6 0.245092
\(742\) −1.77902e6 −0.118624
\(743\) 4.26137e6 0.283190 0.141595 0.989925i \(-0.454777\pi\)
0.141595 + 0.989925i \(0.454777\pi\)
\(744\) 2.11237e6 0.139906
\(745\) 510586. 0.0337038
\(746\) −864321. −0.0568628
\(747\) −2.59762e7 −1.70323
\(748\) 2.50677e6 0.163818
\(749\) −860872. −0.0560704
\(750\) −320504. −0.0208056
\(751\) −2.69554e7 −1.74400 −0.872000 0.489506i \(-0.837177\pi\)
−0.872000 + 0.489506i \(0.837177\pi\)
\(752\) −6.42559e6 −0.414351
\(753\) −1.79731e6 −0.115514
\(754\) −214346. −0.0137305
\(755\) −8.41063e6 −0.536983
\(756\) −3.94227e6 −0.250866
\(757\) −2.60895e7 −1.65472 −0.827362 0.561670i \(-0.810159\pi\)
−0.827362 + 0.561670i \(0.810159\pi\)
\(758\) −2.00688e7 −1.26867
\(759\) −1.32710e6 −0.0836177
\(760\) 2.69522e6 0.169262
\(761\) 3.15196e7 1.97296 0.986482 0.163870i \(-0.0523978\pi\)
0.986482 + 0.163870i \(0.0523978\pi\)
\(762\) −4.35540e6 −0.271732
\(763\) 3.61484e6 0.224790
\(764\) 7.80851e6 0.483988
\(765\) −1.73503e6 −0.107190
\(766\) −6.67542e6 −0.411061
\(767\) −1.81331e7 −1.11297
\(768\) 336072. 0.0205603
\(769\) 1.94937e7 1.18872 0.594358 0.804201i \(-0.297406\pi\)
0.594358 + 0.804201i \(0.297406\pi\)
\(770\) 5.11316e6 0.310787
\(771\) −3.42672e6 −0.207607
\(772\) 5.07020e6 0.306184
\(773\) 2.32947e7 1.40220 0.701098 0.713065i \(-0.252694\pi\)
0.701098 + 0.713065i \(0.252694\pi\)
\(774\) 7.50278e6 0.450163
\(775\) 4.02269e6 0.240582
\(776\) −1.48591e6 −0.0885807
\(777\) −5.88209e6 −0.349526
\(778\) −4.89942e6 −0.290199
\(779\) 4.03279e6 0.238101
\(780\) 869883. 0.0511946
\(781\) −2.01567e6 −0.118248
\(782\) −677667. −0.0396278
\(783\) −297878. −0.0173634
\(784\) −1.50598e6 −0.0875045
\(785\) −1.15071e7 −0.666485
\(786\) 6.39879e6 0.369438
\(787\) −1.92761e7 −1.10939 −0.554694 0.832055i \(-0.687165\pi\)
−0.554694 + 0.832055i \(0.687165\pi\)
\(788\) 1.44754e7 0.830451
\(789\) −9.48477e6 −0.542418
\(790\) 5.73407e6 0.326885
\(791\) 2.45161e7 1.39319
\(792\) 6.78483e6 0.384349
\(793\) 5.70413e6 0.322112
\(794\) 1.04574e7 0.588671
\(795\) 545529. 0.0306126
\(796\) −1.52341e7 −0.852185
\(797\) 2.42767e7 1.35377 0.676883 0.736091i \(-0.263330\pi\)
0.676883 + 0.736091i \(0.263330\pi\)
\(798\) −3.61146e6 −0.200759
\(799\) 8.03848e6 0.445458
\(800\) 640000. 0.0353553
\(801\) 1.85937e7 1.02396
\(802\) −1.66855e6 −0.0916019
\(803\) 3.27405e7 1.79183
\(804\) 3.84253e6 0.209642
\(805\) −1.38227e6 −0.0751799
\(806\) −1.09180e7 −0.591980
\(807\) −1.41591e6 −0.0765333
\(808\) −3.42857e6 −0.184750
\(809\) −3.64087e7 −1.95585 −0.977923 0.208968i \(-0.932990\pi\)
−0.977923 + 0.208968i \(0.932990\pi\)
\(810\) −4.05700e6 −0.217267
\(811\) 1.38242e7 0.738055 0.369027 0.929419i \(-0.379691\pi\)
0.369027 + 0.929419i \(0.379691\pi\)
\(812\) 211312. 0.0112469
\(813\) 8.93974e6 0.474349
\(814\) 2.14752e7 1.13599
\(815\) 1.35395e7 0.714016
\(816\) −420430. −0.0221039
\(817\) 1.45805e7 0.764217
\(818\) 1.41737e7 0.740630
\(819\) 9.60525e6 0.500379
\(820\) 957615. 0.0497343
\(821\) 1.60767e7 0.832412 0.416206 0.909270i \(-0.363360\pi\)
0.416206 + 0.909270i \(0.363360\pi\)
\(822\) −2.27095e6 −0.117227
\(823\) −2.28923e6 −0.117812 −0.0589059 0.998264i \(-0.518761\pi\)
−0.0589059 + 0.998264i \(0.518761\pi\)
\(824\) −4.75157e6 −0.243792
\(825\) −1.56793e6 −0.0802032
\(826\) 1.78764e7 0.911653
\(827\) −2.07011e7 −1.05252 −0.526258 0.850325i \(-0.676405\pi\)
−0.526258 + 0.850325i \(0.676405\pi\)
\(828\) −1.83417e6 −0.0929747
\(829\) −2.59324e7 −1.31056 −0.655280 0.755386i \(-0.727449\pi\)
−0.655280 + 0.755386i \(0.727449\pi\)
\(830\) −1.19870e7 −0.603969
\(831\) 8.05210e6 0.404489
\(832\) −1.73703e6 −0.0869961
\(833\) 1.88400e6 0.0940738
\(834\) 5.42786e6 0.270218
\(835\) −2.37347e6 −0.117806
\(836\) 1.31853e7 0.652488
\(837\) −1.51728e7 −0.748606
\(838\) −1.89871e7 −0.934006
\(839\) 1.05840e7 0.519093 0.259547 0.965731i \(-0.416427\pi\)
0.259547 + 0.965731i \(0.416427\pi\)
\(840\) −857568. −0.0419344
\(841\) −2.04952e7 −0.999222
\(842\) −5.87449e6 −0.285555
\(843\) −2.18495e6 −0.105894
\(844\) 4.50484e6 0.217682
\(845\) 4.78622e6 0.230596
\(846\) 2.17569e7 1.04513
\(847\) 8.18111e6 0.391835
\(848\) −1.08934e6 −0.0520206
\(849\) −3.50553e6 −0.166911
\(850\) −800647. −0.0380096
\(851\) −5.80548e6 −0.274799
\(852\) 338064. 0.0159551
\(853\) −2.48365e7 −1.16874 −0.584371 0.811487i \(-0.698659\pi\)
−0.584371 + 0.811487i \(0.698659\pi\)
\(854\) −5.62338e6 −0.263847
\(855\) −9.12598e6 −0.426937
\(856\) −527136. −0.0245889
\(857\) 1.65560e7 0.770021 0.385010 0.922912i \(-0.374198\pi\)
0.385010 + 0.922912i \(0.374198\pi\)
\(858\) 4.25554e6 0.197350
\(859\) −7.85305e6 −0.363124 −0.181562 0.983379i \(-0.558115\pi\)
−0.181562 + 0.983379i \(0.558115\pi\)
\(860\) 3.46224e6 0.159629
\(861\) −1.28316e6 −0.0589891
\(862\) −2.12731e7 −0.975128
\(863\) 1.86431e7 0.852103 0.426051 0.904699i \(-0.359904\pi\)
0.426051 + 0.904699i \(0.359904\pi\)
\(864\) −2.41396e6 −0.110013
\(865\) 3.63436e6 0.165153
\(866\) −1.07611e7 −0.487596
\(867\) −6.75515e6 −0.305202
\(868\) 1.07635e7 0.484901
\(869\) 2.80515e7 1.26011
\(870\) −64797.8 −0.00290243
\(871\) −1.98606e7 −0.887049
\(872\) 2.21347e6 0.0985785
\(873\) 5.03128e6 0.223431
\(874\) −3.56443e6 −0.157838
\(875\) −1.63311e6 −0.0721100
\(876\) −5.49117e6 −0.241771
\(877\) −7.24381e6 −0.318030 −0.159015 0.987276i \(-0.550832\pi\)
−0.159015 + 0.987276i \(0.550832\pi\)
\(878\) −2.02068e6 −0.0884629
\(879\) −5.53938e6 −0.241818
\(880\) 3.13093e6 0.136291
\(881\) 3.66509e7 1.59091 0.795453 0.606016i \(-0.207233\pi\)
0.795453 + 0.606016i \(0.207233\pi\)
\(882\) 5.09924e6 0.220716
\(883\) 2.61573e7 1.12899 0.564496 0.825436i \(-0.309070\pi\)
0.564496 + 0.825436i \(0.309070\pi\)
\(884\) 2.17305e6 0.0935273
\(885\) −5.48172e6 −0.235266
\(886\) −346445. −0.0148269
\(887\) −3.23015e7 −1.37852 −0.689262 0.724513i \(-0.742065\pi\)
−0.689262 + 0.724513i \(0.742065\pi\)
\(888\) −3.60177e6 −0.153279
\(889\) −2.21927e7 −0.941795
\(890\) 8.58025e6 0.363099
\(891\) −1.98472e7 −0.837539
\(892\) 3.71500e6 0.156332
\(893\) 4.22812e7 1.77427
\(894\) −418930. −0.0175307
\(895\) −9.95263e6 −0.415317
\(896\) 1.71244e6 0.0712600
\(897\) −1.15042e6 −0.0477392
\(898\) 1.83161e7 0.757954
\(899\) 813288. 0.0335618
\(900\) −2.16703e6 −0.0891782
\(901\) 1.36278e6 0.0559261
\(902\) 4.68473e6 0.191720
\(903\) −4.63923e6 −0.189333
\(904\) 1.50119e7 0.610962
\(905\) −1.08786e7 −0.441520
\(906\) 6.90083e6 0.279306
\(907\) −1.89257e6 −0.0763894 −0.0381947 0.999270i \(-0.512161\pi\)
−0.0381947 + 0.999270i \(0.512161\pi\)
\(908\) 3.15445e6 0.126972
\(909\) 1.16091e7 0.466003
\(910\) 4.43245e6 0.177435
\(911\) 9.13162e6 0.364546 0.182273 0.983248i \(-0.441655\pi\)
0.182273 + 0.983248i \(0.441655\pi\)
\(912\) −2.21140e6 −0.0880401
\(913\) −5.86413e7 −2.32824
\(914\) 1.90178e7 0.753000
\(915\) 1.72439e6 0.0680898
\(916\) −7.28685e6 −0.286946
\(917\) 3.26047e7 1.28043
\(918\) 3.01989e6 0.118273
\(919\) 7.75728e6 0.302985 0.151492 0.988458i \(-0.451592\pi\)
0.151492 + 0.988458i \(0.451592\pi\)
\(920\) −846400. −0.0329690
\(921\) −9.81644e6 −0.381333
\(922\) 3.47211e7 1.34514
\(923\) −1.74733e6 −0.0675104
\(924\) −4.19530e6 −0.161653
\(925\) −6.85903e6 −0.263578
\(926\) 2.03705e7 0.780681
\(927\) 1.60887e7 0.614926
\(928\) 129392. 0.00493217
\(929\) 1.20964e7 0.459852 0.229926 0.973208i \(-0.426152\pi\)
0.229926 + 0.973208i \(0.426152\pi\)
\(930\) −3.30058e6 −0.125136
\(931\) 9.90957e6 0.374697
\(932\) −2.02993e6 −0.0765492
\(933\) −6.23074e6 −0.234334
\(934\) 1.60963e7 0.603753
\(935\) −3.91683e6 −0.146523
\(936\) 5.88157e6 0.219434
\(937\) −5.86967e6 −0.218406 −0.109203 0.994019i \(-0.534830\pi\)
−0.109203 + 0.994019i \(0.534830\pi\)
\(938\) 1.95795e7 0.726597
\(939\) −7.01826e6 −0.259756
\(940\) 1.00400e7 0.370607
\(941\) −2.75640e7 −1.01477 −0.507385 0.861719i \(-0.669388\pi\)
−0.507385 + 0.861719i \(0.669388\pi\)
\(942\) 9.44142e6 0.346665
\(943\) −1.26645e6 −0.0463775
\(944\) 1.09462e7 0.399792
\(945\) 6.15979e6 0.224381
\(946\) 1.69376e7 0.615351
\(947\) −1.37554e7 −0.498423 −0.249212 0.968449i \(-0.580171\pi\)
−0.249212 + 0.968449i \(0.580171\pi\)
\(948\) −4.70474e6 −0.170026
\(949\) 2.83818e7 1.02300
\(950\) −4.21128e6 −0.151393
\(951\) −287827. −0.0103200
\(952\) −2.14228e6 −0.0766098
\(953\) −4.32445e7 −1.54241 −0.771203 0.636589i \(-0.780345\pi\)
−0.771203 + 0.636589i \(0.780345\pi\)
\(954\) 3.68850e6 0.131214
\(955\) −1.22008e7 −0.432892
\(956\) −2.64308e7 −0.935330
\(957\) −316996. −0.0111886
\(958\) −6.99161e6 −0.246129
\(959\) −1.15715e7 −0.406297
\(960\) −525113. −0.0183897
\(961\) 1.27969e7 0.446988
\(962\) 1.86162e7 0.648564
\(963\) 1.78487e6 0.0620215
\(964\) −2.12422e7 −0.736220
\(965\) −7.92219e6 −0.273859
\(966\) 1.13413e6 0.0391040
\(967\) −1.65583e7 −0.569442 −0.284721 0.958610i \(-0.591901\pi\)
−0.284721 + 0.958610i \(0.591901\pi\)
\(968\) 5.00952e6 0.171834
\(969\) 2.76649e6 0.0946496
\(970\) 2.32174e6 0.0792290
\(971\) −3.44060e7 −1.17108 −0.585539 0.810644i \(-0.699117\pi\)
−0.585539 + 0.810644i \(0.699117\pi\)
\(972\) 1.24942e7 0.424174
\(973\) 2.76574e7 0.936547
\(974\) −1.76952e7 −0.597665
\(975\) −1.35919e6 −0.0457899
\(976\) −3.44335e6 −0.115706
\(977\) 5.40972e7 1.81317 0.906584 0.422024i \(-0.138680\pi\)
0.906584 + 0.422024i \(0.138680\pi\)
\(978\) −1.11090e7 −0.371388
\(979\) 4.19753e7 1.39971
\(980\) 2.35310e6 0.0782664
\(981\) −7.49477e6 −0.248648
\(982\) 5.91789e6 0.195834
\(983\) 5.86268e7 1.93514 0.967571 0.252601i \(-0.0812860\pi\)
0.967571 + 0.252601i \(0.0812860\pi\)
\(984\) −785713. −0.0258688
\(985\) −2.26178e7 −0.742778
\(986\) −161871. −0.00530245
\(987\) −1.34531e7 −0.439571
\(988\) 1.14299e7 0.372521
\(989\) −4.57881e6 −0.148855
\(990\) −1.06013e7 −0.343772
\(991\) 1.84799e7 0.597745 0.298873 0.954293i \(-0.403389\pi\)
0.298873 + 0.954293i \(0.403389\pi\)
\(992\) 6.59078e6 0.212646
\(993\) 3.46357e6 0.111468
\(994\) 1.72259e6 0.0552989
\(995\) 2.38033e7 0.762218
\(996\) 9.83519e6 0.314148
\(997\) −4.04351e7 −1.28831 −0.644155 0.764895i \(-0.722791\pi\)
−0.644155 + 0.764895i \(0.722791\pi\)
\(998\) −2.07071e7 −0.658103
\(999\) 2.58710e7 0.820161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 230.6.a.e.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.6.a.e.1.2 3 1.1 even 1 trivial