Properties

Label 23.25.b.c.22.3
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.3
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7352.04 q^{2} -139223. q^{3} +3.72753e7 q^{4} -1.97315e8i q^{5} +1.02357e9 q^{6} -1.56753e10i q^{7} -1.50703e11 q^{8} -2.63047e11 q^{9} +1.45067e12i q^{10} +1.45224e12i q^{11} -5.18958e12 q^{12} -1.36856e12 q^{13} +1.15245e14i q^{14} +2.74707e13i q^{15} +4.82599e14 q^{16} -4.49232e14i q^{17} +1.93393e15 q^{18} -1.46317e15i q^{19} -7.35497e15i q^{20} +2.18236e15i q^{21} -1.06769e16i q^{22} +(1.29280e16 + 1.76951e16i) q^{23} +2.09813e16 q^{24} +2.06715e16 q^{25} +1.00617e16 q^{26} +7.59428e16 q^{27} -5.84301e17i q^{28} -5.63231e16 q^{29} -2.01966e17i q^{30} +1.19892e18 q^{31} -1.01971e18 q^{32} -2.02185e17i q^{33} +3.30278e18i q^{34} -3.09296e18 q^{35} -9.80514e18 q^{36} +7.78529e18i q^{37} +1.07573e19i q^{38} +1.90535e17 q^{39} +2.97359e19i q^{40} -1.13622e19 q^{41} -1.60448e19i q^{42} +3.84229e19i q^{43} +5.41327e19i q^{44} +5.19030e19i q^{45} +(-9.50470e19 - 1.30095e20i) q^{46} +5.65599e19 q^{47} -6.71888e19 q^{48} -5.41326e19 q^{49} -1.51978e20 q^{50} +6.25434e19i q^{51} -5.10135e19 q^{52} +1.91474e20i q^{53} -5.58334e20 q^{54} +2.86548e20 q^{55} +2.36231e21i q^{56} +2.03706e20i q^{57} +4.14090e20 q^{58} -3.57457e20 q^{59} +1.02398e21i q^{60} +4.02074e21i q^{61} -8.81453e21 q^{62} +4.12332e21i q^{63} -5.99709e20 q^{64} +2.70037e20i q^{65} +1.48647e21i q^{66} -1.40778e22i q^{67} -1.67453e22i q^{68} +(-1.79987e21 - 2.46357e21i) q^{69} +2.27396e22 q^{70} +8.98848e21 q^{71} +3.96419e22 q^{72} +6.61720e21 q^{73} -5.72378e22i q^{74} -2.87795e21 q^{75} -5.45400e22i q^{76} +2.27642e22 q^{77} -1.40082e21 q^{78} -2.56926e22i q^{79} -9.52239e22i q^{80} +6.37191e22 q^{81} +8.35351e22 q^{82} +1.76633e23i q^{83} +8.13480e22i q^{84} -8.86402e22 q^{85} -2.82487e23i q^{86} +7.84146e21 q^{87} -2.18857e23i q^{88} +7.50483e22i q^{89} -3.81593e23i q^{90} +2.14525e22i q^{91} +(4.81895e23 + 6.59592e23i) q^{92} -1.66918e23 q^{93} -4.15831e23 q^{94} -2.88704e23 q^{95} +1.41967e23 q^{96} -1.29911e23i q^{97} +3.97986e23 q^{98} -3.82007e23i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7352.04 −1.79493 −0.897466 0.441083i \(-0.854594\pi\)
−0.897466 + 0.441083i \(0.854594\pi\)
\(3\) −139223. −0.261972 −0.130986 0.991384i \(-0.541814\pi\)
−0.130986 + 0.991384i \(0.541814\pi\)
\(4\) 3.72753e7 2.22178
\(5\) 1.97315e8i 0.808201i −0.914715 0.404101i \(-0.867585\pi\)
0.914715 0.404101i \(-0.132415\pi\)
\(6\) 1.02357e9 0.470223
\(7\) 1.56753e10i 1.13250i −0.824233 0.566250i \(-0.808394\pi\)
0.824233 0.566250i \(-0.191606\pi\)
\(8\) −1.50703e11 −2.19302
\(9\) −2.63047e11 −0.931370
\(10\) 1.45067e12i 1.45067i
\(11\) 1.45224e12i 0.462728i 0.972867 + 0.231364i \(0.0743189\pi\)
−0.972867 + 0.231364i \(0.925681\pi\)
\(12\) −5.18958e12 −0.582046
\(13\) −1.36856e12 −0.0587413 −0.0293706 0.999569i \(-0.509350\pi\)
−0.0293706 + 0.999569i \(0.509350\pi\)
\(14\) 1.15245e14i 2.03276i
\(15\) 2.74707e13i 0.211726i
\(16\) 4.82599e14 1.71454
\(17\) 4.49232e14i 0.771053i −0.922697 0.385526i \(-0.874020\pi\)
0.922697 0.385526i \(-0.125980\pi\)
\(18\) 1.93393e15 1.67175
\(19\) 1.46317e15i 0.661075i −0.943793 0.330537i \(-0.892770\pi\)
0.943793 0.330537i \(-0.107230\pi\)
\(20\) 7.35497e15i 1.79565i
\(21\) 2.18236e15i 0.296684i
\(22\) 1.06769e16i 0.830566i
\(23\) 1.29280e16 + 1.76951e16i 0.589925 + 0.807458i
\(24\) 2.09813e16 0.574510
\(25\) 2.06715e16 0.346811
\(26\) 1.00617e16 0.105437
\(27\) 7.59428e16 0.505966
\(28\) 5.84301e17i 2.51617i
\(29\) −5.63231e16 −0.159188 −0.0795940 0.996827i \(-0.525362\pi\)
−0.0795940 + 0.996827i \(0.525362\pi\)
\(30\) 2.01966e17i 0.380035i
\(31\) 1.19892e18 1.52213 0.761064 0.648677i \(-0.224677\pi\)
0.761064 + 0.648677i \(0.224677\pi\)
\(32\) −1.01971e18 −0.884458
\(33\) 2.02185e17i 0.121222i
\(34\) 3.30278e18i 1.38399i
\(35\) −3.09296e18 −0.915288
\(36\) −9.80514e18 −2.06930
\(37\) 7.78529e18i 1.18264i 0.806435 + 0.591322i \(0.201394\pi\)
−0.806435 + 0.591322i \(0.798606\pi\)
\(38\) 1.07573e19i 1.18658i
\(39\) 1.90535e17 0.0153886
\(40\) 2.97359e19i 1.77240i
\(41\) −1.13622e19 −0.503564 −0.251782 0.967784i \(-0.581017\pi\)
−0.251782 + 0.967784i \(0.581017\pi\)
\(42\) 1.60448e19i 0.532528i
\(43\) 3.84229e19i 0.961544i 0.876846 + 0.480772i \(0.159643\pi\)
−0.876846 + 0.480772i \(0.840357\pi\)
\(44\) 5.41327e19i 1.02808i
\(45\) 5.19030e19i 0.752735i
\(46\) −9.50470e19 1.30095e20i −1.05887 1.44933i
\(47\) 5.65599e19 0.486782 0.243391 0.969928i \(-0.421740\pi\)
0.243391 + 0.969928i \(0.421740\pi\)
\(48\) −6.71888e19 −0.449161
\(49\) −5.41326e19 −0.282557
\(50\) −1.51978e20 −0.622502
\(51\) 6.25434e19i 0.201995i
\(52\) −5.10135e19 −0.130510
\(53\) 1.91474e20i 0.389762i 0.980827 + 0.194881i \(0.0624321\pi\)
−0.980827 + 0.194881i \(0.937568\pi\)
\(54\) −5.58334e20 −0.908174
\(55\) 2.86548e20 0.373978
\(56\) 2.36231e21i 2.48359i
\(57\) 2.03706e20i 0.173183i
\(58\) 4.14090e20 0.285732
\(59\) −3.57457e20 −0.200909 −0.100455 0.994942i \(-0.532030\pi\)
−0.100455 + 0.994942i \(0.532030\pi\)
\(60\) 1.02398e21i 0.470410i
\(61\) 4.02074e21i 1.51477i 0.652966 + 0.757387i \(0.273525\pi\)
−0.652966 + 0.757387i \(0.726475\pi\)
\(62\) −8.81453e21 −2.73212
\(63\) 4.12332e21i 1.05478i
\(64\) −5.99709e20 −0.126993
\(65\) 2.70037e20i 0.0474748i
\(66\) 1.48647e21i 0.217585i
\(67\) 1.40778e22i 1.72043i −0.509928 0.860217i \(-0.670328\pi\)
0.509928 0.860217i \(-0.329672\pi\)
\(68\) 1.67453e22i 1.71311i
\(69\) −1.79987e21 2.46357e21i −0.154544 0.211532i
\(70\) 2.27396e22 1.64288
\(71\) 8.98848e21 0.547754 0.273877 0.961765i \(-0.411694\pi\)
0.273877 + 0.961765i \(0.411694\pi\)
\(72\) 3.96419e22 2.04251
\(73\) 6.61720e21 0.288935 0.144467 0.989510i \(-0.453853\pi\)
0.144467 + 0.989510i \(0.453853\pi\)
\(74\) 5.72378e22i 2.12277i
\(75\) −2.87795e21 −0.0908549
\(76\) 5.45400e22i 1.46876i
\(77\) 2.27642e22 0.524040
\(78\) −1.40082e21 −0.0276215
\(79\) 2.56926e22i 0.434794i −0.976083 0.217397i \(-0.930243\pi\)
0.976083 0.217397i \(-0.0697566\pi\)
\(80\) 9.52239e22i 1.38569i
\(81\) 6.37191e22 0.798821
\(82\) 8.35351e22 0.903863
\(83\) 1.76633e23i 1.65247i 0.563325 + 0.826236i \(0.309522\pi\)
−0.563325 + 0.826236i \(0.690478\pi\)
\(84\) 8.13480e22i 0.659167i
\(85\) −8.86402e22 −0.623166
\(86\) 2.82487e23i 1.72591i
\(87\) 7.84146e21 0.0417029
\(88\) 2.18857e23i 1.01477i
\(89\) 7.50483e22i 0.303851i 0.988392 + 0.151926i \(0.0485474\pi\)
−0.988392 + 0.151926i \(0.951453\pi\)
\(90\) 3.81593e23i 1.35111i
\(91\) 2.14525e22i 0.0665245i
\(92\) 4.81895e23 + 6.59592e23i 1.31068 + 1.79400i
\(93\) −1.66918e23 −0.398755
\(94\) −4.15831e23 −0.873740
\(95\) −2.88704e23 −0.534281
\(96\) 1.41967e23 0.231704
\(97\) 1.29911e23i 0.187234i −0.995608 0.0936172i \(-0.970157\pi\)
0.995608 0.0936172i \(-0.0298430\pi\)
\(98\) 3.97986e23 0.507171
\(99\) 3.82007e23i 0.430971i
\(100\) 7.70538e23 0.770538
\(101\) 5.61088e22 0.0497937 0.0248969 0.999690i \(-0.492074\pi\)
0.0248969 + 0.999690i \(0.492074\pi\)
\(102\) 4.59822e23i 0.362566i
\(103\) 1.58786e24i 1.11369i −0.830616 0.556845i \(-0.812012\pi\)
0.830616 0.556845i \(-0.187988\pi\)
\(104\) 2.06246e23 0.128821
\(105\) 4.30611e23 0.239780
\(106\) 1.40773e24i 0.699597i
\(107\) 2.84640e24i 1.26384i 0.775035 + 0.631918i \(0.217732\pi\)
−0.775035 + 0.631918i \(0.782268\pi\)
\(108\) 2.83079e24 1.12415
\(109\) 1.27003e23i 0.0451541i 0.999745 + 0.0225770i \(0.00718711\pi\)
−0.999745 + 0.0225770i \(0.992813\pi\)
\(110\) −2.10672e24 −0.671264
\(111\) 1.08389e24i 0.309820i
\(112\) 7.56486e24i 1.94171i
\(113\) 6.47061e24i 1.49281i 0.665493 + 0.746404i \(0.268221\pi\)
−0.665493 + 0.746404i \(0.731779\pi\)
\(114\) 1.49766e24i 0.310852i
\(115\) 3.49151e24 2.55088e24i 0.652589 0.476778i
\(116\) −2.09946e24 −0.353681
\(117\) 3.59995e23 0.0547099
\(118\) 2.62804e24 0.360618
\(119\) −7.04184e24 −0.873217
\(120\) 4.13992e24i 0.464320i
\(121\) 7.74073e24 0.785883
\(122\) 2.95607e25i 2.71892i
\(123\) 1.58187e24 0.131920
\(124\) 4.46902e25 3.38184
\(125\) 1.58397e25i 1.08849i
\(126\) 3.03149e25i 1.89325i
\(127\) 1.25578e25 0.713295 0.356648 0.934239i \(-0.383920\pi\)
0.356648 + 0.934239i \(0.383920\pi\)
\(128\) 2.15170e25 1.11240
\(129\) 5.34935e24i 0.251898i
\(130\) 1.98532e24i 0.0852140i
\(131\) −3.27228e25 −1.28113 −0.640567 0.767902i \(-0.721301\pi\)
−0.640567 + 0.767902i \(0.721301\pi\)
\(132\) 7.53651e24i 0.269329i
\(133\) −2.29355e25 −0.748667
\(134\) 1.03501e26i 3.08806i
\(135\) 1.49846e25i 0.408922i
\(136\) 6.77007e25i 1.69093i
\(137\) 2.75417e25i 0.630006i 0.949091 + 0.315003i \(0.102005\pi\)
−0.949091 + 0.315003i \(0.897995\pi\)
\(138\) 1.32327e25 + 1.81123e25i 0.277396 + 0.379685i
\(139\) −3.83947e25 −0.738063 −0.369032 0.929417i \(-0.620311\pi\)
−0.369032 + 0.929417i \(0.620311\pi\)
\(140\) −1.15291e26 −2.03357
\(141\) −7.87443e24 −0.127523
\(142\) −6.60837e25 −0.983182
\(143\) 1.98748e24i 0.0271813i
\(144\) −1.26946e26 −1.59687
\(145\) 1.11134e25i 0.128656i
\(146\) −4.86499e25 −0.518618
\(147\) 7.53650e24 0.0740222
\(148\) 2.90199e26i 2.62758i
\(149\) 6.16463e25i 0.514840i 0.966300 + 0.257420i \(0.0828723\pi\)
−0.966300 + 0.257420i \(0.917128\pi\)
\(150\) 2.11588e25 0.163078
\(151\) 2.42167e26 1.72342 0.861712 0.507397i \(-0.169392\pi\)
0.861712 + 0.507397i \(0.169392\pi\)
\(152\) 2.20504e26i 1.44975i
\(153\) 1.18169e26i 0.718136i
\(154\) −1.67364e26 −0.940616
\(155\) 2.36565e26i 1.23019i
\(156\) 7.10225e24 0.0341901
\(157\) 1.62002e26i 0.722313i −0.932505 0.361156i \(-0.882382\pi\)
0.932505 0.361156i \(-0.117618\pi\)
\(158\) 1.88893e26i 0.780426i
\(159\) 2.66576e25i 0.102107i
\(160\) 2.01204e26i 0.714820i
\(161\) 2.77376e26 2.02649e26i 0.914447 0.668090i
\(162\) −4.68466e26 −1.43383
\(163\) 1.00358e26 0.285300 0.142650 0.989773i \(-0.454438\pi\)
0.142650 + 0.989773i \(0.454438\pi\)
\(164\) −4.23528e26 −1.11881
\(165\) −3.98941e25 −0.0979718
\(166\) 1.29861e27i 2.96607i
\(167\) 7.22944e26 1.53641 0.768205 0.640204i \(-0.221150\pi\)
0.768205 + 0.640204i \(0.221150\pi\)
\(168\) 3.28887e26i 0.650633i
\(169\) −5.40928e26 −0.996549
\(170\) 6.51686e26 1.11854
\(171\) 3.84881e26i 0.615706i
\(172\) 1.43223e27i 2.13634i
\(173\) 6.08198e25 0.0846237 0.0423118 0.999104i \(-0.486528\pi\)
0.0423118 + 0.999104i \(0.486528\pi\)
\(174\) −5.76508e25 −0.0748539
\(175\) 3.24032e26i 0.392763i
\(176\) 7.00849e26i 0.793364i
\(177\) 4.97662e25 0.0526326
\(178\) 5.51759e26i 0.545392i
\(179\) −3.19029e26 −0.294845 −0.147423 0.989074i \(-0.547098\pi\)
−0.147423 + 0.989074i \(0.547098\pi\)
\(180\) 1.93470e27i 1.67241i
\(181\) 9.70535e26i 0.784997i −0.919753 0.392499i \(-0.871611\pi\)
0.919753 0.392499i \(-0.128389\pi\)
\(182\) 1.57720e26i 0.119407i
\(183\) 5.59779e26i 0.396829i
\(184\) −1.94828e27 2.66671e27i −1.29371 1.77077i
\(185\) 1.53615e27 0.955815
\(186\) 1.22718e27 0.715739
\(187\) 6.52393e26 0.356788
\(188\) 2.10829e27 1.08152
\(189\) 1.19042e27i 0.573006i
\(190\) 2.12257e27 0.958999
\(191\) 3.19292e27i 1.35453i −0.735741 0.677263i \(-0.763166\pi\)
0.735741 0.677263i \(-0.236834\pi\)
\(192\) 8.34933e25 0.0332688
\(193\) 2.07936e26 0.0778471 0.0389235 0.999242i \(-0.487607\pi\)
0.0389235 + 0.999242i \(0.487607\pi\)
\(194\) 9.55113e26i 0.336073i
\(195\) 3.75953e25i 0.0124371i
\(196\) −2.01781e27 −0.627781
\(197\) −2.67306e27 −0.782373 −0.391187 0.920311i \(-0.627935\pi\)
−0.391187 + 0.920311i \(0.627935\pi\)
\(198\) 2.80853e27i 0.773565i
\(199\) 4.23746e27i 1.09867i −0.835601 0.549337i \(-0.814880\pi\)
0.835601 0.549337i \(-0.185120\pi\)
\(200\) −3.11526e27 −0.760562
\(201\) 1.95996e27i 0.450706i
\(202\) −4.12515e26 −0.0893764
\(203\) 8.82879e26i 0.180281i
\(204\) 2.33133e27i 0.448788i
\(205\) 2.24192e27i 0.406981i
\(206\) 1.16740e28i 1.99900i
\(207\) −3.40066e27 4.65465e27i −0.549438 0.752043i
\(208\) −6.60465e26 −0.100714
\(209\) 2.12487e27 0.305898
\(210\) −3.16587e27 −0.430389
\(211\) 1.51989e28 1.95175 0.975874 0.218336i \(-0.0700627\pi\)
0.975874 + 0.218336i \(0.0700627\pi\)
\(212\) 7.13726e27i 0.865966i
\(213\) −1.25140e27 −0.143497
\(214\) 2.09269e28i 2.26850i
\(215\) 7.58141e27 0.777121
\(216\) −1.14448e28 −1.10959
\(217\) 1.87934e28i 1.72381i
\(218\) 9.33734e26i 0.0810485i
\(219\) −9.21265e26 −0.0756929
\(220\) 1.06812e28 0.830897
\(221\) 6.14801e26i 0.0452926i
\(222\) 7.96881e27i 0.556106i
\(223\) 2.52153e28 1.66727 0.833633 0.552318i \(-0.186257\pi\)
0.833633 + 0.552318i \(0.186257\pi\)
\(224\) 1.59842e28i 1.00165i
\(225\) −5.43757e27 −0.323009
\(226\) 4.75722e28i 2.67949i
\(227\) 8.83304e27i 0.471846i 0.971772 + 0.235923i \(0.0758113\pi\)
−0.971772 + 0.235923i \(0.924189\pi\)
\(228\) 7.59322e27i 0.384776i
\(229\) 3.58905e28i 1.72565i −0.505501 0.862826i \(-0.668692\pi\)
0.505501 0.862826i \(-0.331308\pi\)
\(230\) −2.56698e28 + 1.87542e28i −1.17135 + 0.855784i
\(231\) −3.16930e27 −0.137284
\(232\) 8.48806e27 0.349102
\(233\) 1.42644e28 0.557165 0.278582 0.960412i \(-0.410135\pi\)
0.278582 + 0.960412i \(0.410135\pi\)
\(234\) −2.64670e27 −0.0982006
\(235\) 1.11601e28i 0.393418i
\(236\) −1.33243e28 −0.446376
\(237\) 3.57700e27i 0.113904i
\(238\) 5.17719e28 1.56737
\(239\) 2.78475e28 0.801699 0.400850 0.916144i \(-0.368715\pi\)
0.400850 + 0.916144i \(0.368715\pi\)
\(240\) 1.32573e28i 0.363012i
\(241\) 2.81924e28i 0.734392i −0.930144 0.367196i \(-0.880318\pi\)
0.930144 0.367196i \(-0.119682\pi\)
\(242\) −5.69102e28 −1.41061
\(243\) −3.03196e28 −0.715235
\(244\) 1.49874e29i 3.36550i
\(245\) 1.06812e28i 0.228363i
\(246\) −1.16300e28 −0.236787
\(247\) 2.00243e27i 0.0388324i
\(248\) −1.80681e29 −3.33805
\(249\) 2.45913e28i 0.432902i
\(250\) 1.16454e29i 1.95377i
\(251\) 7.92520e28i 1.26744i 0.773564 + 0.633718i \(0.218472\pi\)
−0.773564 + 0.633718i \(0.781528\pi\)
\(252\) 1.53698e29i 2.34349i
\(253\) −2.56976e28 + 1.87745e28i −0.373634 + 0.272975i
\(254\) −9.23256e28 −1.28032
\(255\) 1.23407e28 0.163252
\(256\) −1.48132e29 −1.86969
\(257\) −6.32074e28 −0.761326 −0.380663 0.924714i \(-0.624304\pi\)
−0.380663 + 0.924714i \(0.624304\pi\)
\(258\) 3.93287e28i 0.452140i
\(259\) 1.22036e29 1.33935
\(260\) 1.00657e28i 0.105479i
\(261\) 1.48156e28 0.148263
\(262\) 2.40579e29 2.29955
\(263\) 9.29056e28i 0.848346i −0.905581 0.424173i \(-0.860565\pi\)
0.905581 0.424173i \(-0.139435\pi\)
\(264\) 3.04699e28i 0.265842i
\(265\) 3.77807e28 0.315006
\(266\) 1.68623e29 1.34381
\(267\) 1.04484e28i 0.0796006i
\(268\) 5.24756e29i 3.82243i
\(269\) 1.29223e29 0.900147 0.450074 0.892991i \(-0.351398\pi\)
0.450074 + 0.892991i \(0.351398\pi\)
\(270\) 1.10168e29i 0.733988i
\(271\) −2.60376e29 −1.65947 −0.829736 0.558156i \(-0.811509\pi\)
−0.829736 + 0.558156i \(0.811509\pi\)
\(272\) 2.16799e29i 1.32200i
\(273\) 2.98668e27i 0.0174276i
\(274\) 2.02488e29i 1.13082i
\(275\) 3.00200e28i 0.160479i
\(276\) −6.70907e28 9.18304e28i −0.343363 0.469978i
\(277\) −2.04072e29 −1.00006 −0.500030 0.866008i \(-0.666678\pi\)
−0.500030 + 0.866008i \(0.666678\pi\)
\(278\) 2.82279e29 1.32477
\(279\) −3.15373e29 −1.41766
\(280\) 4.66118e29 2.00724
\(281\) 3.24893e28i 0.134049i 0.997751 + 0.0670247i \(0.0213506\pi\)
−0.997751 + 0.0670247i \(0.978649\pi\)
\(282\) 5.78932e28 0.228896
\(283\) 6.28219e27i 0.0238053i 0.999929 + 0.0119027i \(0.00378882\pi\)
−0.999929 + 0.0119027i \(0.996211\pi\)
\(284\) 3.35048e29 1.21699
\(285\) 4.01943e28 0.139967
\(286\) 1.46120e28i 0.0487885i
\(287\) 1.78105e29i 0.570286i
\(288\) 2.68231e29 0.823758
\(289\) 1.37639e29 0.405478
\(290\) 8.17060e28i 0.230929i
\(291\) 1.80866e28i 0.0490503i
\(292\) 2.46658e29 0.641950
\(293\) 1.26162e29i 0.315150i 0.987507 + 0.157575i \(0.0503676\pi\)
−0.987507 + 0.157575i \(0.949632\pi\)
\(294\) −5.54087e28 −0.132865
\(295\) 7.05315e28i 0.162375i
\(296\) 1.17327e30i 2.59356i
\(297\) 1.10287e29i 0.234125i
\(298\) 4.53226e29i 0.924102i
\(299\) −1.76927e28 2.42169e28i −0.0346529 0.0474311i
\(300\) −1.07277e29 −0.201860
\(301\) 6.02290e29 1.08895
\(302\) −1.78043e30 −3.09343
\(303\) −7.81163e27 −0.0130446
\(304\) 7.06122e29i 1.13344i
\(305\) 7.93352e29 1.22424
\(306\) 8.68784e29i 1.28900i
\(307\) −6.07154e29 −0.866240 −0.433120 0.901336i \(-0.642587\pi\)
−0.433120 + 0.901336i \(0.642587\pi\)
\(308\) 8.48544e29 1.16430
\(309\) 2.21066e29i 0.291756i
\(310\) 1.73924e30i 2.20810i
\(311\) −8.94154e28 −0.109216 −0.0546082 0.998508i \(-0.517391\pi\)
−0.0546082 + 0.998508i \(0.517391\pi\)
\(312\) −2.87142e28 −0.0337475
\(313\) 1.34911e30i 1.52586i 0.646483 + 0.762929i \(0.276239\pi\)
−0.646483 + 0.762929i \(0.723761\pi\)
\(314\) 1.19105e30i 1.29650i
\(315\) 8.13593e29 0.852472
\(316\) 9.57701e29i 0.966018i
\(317\) −1.75827e30 −1.70756 −0.853779 0.520635i \(-0.825695\pi\)
−0.853779 + 0.520635i \(0.825695\pi\)
\(318\) 1.95988e29i 0.183275i
\(319\) 8.17946e28i 0.0736608i
\(320\) 1.18332e29i 0.102636i
\(321\) 3.96284e29i 0.331090i
\(322\) −2.03928e30 + 1.48989e30i −1.64137 + 1.19918i
\(323\) −6.57302e29 −0.509723
\(324\) 2.37515e30 1.77481
\(325\) −2.82902e28 −0.0203721
\(326\) −7.37837e29 −0.512094
\(327\) 1.76818e28i 0.0118291i
\(328\) 1.71231e30 1.10432
\(329\) 8.86591e29i 0.551280i
\(330\) 2.93303e29 0.175853
\(331\) 5.48345e29 0.317043 0.158521 0.987356i \(-0.449327\pi\)
0.158521 + 0.987356i \(0.449327\pi\)
\(332\) 6.58404e30i 3.67143i
\(333\) 2.04789e30i 1.10148i
\(334\) −5.31512e30 −2.75775
\(335\) −2.77776e30 −1.39046
\(336\) 1.05320e30i 0.508675i
\(337\) 2.73336e30i 1.27391i 0.770902 + 0.636954i \(0.219806\pi\)
−0.770902 + 0.636954i \(0.780194\pi\)
\(338\) 3.97692e30 1.78874
\(339\) 9.00857e29i 0.391074i
\(340\) −3.30409e30 −1.38454
\(341\) 1.74112e30i 0.704331i
\(342\) 2.82966e30i 1.10515i
\(343\) 2.15454e30i 0.812504i
\(344\) 5.79045e30i 2.10868i
\(345\) −4.86099e29 + 3.55141e29i −0.170960 + 0.124903i
\(346\) −4.47150e29 −0.151894
\(347\) 8.01257e29 0.262917 0.131458 0.991322i \(-0.458034\pi\)
0.131458 + 0.991322i \(0.458034\pi\)
\(348\) 2.92293e29 0.0926547
\(349\) 4.08973e30 1.25253 0.626266 0.779609i \(-0.284582\pi\)
0.626266 + 0.779609i \(0.284582\pi\)
\(350\) 2.38230e30i 0.704984i
\(351\) −1.03932e29 −0.0297211
\(352\) 1.48086e30i 0.409264i
\(353\) 4.31101e30 1.15155 0.575775 0.817609i \(-0.304701\pi\)
0.575775 + 0.817609i \(0.304701\pi\)
\(354\) −3.65883e29 −0.0944720
\(355\) 1.77356e30i 0.442696i
\(356\) 2.79745e30i 0.675091i
\(357\) 9.80385e29 0.228759
\(358\) 2.34552e30 0.529228
\(359\) 8.89180e30i 1.94024i −0.242619 0.970122i \(-0.578007\pi\)
0.242619 0.970122i \(-0.421993\pi\)
\(360\) 7.82193e30i 1.65076i
\(361\) 2.75791e30 0.562980
\(362\) 7.13541e30i 1.40902i
\(363\) −1.07769e30 −0.205880
\(364\) 7.99650e29i 0.147803i
\(365\) 1.30567e30i 0.233517i
\(366\) 4.11552e30i 0.712282i
\(367\) 2.88453e30i 0.483150i −0.970382 0.241575i \(-0.922336\pi\)
0.970382 0.241575i \(-0.0776639\pi\)
\(368\) 6.23902e30 + 8.53966e30i 1.01145 + 1.38442i
\(369\) 2.98878e30 0.469005
\(370\) −1.12939e31 −1.71562
\(371\) 3.00141e30 0.441406
\(372\) −6.22191e30 −0.885948
\(373\) 4.45050e30i 0.613624i 0.951770 + 0.306812i \(0.0992624\pi\)
−0.951770 + 0.306812i \(0.900738\pi\)
\(374\) −4.79642e30 −0.640410
\(375\) 2.20525e30i 0.285155i
\(376\) −8.52374e30 −1.06752
\(377\) 7.70815e28 0.00935091
\(378\) 8.75204e30i 1.02851i
\(379\) 5.39612e30i 0.614343i 0.951654 + 0.307172i \(0.0993825\pi\)
−0.951654 + 0.307172i \(0.900617\pi\)
\(380\) −1.07615e31 −1.18706
\(381\) −1.74833e30 −0.186864
\(382\) 2.34745e31i 2.43128i
\(383\) 1.10935e31i 1.11348i −0.830685 0.556742i \(-0.812051\pi\)
0.830685 0.556742i \(-0.187949\pi\)
\(384\) −2.99566e30 −0.291419
\(385\) 4.49172e30i 0.423530i
\(386\) −1.52876e30 −0.139730
\(387\) 1.01070e31i 0.895553i
\(388\) 4.84248e30i 0.415994i
\(389\) 1.73769e31i 1.44736i −0.690134 0.723682i \(-0.742448\pi\)
0.690134 0.723682i \(-0.257552\pi\)
\(390\) 2.76402e29i 0.0223237i
\(391\) 7.94923e30 5.80767e30i 0.622593 0.454863i
\(392\) 8.15795e30 0.619653
\(393\) 4.55576e30 0.335622
\(394\) 1.96525e31 1.40431
\(395\) −5.06954e30 −0.351401
\(396\) 1.42394e31i 0.957525i
\(397\) 7.75510e30 0.505942 0.252971 0.967474i \(-0.418592\pi\)
0.252971 + 0.967474i \(0.418592\pi\)
\(398\) 3.11540e31i 1.97205i
\(399\) 3.19315e30 0.196130
\(400\) 9.97606e30 0.594619
\(401\) 2.00092e30i 0.115743i −0.998324 0.0578717i \(-0.981569\pi\)
0.998324 0.0578717i \(-0.0184314\pi\)
\(402\) 1.44097e31i 0.808987i
\(403\) −1.64080e30 −0.0894117
\(404\) 2.09148e30 0.110631
\(405\) 1.25727e31i 0.645608i
\(406\) 6.49097e30i 0.323591i
\(407\) −1.13061e31 −0.547243
\(408\) 9.42548e30i 0.442977i
\(409\) 2.78372e31 1.27042 0.635209 0.772340i \(-0.280914\pi\)
0.635209 + 0.772340i \(0.280914\pi\)
\(410\) 1.64827e31i 0.730503i
\(411\) 3.83444e30i 0.165044i
\(412\) 5.91878e31i 2.47438i
\(413\) 5.60323e30i 0.227530i
\(414\) 2.50018e31 + 3.42212e31i 0.986205 + 1.34987i
\(415\) 3.48522e31 1.33553
\(416\) 1.39553e30 0.0519542
\(417\) 5.34542e30 0.193352
\(418\) −1.56221e31 −0.549066
\(419\) 1.17113e31i 0.399977i −0.979798 0.199989i \(-0.935910\pi\)
0.979798 0.199989i \(-0.0640905\pi\)
\(420\) 1.60512e31 0.532740
\(421\) 3.98197e31i 1.28444i −0.766522 0.642218i \(-0.778014\pi\)
0.766522 0.642218i \(-0.221986\pi\)
\(422\) −1.11743e32 −3.50325
\(423\) −1.48779e31 −0.453374
\(424\) 2.88557e31i 0.854755i
\(425\) 9.28632e30i 0.267409i
\(426\) 9.20036e30 0.257567
\(427\) 6.30262e31 1.71548
\(428\) 1.06101e32i 2.80797i
\(429\) 2.76702e29i 0.00712074i
\(430\) −5.57389e31 −1.39488
\(431\) 4.07217e31i 0.991057i 0.868592 + 0.495528i \(0.165026\pi\)
−0.868592 + 0.495528i \(0.834974\pi\)
\(432\) 3.66499e31 0.867496
\(433\) 4.55378e31i 1.04838i −0.851602 0.524189i \(-0.824369\pi\)
0.851602 0.524189i \(-0.175631\pi\)
\(434\) 1.38170e32i 3.09412i
\(435\) 1.54724e30i 0.0337043i
\(436\) 4.73409e30i 0.100323i
\(437\) 2.58909e31 1.89158e31i 0.533790 0.389984i
\(438\) 6.77318e30 0.135864
\(439\) 2.21602e31 0.432514 0.216257 0.976337i \(-0.430615\pi\)
0.216257 + 0.976337i \(0.430615\pi\)
\(440\) −4.31837e31 −0.820139
\(441\) 1.42394e31 0.263165
\(442\) 4.52004e30i 0.0812972i
\(443\) −6.22469e31 −1.08961 −0.544807 0.838561i \(-0.683397\pi\)
−0.544807 + 0.838561i \(0.683397\pi\)
\(444\) 4.04024e31i 0.688353i
\(445\) 1.48081e31 0.245573
\(446\) −1.85384e32 −2.99263
\(447\) 8.58258e30i 0.134874i
\(448\) 9.40060e30i 0.143820i
\(449\) −7.49916e31 −1.11701 −0.558504 0.829502i \(-0.688625\pi\)
−0.558504 + 0.829502i \(0.688625\pi\)
\(450\) 3.99773e31 0.579780
\(451\) 1.65006e31i 0.233013i
\(452\) 2.41194e32i 3.31669i
\(453\) −3.37152e31 −0.451490
\(454\) 6.49409e31i 0.846931i
\(455\) 4.23290e30 0.0537652
\(456\) 3.06991e31i 0.379794i
\(457\) 5.04143e31i 0.607518i −0.952749 0.303759i \(-0.901758\pi\)
0.952749 0.303759i \(-0.0982417\pi\)
\(458\) 2.63868e32i 3.09743i
\(459\) 3.41159e31i 0.390126i
\(460\) 1.30147e32 9.50849e31i 1.44991 1.05930i
\(461\) 1.21143e32 1.31488 0.657442 0.753505i \(-0.271639\pi\)
0.657442 + 0.753505i \(0.271639\pi\)
\(462\) 2.33009e31 0.246416
\(463\) 1.14897e32 1.18395 0.591977 0.805955i \(-0.298348\pi\)
0.591977 + 0.805955i \(0.298348\pi\)
\(464\) −2.71815e31 −0.272934
\(465\) 3.29353e31i 0.322275i
\(466\) −1.04873e32 −1.00007
\(467\) 8.69199e30i 0.0807824i 0.999184 + 0.0403912i \(0.0128604\pi\)
−0.999184 + 0.0403912i \(0.987140\pi\)
\(468\) 1.34189e31 0.121553
\(469\) −2.20674e32 −1.94839
\(470\) 8.20495e31i 0.706158i
\(471\) 2.25544e31i 0.189226i
\(472\) 5.38698e31 0.440597
\(473\) −5.57993e31 −0.444933
\(474\) 2.62983e31i 0.204450i
\(475\) 3.02459e31i 0.229268i
\(476\) −2.62487e32 −1.94010
\(477\) 5.03666e31i 0.363013i
\(478\) −2.04736e32 −1.43900
\(479\) 2.16497e32i 1.48397i 0.670416 + 0.741985i \(0.266116\pi\)
−0.670416 + 0.741985i \(0.733884\pi\)
\(480\) 2.80122e31i 0.187263i
\(481\) 1.06546e31i 0.0694700i
\(482\) 2.07272e32i 1.31818i
\(483\) −3.86171e31 + 2.82134e31i −0.239560 + 0.175021i
\(484\) 2.88538e32 1.74606
\(485\) −2.56334e31 −0.151323
\(486\) 2.22911e32 1.28380
\(487\) −1.52864e32 −0.858933 −0.429466 0.903083i \(-0.641298\pi\)
−0.429466 + 0.903083i \(0.641298\pi\)
\(488\) 6.05938e32i 3.32193i
\(489\) −1.39722e31 −0.0747407
\(490\) 7.85284e31i 0.409896i
\(491\) 1.70534e32 0.868626 0.434313 0.900762i \(-0.356991\pi\)
0.434313 + 0.900762i \(0.356991\pi\)
\(492\) 5.89648e31 0.293097
\(493\) 2.53022e31i 0.122742i
\(494\) 1.47220e31i 0.0697015i
\(495\) −7.53755e31 −0.348312
\(496\) 5.78599e32 2.60974
\(497\) 1.40897e32i 0.620332i
\(498\) 1.80796e32i 0.777030i
\(499\) 2.64439e32 1.10948 0.554739 0.832025i \(-0.312818\pi\)
0.554739 + 0.832025i \(0.312818\pi\)
\(500\) 5.90429e32i 2.41840i
\(501\) −1.00650e32 −0.402497
\(502\) 5.82664e32i 2.27496i
\(503\) 3.50896e32i 1.33771i 0.743393 + 0.668855i \(0.233215\pi\)
−0.743393 + 0.668855i \(0.766785\pi\)
\(504\) 6.21397e32i 2.31314i
\(505\) 1.10711e31i 0.0402434i
\(506\) 1.88930e32 1.38031e32i 0.670647 0.489971i
\(507\) 7.53095e31 0.261068
\(508\) 4.68096e32 1.58479
\(509\) 2.03318e32 0.672300 0.336150 0.941809i \(-0.390875\pi\)
0.336150 + 0.941809i \(0.390875\pi\)
\(510\) −9.07297e31 −0.293027
\(511\) 1.03726e32i 0.327219i
\(512\) 7.28081e32 2.24357
\(513\) 1.11117e32i 0.334481i
\(514\) 4.64704e32 1.36653
\(515\) −3.13307e32 −0.900086
\(516\) 1.99399e32i 0.559662i
\(517\) 8.21385e31i 0.225248i
\(518\) −8.97218e32 −2.40403
\(519\) −8.46751e30 −0.0221691
\(520\) 4.06954e31i 0.104113i
\(521\) 4.34185e32i 1.08548i 0.839900 + 0.542740i \(0.182613\pi\)
−0.839900 + 0.542740i \(0.817387\pi\)
\(522\) −1.08925e32 −0.266122
\(523\) 3.81243e32i 0.910295i 0.890416 + 0.455147i \(0.150413\pi\)
−0.890416 + 0.455147i \(0.849587\pi\)
\(524\) −1.21975e33 −2.84640
\(525\) 4.51126e31i 0.102893i
\(526\) 6.83046e32i 1.52272i
\(527\) 5.38595e32i 1.17364i
\(528\) 9.75742e31i 0.207839i
\(529\) −1.45986e32 + 4.57525e32i −0.303978 + 0.952679i
\(530\) −2.77765e32 −0.565415
\(531\) 9.40278e31 0.187121
\(532\) −8.54929e32 −1.66338
\(533\) 1.55498e31 0.0295800
\(534\) 7.68174e31i 0.142878i
\(535\) 5.61637e32 1.02143
\(536\) 2.12157e33i 3.77294i
\(537\) 4.44162e31 0.0772414
\(538\) −9.50055e32 −1.61570
\(539\) 7.86136e31i 0.130747i
\(540\) 5.58557e32i 0.908536i
\(541\) −7.14744e32 −1.13706 −0.568530 0.822663i \(-0.692488\pi\)
−0.568530 + 0.822663i \(0.692488\pi\)
\(542\) 1.91430e33 2.97864
\(543\) 1.35121e32i 0.205648i
\(544\) 4.58087e32i 0.681963i
\(545\) 2.50596e31 0.0364936
\(546\) 2.19582e31i 0.0312813i
\(547\) −1.05184e33 −1.46589 −0.732947 0.680285i \(-0.761856\pi\)
−0.732947 + 0.680285i \(0.761856\pi\)
\(548\) 1.02663e33i 1.39974i
\(549\) 1.05764e33i 1.41082i
\(550\) 2.20708e32i 0.288049i
\(551\) 8.24101e31i 0.105235i
\(552\) 2.71246e32 + 3.71267e32i 0.338918 + 0.463893i
\(553\) −4.02739e32 −0.492404
\(554\) 1.50035e33 1.79504
\(555\) −2.13868e32 −0.250397
\(556\) −1.43117e33 −1.63982
\(557\) 1.17367e33i 1.31608i 0.752983 + 0.658040i \(0.228614\pi\)
−0.752983 + 0.658040i \(0.771386\pi\)
\(558\) 2.31863e33 2.54461
\(559\) 5.25841e31i 0.0564823i
\(560\) −1.49266e33 −1.56929
\(561\) −9.08280e31 −0.0934686
\(562\) 2.38863e32i 0.240610i
\(563\) 4.51304e32i 0.445008i −0.974932 0.222504i \(-0.928577\pi\)
0.974932 0.222504i \(-0.0714231\pi\)
\(564\) −2.93522e32 −0.283329
\(565\) 1.27675e33 1.20649
\(566\) 4.61870e31i 0.0427289i
\(567\) 9.98814e32i 0.904666i
\(568\) −1.35459e33 −1.20123
\(569\) 1.44946e33i 1.25852i −0.777196 0.629258i \(-0.783359\pi\)
0.777196 0.629258i \(-0.216641\pi\)
\(570\) −2.95510e32 −0.251231
\(571\) 7.43370e32i 0.618830i −0.950927 0.309415i \(-0.899867\pi\)
0.950927 0.309415i \(-0.100133\pi\)
\(572\) 7.40838e31i 0.0603908i
\(573\) 4.44527e32i 0.354848i
\(574\) 1.30943e33i 1.02363i
\(575\) 2.67241e32 + 3.65786e32i 0.204592 + 0.280035i
\(576\) 1.57751e32 0.118278
\(577\) 2.57420e33 1.89031 0.945153 0.326629i \(-0.105913\pi\)
0.945153 + 0.326629i \(0.105913\pi\)
\(578\) −1.01193e33 −0.727806
\(579\) −2.89495e31 −0.0203938
\(580\) 4.14255e32i 0.285846i
\(581\) 2.76876e33 1.87142
\(582\) 1.32974e32i 0.0880419i
\(583\) −2.78066e32 −0.180354
\(584\) −9.97231e32 −0.633639
\(585\) 7.10323e31i 0.0442166i
\(586\) 9.27548e32i 0.565673i
\(587\) −2.78661e33 −1.66502 −0.832511 0.554009i \(-0.813097\pi\)
−0.832511 + 0.554009i \(0.813097\pi\)
\(588\) 2.80926e32 0.164461
\(589\) 1.75422e33i 1.00624i
\(590\) 5.18551e32i 0.291452i
\(591\) 3.72151e32 0.204960
\(592\) 3.75717e33i 2.02769i
\(593\) −3.04043e33 −1.60797 −0.803986 0.594648i \(-0.797291\pi\)
−0.803986 + 0.594648i \(0.797291\pi\)
\(594\) 8.10835e32i 0.420238i
\(595\) 1.38946e33i 0.705735i
\(596\) 2.29789e33i 1.14386i
\(597\) 5.89952e32i 0.287822i
\(598\) 1.30078e32 + 1.78043e32i 0.0621997 + 0.0851357i
\(599\) 1.49194e33 0.699244 0.349622 0.936891i \(-0.386310\pi\)
0.349622 + 0.936891i \(0.386310\pi\)
\(600\) 4.33716e32 0.199246
\(601\) 1.01941e33 0.459045 0.229522 0.973303i \(-0.426284\pi\)
0.229522 + 0.973303i \(0.426284\pi\)
\(602\) −4.42806e33 −1.95459
\(603\) 3.70312e33i 1.60236i
\(604\) 9.02687e33 3.82907
\(605\) 1.52736e33i 0.635151i
\(606\) 5.74315e31 0.0234142
\(607\) −3.36394e33 −1.34457 −0.672286 0.740291i \(-0.734688\pi\)
−0.672286 + 0.740291i \(0.734688\pi\)
\(608\) 1.49201e33i 0.584693i
\(609\) 1.22917e32i 0.0472285i
\(610\) −5.83276e33 −2.19743
\(611\) −7.74056e31 −0.0285942
\(612\) 4.40479e33i 1.59554i
\(613\) 1.70666e33i 0.606206i 0.952958 + 0.303103i \(0.0980226\pi\)
−0.952958 + 0.303103i \(0.901977\pi\)
\(614\) 4.46382e33 1.55484
\(615\) 3.12127e32i 0.106618i
\(616\) −3.43064e33 −1.14923
\(617\) 2.86514e33i 0.941290i 0.882323 + 0.470645i \(0.155979\pi\)
−0.882323 + 0.470645i \(0.844021\pi\)
\(618\) 1.62529e33i 0.523682i
\(619\) 5.95866e33i 1.88305i −0.336948 0.941523i \(-0.609395\pi\)
0.336948 0.941523i \(-0.390605\pi\)
\(620\) 8.81805e33i 2.73320i
\(621\) 9.81786e32 + 1.34382e33i 0.298482 + 0.408546i
\(622\) 6.57386e32 0.196036
\(623\) 1.17640e33 0.344112
\(624\) 9.19518e31 0.0263843
\(625\) −1.89328e33 −0.532912
\(626\) 9.91868e33i 2.73881i
\(627\) −2.95830e32 −0.0801368
\(628\) 6.03869e33i 1.60482i
\(629\) 3.49740e33 0.911881
\(630\) −5.98157e33 −1.53013
\(631\) 5.33244e33i 1.33836i 0.743099 + 0.669182i \(0.233355\pi\)
−0.743099 + 0.669182i \(0.766645\pi\)
\(632\) 3.87196e33i 0.953511i
\(633\) −2.11604e33 −0.511304
\(634\) 1.29269e34 3.06495
\(635\) 2.47784e33i 0.576486i
\(636\) 9.93670e32i 0.226859i
\(637\) 7.40837e31 0.0165978
\(638\) 6.01358e32i 0.132216i
\(639\) −2.36439e33 −0.510162
\(640\) 4.24562e33i 0.899045i
\(641\) 4.70437e33i 0.977698i 0.872368 + 0.488849i \(0.162583\pi\)
−0.872368 + 0.488849i \(0.837417\pi\)
\(642\) 2.91350e33i 0.594285i
\(643\) 9.63282e33i 1.92851i 0.264978 + 0.964254i \(0.414635\pi\)
−0.264978 + 0.964254i \(0.585365\pi\)
\(644\) 1.03393e34 7.55382e33i 2.03170 1.48435i
\(645\) −1.05551e33 −0.203584
\(646\) 4.83251e33 0.914919
\(647\) 4.02928e33 0.748817 0.374408 0.927264i \(-0.377846\pi\)
0.374408 + 0.927264i \(0.377846\pi\)
\(648\) −9.60266e33 −1.75183
\(649\) 5.19113e32i 0.0929663i
\(650\) 2.07991e32 0.0365666
\(651\) 2.61648e33i 0.451591i
\(652\) 3.74088e33 0.633874
\(653\) −8.10068e33 −1.34761 −0.673804 0.738910i \(-0.735341\pi\)
−0.673804 + 0.738910i \(0.735341\pi\)
\(654\) 1.29997e32i 0.0212325i
\(655\) 6.45669e33i 1.03541i
\(656\) −5.48336e33 −0.863378
\(657\) −1.74063e33 −0.269105
\(658\) 6.51826e33i 0.989511i
\(659\) 9.21730e33i 1.37398i −0.726669 0.686988i \(-0.758933\pi\)
0.726669 0.686988i \(-0.241067\pi\)
\(660\) −1.48706e33 −0.217672
\(661\) 7.08811e33i 1.01886i −0.860513 0.509428i \(-0.829857\pi\)
0.860513 0.509428i \(-0.170143\pi\)
\(662\) −4.03146e33 −0.569070
\(663\) 8.55944e31i 0.0118654i
\(664\) 2.66191e34i 3.62390i
\(665\) 4.52552e33i 0.605074i
\(666\) 1.50562e34i 1.97708i
\(667\) −7.28143e32 9.96645e32i −0.0939089 0.128538i
\(668\) 2.69480e34 3.41357
\(669\) −3.51054e33 −0.436778
\(670\) 2.04222e34 2.49578
\(671\) −5.83908e33 −0.700929
\(672\) 2.22537e33i 0.262404i
\(673\) −5.53511e33 −0.641129 −0.320565 0.947227i \(-0.603873\pi\)
−0.320565 + 0.947227i \(0.603873\pi\)
\(674\) 2.00958e34i 2.28658i
\(675\) 1.56985e33 0.175474
\(676\) −2.01633e34 −2.21412
\(677\) 4.11028e33i 0.443411i −0.975114 0.221706i \(-0.928838\pi\)
0.975114 0.221706i \(-0.0711624\pi\)
\(678\) 6.62314e33i 0.701952i
\(679\) −2.03639e33 −0.212043
\(680\) 1.33583e34 1.36661
\(681\) 1.22976e33i 0.123611i
\(682\) 1.28008e34i 1.26423i
\(683\) −1.39662e34 −1.35529 −0.677644 0.735391i \(-0.736999\pi\)
−0.677644 + 0.735391i \(0.736999\pi\)
\(684\) 1.43466e34i 1.36796i
\(685\) 5.43439e33 0.509171
\(686\) 1.58403e34i 1.45839i
\(687\) 4.99677e33i 0.452073i
\(688\) 1.85429e34i 1.64860i
\(689\) 2.62044e32i 0.0228951i
\(690\) 3.57382e33 2.61101e33i 0.306862 0.224192i
\(691\) 6.62281e33 0.558864 0.279432 0.960166i \(-0.409854\pi\)
0.279432 + 0.960166i \(0.409854\pi\)
\(692\) 2.26708e33 0.188015
\(693\) −5.98805e33 −0.488075
\(694\) −5.89087e33 −0.471918
\(695\) 7.57584e33i 0.596504i
\(696\) −1.18173e33 −0.0914551
\(697\) 5.10425e33i 0.388274i
\(698\) −3.00678e34 −2.24821
\(699\) −1.98594e33 −0.145962
\(700\) 1.20784e34i 0.872635i
\(701\) 1.39821e34i 0.993015i 0.868032 + 0.496507i \(0.165384\pi\)
−0.868032 + 0.496507i \(0.834616\pi\)
\(702\) 7.64114e32 0.0533473
\(703\) 1.13912e34 0.781816
\(704\) 8.70922e32i 0.0587634i
\(705\) 1.55374e33i 0.103065i
\(706\) −3.16947e34 −2.06695
\(707\) 8.79521e32i 0.0563914i
\(708\) 1.85505e33 0.116938
\(709\) 6.33399e33i 0.392575i −0.980546 0.196288i \(-0.937111\pi\)
0.980546 0.196288i \(-0.0628886\pi\)
\(710\) 1.30393e34i 0.794609i
\(711\) 6.75836e33i 0.404954i
\(712\) 1.13100e34i 0.666351i
\(713\) 1.54996e34 + 2.12151e34i 0.897940 + 1.22905i
\(714\) −7.20783e33 −0.410607
\(715\) −3.92158e32 −0.0219679
\(716\) −1.18919e34 −0.655082
\(717\) −3.87701e33 −0.210023
\(718\) 6.53729e34i 3.48261i
\(719\) 1.00625e34 0.527183 0.263591 0.964634i \(-0.415093\pi\)
0.263591 + 0.964634i \(0.415093\pi\)
\(720\) 2.50483e34i 1.29059i
\(721\) −2.48901e34 −1.26125
\(722\) −2.02762e34 −1.01051
\(723\) 3.92503e33i 0.192390i
\(724\) 3.61770e34i 1.74409i
\(725\) −1.16428e33 −0.0552081
\(726\) 7.92320e33 0.369540
\(727\) 9.85886e33i 0.452287i 0.974094 + 0.226143i \(0.0726118\pi\)
−0.974094 + 0.226143i \(0.927388\pi\)
\(728\) 3.23296e33i 0.145889i
\(729\) −1.37750e34 −0.611450
\(730\) 9.59935e33i 0.419148i
\(731\) 1.72608e34 0.741401
\(732\) 2.08660e34i 0.881668i
\(733\) 1.77623e34i 0.738330i 0.929364 + 0.369165i \(0.120356\pi\)
−0.929364 + 0.369165i \(0.879644\pi\)
\(734\) 2.12072e34i 0.867221i
\(735\) 1.48706e33i 0.0598248i
\(736\) −1.31828e34 1.80439e34i −0.521763 0.714163i
\(737\) 2.04444e34 0.796093
\(738\) −2.19736e34 −0.841831
\(739\) −2.24280e34 −0.845390 −0.422695 0.906272i \(-0.638916\pi\)
−0.422695 + 0.906272i \(0.638916\pi\)
\(740\) 5.72606e34 2.12361
\(741\) 2.78784e32i 0.0101730i
\(742\) −2.20665e34 −0.792293
\(743\) 2.48588e34i 0.878242i −0.898428 0.439121i \(-0.855290\pi\)
0.898428 0.439121i \(-0.144710\pi\)
\(744\) 2.51550e34 0.874477
\(745\) 1.21637e34 0.416094
\(746\) 3.27203e34i 1.10141i
\(747\) 4.64626e34i 1.53906i
\(748\) 2.43182e34 0.792705
\(749\) 4.46181e34 1.43130
\(750\) 1.62131e34i 0.511835i
\(751\) 1.94374e34i 0.603891i −0.953325 0.301946i \(-0.902364\pi\)
0.953325 0.301946i \(-0.0976361\pi\)
\(752\) 2.72957e34 0.834604
\(753\) 1.10337e34i 0.332033i
\(754\) −5.66706e32 −0.0167843
\(755\) 4.77832e34i 1.39287i
\(756\) 4.43734e34i 1.27310i
\(757\) 6.30901e34i 1.78160i −0.454395 0.890800i \(-0.650145\pi\)
0.454395 0.890800i \(-0.349855\pi\)
\(758\) 3.96725e34i 1.10270i
\(759\) 3.57769e33 2.61384e33i 0.0978818 0.0715119i
\(760\) 4.35086e34 1.17169
\(761\) 9.12067e33 0.241775 0.120887 0.992666i \(-0.461426\pi\)
0.120887 + 0.992666i \(0.461426\pi\)
\(762\) 1.28538e34 0.335408
\(763\) 1.99081e33 0.0511370
\(764\) 1.19017e35i 3.00946i
\(765\) 2.33165e34 0.580398
\(766\) 8.15600e34i 1.99863i
\(767\) 4.89201e32 0.0118017
\(768\) 2.06234e34 0.489808
\(769\) 1.55307e34i 0.363140i −0.983378 0.181570i \(-0.941882\pi\)
0.983378 0.181570i \(-0.0581180\pi\)
\(770\) 3.30233e34i 0.760207i
\(771\) 8.79992e33 0.199446
\(772\) 7.75089e33 0.172959
\(773\) 6.62488e34i 1.45554i −0.685821 0.727770i \(-0.740557\pi\)
0.685821 0.727770i \(-0.259443\pi\)
\(774\) 7.43072e34i 1.60746i
\(775\) 2.47836e34 0.527890
\(776\) 1.95780e34i 0.410608i
\(777\) −1.69903e34 −0.350872
\(778\) 1.27756e35i 2.59792i
\(779\) 1.66247e34i 0.332893i
\(780\) 1.40138e33i 0.0276325i
\(781\) 1.30534e34i 0.253461i
\(782\) −5.84431e34 + 4.26982e34i −1.11751 + 0.816448i
\(783\) −4.27733e33 −0.0805437
\(784\) −2.61243e34 −0.484454
\(785\) −3.19654e34 −0.583774
\(786\) −3.34941e34 −0.602419
\(787\) 6.19053e34i 1.09656i 0.836296 + 0.548278i \(0.184717\pi\)
−0.836296 + 0.548278i \(0.815283\pi\)
\(788\) −9.96392e34 −1.73826
\(789\) 1.29346e34i 0.222243i
\(790\) 3.72715e34 0.630741
\(791\) 1.01428e35 1.69060
\(792\) 5.75695e34i 0.945128i
\(793\) 5.50262e33i 0.0889798i
\(794\) −5.70158e34 −0.908132
\(795\) −5.25993e33 −0.0825229
\(796\) 1.57953e35i 2.44101i
\(797\) 4.99097e34i 0.759776i −0.925033 0.379888i \(-0.875963\pi\)
0.925033 0.379888i \(-0.124037\pi\)
\(798\) −2.34762e34 −0.352041
\(799\) 2.54085e34i 0.375334i
\(800\) −2.10790e34 −0.306739
\(801\) 1.97412e34i 0.282998i
\(802\) 1.47108e34i 0.207752i
\(803\) 9.60976e33i 0.133698i
\(804\) 7.30580e34i 1.00137i
\(805\) −3.99857e34 5.47304e34i −0.539951 0.739057i
\(806\) 1.20632e34 0.160488
\(807\) −1.79908e34 −0.235814
\(808\) −8.45577e33 −0.109199
\(809\) 2.16610e34 0.275611 0.137806 0.990459i \(-0.455995\pi\)
0.137806 + 0.990459i \(0.455995\pi\)
\(810\) 9.24352e34i 1.15882i
\(811\) −1.88524e34 −0.232871 −0.116436 0.993198i \(-0.537147\pi\)
−0.116436 + 0.993198i \(0.537147\pi\)
\(812\) 3.29096e34i 0.400544i
\(813\) 3.62503e34 0.434736
\(814\) 8.31230e34 0.982264
\(815\) 1.98021e34i 0.230580i
\(816\) 3.01834e34i 0.346327i
\(817\) 5.62192e34 0.635652
\(818\) −2.04661e35 −2.28031
\(819\) 5.64301e33i 0.0619590i
\(820\) 8.35684e34i 0.904223i
\(821\) 1.63041e35 1.73852 0.869258 0.494359i \(-0.164597\pi\)
0.869258 + 0.494359i \(0.164597\pi\)
\(822\) 2.81910e34i 0.296243i
\(823\) 2.00527e34 0.207670 0.103835 0.994595i \(-0.466889\pi\)
0.103835 + 0.994595i \(0.466889\pi\)
\(824\) 2.39295e35i 2.44234i
\(825\) 4.17947e33i 0.0420411i
\(826\) 4.11952e34i 0.408400i
\(827\) 3.35667e34i 0.327977i −0.986462 0.163988i \(-0.947564\pi\)
0.986462 0.163988i \(-0.0524359\pi\)
\(828\) −1.26761e35 1.73503e35i −1.22073 1.67088i
\(829\) −1.38413e35 −1.31378 −0.656888 0.753988i \(-0.728128\pi\)
−0.656888 + 0.753988i \(0.728128\pi\)
\(830\) −2.56235e35 −2.39718
\(831\) 2.84115e34 0.261988
\(832\) 8.20738e32 0.00745976
\(833\) 2.43181e34i 0.217866i
\(834\) −3.92998e34 −0.347054
\(835\) 1.42648e35i 1.24173i
\(836\) 7.92052e34 0.679639
\(837\) 9.10495e34 0.770144
\(838\) 8.61016e34i 0.717932i
\(839\) 7.18650e34i 0.590709i 0.955388 + 0.295355i \(0.0954378\pi\)
−0.955388 + 0.295355i \(0.904562\pi\)
\(840\) −6.48944e34 −0.525842
\(841\) −1.22013e35 −0.974659
\(842\) 2.92756e35i 2.30548i
\(843\) 4.52326e33i 0.0351172i
\(844\) 5.66545e35 4.33636
\(845\) 1.06733e35i 0.805413i
\(846\) 1.09383e35 0.813776
\(847\) 1.21338e35i 0.890012i
\(848\) 9.24051e34i 0.668261i
\(849\) 8.74625e32i 0.00623634i
\(850\) 6.82734e34i 0.479982i
\(851\) −1.37762e35 + 1.00648e35i −0.954936 + 0.697671i
\(852\) −4.66464e34 −0.318818
\(853\) 5.15530e34 0.347429 0.173714 0.984796i \(-0.444423\pi\)
0.173714 + 0.984796i \(0.444423\pi\)
\(854\) −4.63371e35 −3.07918
\(855\) 7.59427e34 0.497614
\(856\) 4.28961e35i 2.77161i
\(857\) −1.36367e34 −0.0868841 −0.0434421 0.999056i \(-0.513832\pi\)
−0.0434421 + 0.999056i \(0.513832\pi\)
\(858\) 2.03433e33i 0.0127812i
\(859\) 8.13039e34 0.503725 0.251863 0.967763i \(-0.418957\pi\)
0.251863 + 0.967763i \(0.418957\pi\)
\(860\) 2.82600e35 1.72659
\(861\) 2.47963e34i 0.149399i
\(862\) 2.99388e35i 1.77888i
\(863\) 1.08801e35 0.637537 0.318768 0.947833i \(-0.396731\pi\)
0.318768 + 0.947833i \(0.396731\pi\)
\(864\) −7.74396e34 −0.447505
\(865\) 1.20006e34i 0.0683930i
\(866\) 3.34796e35i 1.88177i
\(867\) −1.91625e34 −0.106224
\(868\) 7.00531e35i 3.82993i
\(869\) 3.73119e34 0.201192
\(870\) 1.13753e34i 0.0604970i
\(871\) 1.92663e34i 0.101060i
\(872\) 1.91398e34i 0.0990237i
\(873\) 3.41727e34i 0.174385i
\(874\) −1.90351e35 + 1.39070e35i −0.958118 + 0.699995i
\(875\) −2.48291e35 −1.23272
\(876\) −3.43405e34 −0.168173
\(877\) −3.20564e35 −1.54853 −0.774265 0.632862i \(-0.781880\pi\)
−0.774265 + 0.632862i \(0.781880\pi\)
\(878\) −1.62923e35 −0.776333
\(879\) 1.75646e34i 0.0825606i
\(880\) 1.38288e35 0.641198
\(881\) 3.49445e35i 1.59833i 0.601109 + 0.799167i \(0.294726\pi\)
−0.601109 + 0.799167i \(0.705274\pi\)
\(882\) −1.04689e35 −0.472364
\(883\) 3.58606e35 1.59620 0.798102 0.602522i \(-0.205837\pi\)
0.798102 + 0.602522i \(0.205837\pi\)
\(884\) 2.29169e34i 0.100630i
\(885\) 9.81960e33i 0.0425378i
\(886\) 4.57642e35 1.95578
\(887\) −1.98079e35 −0.835133 −0.417567 0.908646i \(-0.637117\pi\)
−0.417567 + 0.908646i \(0.637117\pi\)
\(888\) 1.63346e35i 0.679441i
\(889\) 1.96847e35i 0.807807i
\(890\) −1.08870e35 −0.440787
\(891\) 9.25355e34i 0.369637i
\(892\) 9.39907e35 3.70430
\(893\) 8.27565e34i 0.321799i
\(894\) 6.30995e34i 0.242089i
\(895\) 6.29492e34i 0.238294i
\(896\) 3.37284e35i 1.25980i
\(897\) 2.46323e33 + 3.37154e33i 0.00907811 + 0.0124256i
\(898\) 5.51341e35 2.00495
\(899\) −6.75270e34 −0.242304
\(900\) −2.02687e35 −0.717656
\(901\) 8.60163e34 0.300527
\(902\) 1.21313e35i 0.418243i
\(903\) −8.38525e34 −0.285275
\(904\) 9.75140e35i 3.27375i
\(905\) −1.91501e35 −0.634436
\(906\) 2.47876e35 0.810394
\(907\) 9.92296e34i 0.320150i −0.987105 0.160075i \(-0.948826\pi\)
0.987105 0.160075i \(-0.0511736\pi\)
\(908\) 3.29254e35i 1.04834i
\(909\) −1.47592e34 −0.0463764
\(910\) −3.11205e34 −0.0965049
\(911\) 3.72506e35i 1.14002i 0.821637 + 0.570011i \(0.193061\pi\)
−0.821637 + 0.570011i \(0.806939\pi\)
\(912\) 9.83084e34i 0.296929i
\(913\) −2.56513e35 −0.764645
\(914\) 3.70648e35i 1.09045i
\(915\) −1.10453e35 −0.320718
\(916\) 1.33783e36i 3.83402i
\(917\) 5.12938e35i 1.45089i
\(918\) 2.50822e35i 0.700250i
\(919\) 3.40459e35i 0.938164i 0.883155 + 0.469082i \(0.155415\pi\)
−0.883155 + 0.469082i \(0.844585\pi\)
\(920\) −5.26182e35 + 3.84425e35i −1.43114 + 1.04558i
\(921\) 8.45297e34 0.226931
\(922\) −8.90649e35 −2.36013
\(923\) −1.23013e34 −0.0321758
\(924\) −1.18137e35 −0.305015
\(925\) 1.60934e35i 0.410154i
\(926\) −8.44724e35 −2.12512
\(927\) 4.17680e35i 1.03726i
\(928\) 5.74332e34 0.140795
\(929\) −2.05508e35 −0.497324 −0.248662 0.968590i \(-0.579991\pi\)
−0.248662 + 0.968590i \(0.579991\pi\)
\(930\) 2.42142e35i 0.578461i
\(931\) 7.92051e34i 0.186791i
\(932\) 5.31712e35 1.23790
\(933\) 1.24487e34 0.0286117
\(934\) 6.39039e34i 0.144999i
\(935\) 1.28727e35i 0.288356i
\(936\) −5.42523e34 −0.119980
\(937\) 6.63894e35i 1.44952i 0.689003 + 0.724759i \(0.258049\pi\)
−0.689003 + 0.724759i \(0.741951\pi\)
\(938\) 1.62240e36 3.49723
\(939\) 1.87826e35i 0.399733i
\(940\) 4.15996e35i 0.874088i
\(941\) 2.52330e35i 0.523471i −0.965140 0.261736i \(-0.915705\pi\)
0.965140 0.261736i \(-0.0842948\pi\)
\(942\) 1.65821e35i 0.339648i
\(943\) −1.46890e35 2.01055e35i −0.297065 0.406607i
\(944\) −1.72508e35 −0.344466
\(945\) −2.34888e35 −0.463105
\(946\) 4.10239e35 0.798625
\(947\) −3.21098e35 −0.617217 −0.308608 0.951189i \(-0.599863\pi\)
−0.308608 + 0.951189i \(0.599863\pi\)
\(948\) 1.33334e35i 0.253070i
\(949\) −9.05603e33 −0.0169724
\(950\) 2.22369e35i 0.411520i
\(951\) 2.44792e35 0.447333
\(952\) 1.06123e36 1.91498
\(953\) 6.95989e35i 1.24019i −0.784527 0.620094i \(-0.787094\pi\)
0.784527 0.620094i \(-0.212906\pi\)
\(954\) 3.70297e35i 0.651584i
\(955\) −6.30010e35 −1.09473
\(956\) 1.03802e36 1.78120
\(957\) 1.13877e34i 0.0192971i
\(958\) 1.59169e36i 2.66363i
\(959\) 4.31724e35 0.713482
\(960\) 1.64745e34i 0.0268879i
\(961\) 8.17004e35 1.31687
\(962\) 7.83333e34i 0.124694i
\(963\) 7.48736e35i 1.17710i
\(964\) 1.05088e36i 1.63166i
\(965\) 4.10289e34i 0.0629161i
\(966\) 2.83915e35 2.07426e35i 0.429994 0.314151i
\(967\) 4.66305e35 0.697514 0.348757 0.937213i \(-0.386604\pi\)
0.348757 + 0.937213i \(0.386604\pi\)
\(968\) −1.16655e36 −1.72345
\(969\) 9.15115e34 0.133533
\(970\) 1.88458e35 0.271615
\(971\) 7.72733e35i 1.10002i −0.835159 0.550008i \(-0.814625\pi\)
0.835159 0.550008i \(-0.185375\pi\)
\(972\) −1.13017e36 −1.58910
\(973\) 6.01847e35i 0.835857i
\(974\) 1.12387e36 1.54173
\(975\) 3.93865e33 0.00533693
\(976\) 1.94040e36i 2.59713i
\(977\) 9.50855e35i 1.25713i −0.777758 0.628564i \(-0.783643\pi\)
0.777758 0.628564i \(-0.216357\pi\)
\(978\) 1.02724e35 0.134154
\(979\) −1.08988e35 −0.140601
\(980\) 3.98144e35i 0.507373i
\(981\) 3.34078e34i 0.0420552i
\(982\) −1.25377e36 −1.55912
\(983\) 1.08487e36i 1.33271i 0.745635 + 0.666355i \(0.232146\pi\)
−0.745635 + 0.666355i \(0.767854\pi\)
\(984\) −2.38393e35 −0.289302
\(985\) 5.27434e35i 0.632315i
\(986\) 1.86023e35i 0.220314i
\(987\) 1.23434e35i 0.144420i
\(988\) 7.46412e34i 0.0862771i
\(989\) −6.79899e35 + 4.96731e35i −0.776406 + 0.567238i
\(990\) 5.54164e35 0.625196
\(991\) −1.31036e36 −1.46052 −0.730260 0.683170i \(-0.760601\pi\)
−0.730260 + 0.683170i \(0.760601\pi\)
\(992\) −1.22255e36 −1.34626
\(993\) −7.63422e34 −0.0830565
\(994\) 1.03588e36i 1.11345i
\(995\) −8.36114e35 −0.887950
\(996\) 9.16649e35i 0.961814i
\(997\) 1.26389e36 1.31029 0.655144 0.755504i \(-0.272608\pi\)
0.655144 + 0.755504i \(0.272608\pi\)
\(998\) −1.94417e36 −1.99144
\(999\) 5.91236e35i 0.598378i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.3 44
23.22 odd 2 inner 23.25.b.c.22.4 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.3 44 1.1 even 1 trivial
23.25.b.c.22.4 yes 44 23.22 odd 2 inner