Properties

Label 23.25.b.c.22.27
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.27
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2541.92 q^{2} +699314. q^{3} -1.03159e7 q^{4} +3.93724e8i q^{5} +1.77760e9 q^{6} -1.74256e10i q^{7} -6.88684e10 q^{8} +2.06610e11 q^{9} +1.00081e12i q^{10} -1.74676e12i q^{11} -7.21402e12 q^{12} +1.93975e13 q^{13} -4.42946e13i q^{14} +2.75336e14i q^{15} -1.98670e12 q^{16} -4.91787e14i q^{17} +5.25187e14 q^{18} -1.35367e15i q^{19} -4.06160e15i q^{20} -1.21860e16i q^{21} -4.44012e15i q^{22} +(2.15931e16 + 3.74024e15i) q^{23} -4.81607e16 q^{24} -9.54137e16 q^{25} +4.93068e16 q^{26} -5.30213e16 q^{27} +1.79760e17i q^{28} +5.62494e17 q^{29} +6.99883e17i q^{30} +6.23769e17 q^{31} +1.15037e18 q^{32} -1.22153e18i q^{33} -1.25008e18i q^{34} +6.86088e18 q^{35} -2.13136e18 q^{36} +2.82001e18i q^{37} -3.44093e18i q^{38} +1.35649e19 q^{39} -2.71151e19i q^{40} +1.28323e19 q^{41} -3.09758e19i q^{42} +3.38446e19i q^{43} +1.80193e19i q^{44} +8.13474e19i q^{45} +(5.48879e19 + 9.50739e18i) q^{46} +4.15911e19 q^{47} -1.38933e18 q^{48} -1.12071e20 q^{49} -2.42534e20 q^{50} -3.43914e20i q^{51} -2.00101e20 q^{52} +4.49064e20i q^{53} -1.34776e20 q^{54} +6.87741e20 q^{55} +1.20008e21i q^{56} -9.46643e20i q^{57} +1.42981e21 q^{58} +1.91911e20 q^{59} -2.84033e21i q^{60} -1.43280e21i q^{61} +1.58557e21 q^{62} -3.60032e21i q^{63} +2.95748e21 q^{64} +7.63724e21i q^{65} -3.10504e21i q^{66} +3.75498e21i q^{67} +5.07321e21i q^{68} +(1.51003e22 + 2.61560e21i) q^{69} +1.74398e22 q^{70} +1.87365e22 q^{71} -1.42289e22 q^{72} -2.86950e22 q^{73} +7.16823e21i q^{74} -6.67241e22 q^{75} +1.39643e22i q^{76} -3.04384e22 q^{77} +3.44809e22 q^{78} -1.13068e23i q^{79} -7.82211e20i q^{80} -9.54315e22 q^{81} +3.26187e22 q^{82} -1.35941e23i q^{83} +1.25709e23i q^{84} +1.93628e23 q^{85} +8.60302e22i q^{86} +3.93360e23 q^{87} +1.20297e23i q^{88} +1.69175e23i q^{89} +2.06779e23i q^{90} -3.38013e23i q^{91} +(-2.22751e23 - 3.85838e22i) q^{92} +4.36211e23 q^{93} +1.05721e23 q^{94} +5.32974e23 q^{95} +8.04470e23 q^{96} -5.75406e23i q^{97} -2.84876e23 q^{98} -3.60899e23i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2541.92 0.620586 0.310293 0.950641i \(-0.399573\pi\)
0.310293 + 0.950641i \(0.399573\pi\)
\(3\) 699314. 1.31588 0.657941 0.753069i \(-0.271427\pi\)
0.657941 + 0.753069i \(0.271427\pi\)
\(4\) −1.03159e7 −0.614873
\(5\) 3.93724e8i 1.61269i 0.591444 + 0.806346i \(0.298558\pi\)
−0.591444 + 0.806346i \(0.701442\pi\)
\(6\) 1.77760e9 0.816618
\(7\) 1.74256e10i 1.25896i −0.777017 0.629480i \(-0.783268\pi\)
0.777017 0.629480i \(-0.216732\pi\)
\(8\) −6.88684e10 −1.00217
\(9\) 2.06610e11 0.731547
\(10\) 1.00081e12i 1.00081i
\(11\) 1.74676e12i 0.556571i −0.960498 0.278286i \(-0.910234\pi\)
0.960498 0.278286i \(-0.0897662\pi\)
\(12\) −7.21402e12 −0.809101
\(13\) 1.93975e13 0.832577 0.416289 0.909233i \(-0.363331\pi\)
0.416289 + 0.909233i \(0.363331\pi\)
\(14\) 4.42946e13i 0.781293i
\(15\) 2.75336e14i 2.12211i
\(16\) −1.98670e12 −0.00705818
\(17\) 4.91787e14i 0.844092i −0.906574 0.422046i \(-0.861312\pi\)
0.906574 0.422046i \(-0.138688\pi\)
\(18\) 5.25187e14 0.453988
\(19\) 1.35367e15i 0.611605i −0.952095 0.305802i \(-0.901075\pi\)
0.952095 0.305802i \(-0.0989247\pi\)
\(20\) 4.06160e15i 0.991601i
\(21\) 1.21860e16i 1.65664i
\(22\) 4.44012e15i 0.345400i
\(23\) 2.15931e16 + 3.74024e15i 0.985328 + 0.170673i
\(24\) −4.81607e16 −1.31873
\(25\) −9.54137e16 −1.60078
\(26\) 4.93068e16 0.516686
\(27\) −5.30213e16 −0.353253
\(28\) 1.79760e17i 0.774101i
\(29\) 5.62494e17 1.58980 0.794899 0.606742i \(-0.207524\pi\)
0.794899 + 0.606742i \(0.207524\pi\)
\(30\) 6.99883e17i 1.31695i
\(31\) 6.23769e17 0.791924 0.395962 0.918267i \(-0.370411\pi\)
0.395962 + 0.918267i \(0.370411\pi\)
\(32\) 1.15037e18 0.997787
\(33\) 1.22153e18i 0.732383i
\(34\) 1.25008e18i 0.523832i
\(35\) 6.86088e18 2.03032
\(36\) −2.13136e18 −0.449809
\(37\) 2.82001e18i 0.428380i 0.976792 + 0.214190i \(0.0687112\pi\)
−0.976792 + 0.214190i \(0.931289\pi\)
\(38\) 3.44093e18i 0.379553i
\(39\) 1.35649e19 1.09557
\(40\) 2.71151e19i 1.61619i
\(41\) 1.28323e19 0.568721 0.284360 0.958717i \(-0.408219\pi\)
0.284360 + 0.958717i \(0.408219\pi\)
\(42\) 3.09758e19i 1.02809i
\(43\) 3.38446e19i 0.846969i 0.905903 + 0.423484i \(0.139193\pi\)
−0.905903 + 0.423484i \(0.860807\pi\)
\(44\) 1.80193e19i 0.342221i
\(45\) 8.13474e19i 1.17976i
\(46\) 5.48879e19 + 9.50739e18i 0.611481 + 0.105917i
\(47\) 4.15911e19 0.357953 0.178977 0.983853i \(-0.442721\pi\)
0.178977 + 0.983853i \(0.442721\pi\)
\(48\) −1.38933e18 −0.00928774
\(49\) −1.12071e20 −0.584981
\(50\) −2.42534e20 −0.993419
\(51\) 3.43914e20i 1.11073i
\(52\) −2.00101e20 −0.511929
\(53\) 4.49064e20i 0.914109i 0.889439 + 0.457055i \(0.151096\pi\)
−0.889439 + 0.457055i \(0.848904\pi\)
\(54\) −1.34776e20 −0.219224
\(55\) 6.87741e20 0.897578
\(56\) 1.20008e21i 1.26169i
\(57\) 9.46643e20i 0.804800i
\(58\) 1.42981e21 0.986606
\(59\) 1.91911e20 0.107864 0.0539318 0.998545i \(-0.482825\pi\)
0.0539318 + 0.998545i \(0.482825\pi\)
\(60\) 2.84033e21i 1.30483i
\(61\) 1.43280e21i 0.539793i −0.962889 0.269896i \(-0.913011\pi\)
0.962889 0.269896i \(-0.0869894\pi\)
\(62\) 1.58557e21 0.491457
\(63\) 3.60032e21i 0.920989i
\(64\) 2.95748e21 0.626271
\(65\) 7.63724e21i 1.34269i
\(66\) 3.10504e21i 0.454506i
\(67\) 3.75498e21i 0.458891i 0.973322 + 0.229446i \(0.0736913\pi\)
−0.973322 + 0.229446i \(0.926309\pi\)
\(68\) 5.07321e21i 0.519010i
\(69\) 1.51003e22 + 2.61560e21i 1.29658 + 0.224586i
\(70\) 1.74398e22 1.25999
\(71\) 1.87365e22 1.14180 0.570899 0.821020i \(-0.306595\pi\)
0.570899 + 0.821020i \(0.306595\pi\)
\(72\) −1.42289e22 −0.733133
\(73\) −2.86950e22 −1.25294 −0.626472 0.779444i \(-0.715502\pi\)
−0.626472 + 0.779444i \(0.715502\pi\)
\(74\) 7.16823e21i 0.265847i
\(75\) −6.67241e22 −2.10643
\(76\) 1.39643e22i 0.376059i
\(77\) −3.04384e22 −0.700701
\(78\) 3.44809e22 0.679898
\(79\) 1.13068e23i 1.91343i −0.291019 0.956717i \(-0.593994\pi\)
0.291019 0.956717i \(-0.406006\pi\)
\(80\) 7.82211e20i 0.0113827i
\(81\) −9.54315e22 −1.19639
\(82\) 3.26187e22 0.352940
\(83\) 1.35941e23i 1.27178i −0.771778 0.635892i \(-0.780632\pi\)
0.771778 0.635892i \(-0.219368\pi\)
\(84\) 1.25709e23i 1.01863i
\(85\) 1.93628e23 1.36126
\(86\) 8.60302e22i 0.525617i
\(87\) 3.93360e23 2.09199
\(88\) 1.20297e23i 0.557778i
\(89\) 1.69175e23i 0.684947i 0.939527 + 0.342474i \(0.111265\pi\)
−0.939527 + 0.342474i \(0.888735\pi\)
\(90\) 2.06779e23i 0.732143i
\(91\) 3.38013e23i 1.04818i
\(92\) −2.22751e23 3.85838e22i −0.605851 0.104942i
\(93\) 4.36211e23 1.04208
\(94\) 1.05721e23 0.222141
\(95\) 5.32974e23 0.986330
\(96\) 8.04470e23 1.31297
\(97\) 5.75406e23i 0.829304i −0.909980 0.414652i \(-0.863903\pi\)
0.909980 0.414652i \(-0.136097\pi\)
\(98\) −2.84876e23 −0.363031
\(99\) 3.60899e23i 0.407158i
\(100\) 9.84274e23 0.984274
\(101\) 1.98837e24 1.76458 0.882288 0.470710i \(-0.156002\pi\)
0.882288 + 0.470710i \(0.156002\pi\)
\(102\) 8.74201e23i 0.689301i
\(103\) 8.38180e23i 0.587883i −0.955823 0.293941i \(-0.905033\pi\)
0.955823 0.293941i \(-0.0949670\pi\)
\(104\) −1.33587e24 −0.834382
\(105\) 4.79791e24 2.67166
\(106\) 1.14149e24i 0.567283i
\(107\) 3.56813e24i 1.58429i −0.610332 0.792145i \(-0.708964\pi\)
0.610332 0.792145i \(-0.291036\pi\)
\(108\) 5.46960e23 0.217205
\(109\) 1.77201e24i 0.630010i 0.949090 + 0.315005i \(0.102006\pi\)
−0.949090 + 0.315005i \(0.897994\pi\)
\(110\) 1.74818e24 0.557025
\(111\) 1.97207e24i 0.563698i
\(112\) 3.46195e22i 0.00888597i
\(113\) 6.13562e24i 1.41552i 0.706451 + 0.707762i \(0.250295\pi\)
−0.706451 + 0.707762i \(0.749705\pi\)
\(114\) 2.40629e24i 0.499448i
\(115\) −1.47262e24 + 8.50171e24i −0.275243 + 1.58903i
\(116\) −5.80261e24 −0.977523
\(117\) 4.00772e24 0.609069
\(118\) 4.87821e23 0.0669386
\(119\) −8.56970e24 −1.06268
\(120\) 1.89620e25i 2.12671i
\(121\) 6.79856e24 0.690228
\(122\) 3.64206e24i 0.334988i
\(123\) 8.97382e24 0.748369
\(124\) −6.43472e24 −0.486933
\(125\) 1.40989e25i 0.968867i
\(126\) 9.15172e24i 0.571553i
\(127\) 2.67390e25 1.51880 0.759400 0.650624i \(-0.225493\pi\)
0.759400 + 0.650624i \(0.225493\pi\)
\(128\) −1.17823e25 −0.609132
\(129\) 2.36680e25i 1.11451i
\(130\) 1.94132e25i 0.833255i
\(131\) 1.04312e25 0.408393 0.204196 0.978930i \(-0.434542\pi\)
0.204196 + 0.978930i \(0.434542\pi\)
\(132\) 1.26012e25i 0.450322i
\(133\) −2.35886e25 −0.769986
\(134\) 9.54485e24i 0.284781i
\(135\) 2.08757e25i 0.569688i
\(136\) 3.38686e25i 0.845922i
\(137\) 6.65473e25i 1.52224i −0.648610 0.761121i \(-0.724649\pi\)
0.648610 0.761121i \(-0.275351\pi\)
\(138\) 3.83839e25 + 6.64865e24i 0.804637 + 0.139375i
\(139\) 7.88600e23 0.0151593 0.00757965 0.999971i \(-0.497587\pi\)
0.00757965 + 0.999971i \(0.497587\pi\)
\(140\) −7.07759e25 −1.24839
\(141\) 2.90853e25 0.471025
\(142\) 4.76268e25 0.708584
\(143\) 3.38827e25i 0.463389i
\(144\) −4.10473e23 −0.00516339
\(145\) 2.21467e26i 2.56385i
\(146\) −7.29404e25 −0.777560
\(147\) −7.83730e25 −0.769766
\(148\) 2.90908e25i 0.263399i
\(149\) 2.09985e26i 1.75369i −0.480772 0.876846i \(-0.659644\pi\)
0.480772 0.876846i \(-0.340356\pi\)
\(150\) −1.69607e26 −1.30722
\(151\) −1.21831e26 −0.867028 −0.433514 0.901147i \(-0.642727\pi\)
−0.433514 + 0.901147i \(0.642727\pi\)
\(152\) 9.32254e25i 0.612930i
\(153\) 1.01608e26i 0.617493i
\(154\) −7.73719e25 −0.434845
\(155\) 2.45593e26i 1.27713i
\(156\) −1.39934e26 −0.673639
\(157\) 1.95137e26i 0.870049i −0.900419 0.435025i \(-0.856740\pi\)
0.900419 0.435025i \(-0.143260\pi\)
\(158\) 2.87409e26i 1.18745i
\(159\) 3.14037e26i 1.20286i
\(160\) 4.52928e26i 1.60912i
\(161\) 6.51760e25 3.76273e26i 0.214871 1.24049i
\(162\) −2.42579e26 −0.742460
\(163\) −5.22411e26 −1.48512 −0.742559 0.669781i \(-0.766388\pi\)
−0.742559 + 0.669781i \(0.766388\pi\)
\(164\) −1.32376e26 −0.349691
\(165\) 4.80947e26 1.18111
\(166\) 3.45551e26i 0.789252i
\(167\) −2.39657e25 −0.0509322 −0.0254661 0.999676i \(-0.508107\pi\)
−0.0254661 + 0.999676i \(0.508107\pi\)
\(168\) 8.39230e26i 1.66023i
\(169\) −1.66540e26 −0.306815
\(170\) 4.92187e26 0.844780
\(171\) 2.79683e26i 0.447418i
\(172\) 3.49136e26i 0.520778i
\(173\) −8.49695e26 −1.18225 −0.591125 0.806580i \(-0.701316\pi\)
−0.591125 + 0.806580i \(0.701316\pi\)
\(174\) 9.99889e26 1.29826
\(175\) 1.66264e27i 2.01531i
\(176\) 3.47029e24i 0.00392838i
\(177\) 1.34206e26 0.141936
\(178\) 4.30030e26i 0.425069i
\(179\) 1.30857e27 1.20937 0.604685 0.796465i \(-0.293299\pi\)
0.604685 + 0.796465i \(0.293299\pi\)
\(180\) 8.39169e26i 0.725403i
\(181\) 1.62056e27i 1.31076i −0.755299 0.655380i \(-0.772508\pi\)
0.755299 0.655380i \(-0.227492\pi\)
\(182\) 8.59202e26i 0.650487i
\(183\) 1.00198e27i 0.710304i
\(184\) −1.48708e27 2.57584e26i −0.987463 0.171043i
\(185\) −1.11030e27 −0.690845
\(186\) 1.10881e27 0.646700
\(187\) −8.59034e26 −0.469798
\(188\) −4.29048e26 −0.220096
\(189\) 9.23930e26i 0.444731i
\(190\) 1.35478e27 0.612103
\(191\) 5.36497e26i 0.227597i 0.993504 + 0.113799i \(0.0363019\pi\)
−0.993504 + 0.113799i \(0.963698\pi\)
\(192\) 2.06821e27 0.824099
\(193\) −1.79936e27 −0.673644 −0.336822 0.941568i \(-0.609352\pi\)
−0.336822 + 0.941568i \(0.609352\pi\)
\(194\) 1.46264e27i 0.514654i
\(195\) 5.34083e27i 1.76682i
\(196\) 1.15611e27 0.359689
\(197\) 1.87528e27 0.548873 0.274436 0.961605i \(-0.411509\pi\)
0.274436 + 0.961605i \(0.411509\pi\)
\(198\) 9.17376e26i 0.252677i
\(199\) 5.46782e26i 0.141768i −0.997485 0.0708838i \(-0.977418\pi\)
0.997485 0.0708838i \(-0.0225820\pi\)
\(200\) 6.57099e27 1.60425
\(201\) 2.62591e27i 0.603847i
\(202\) 5.05427e27 1.09507
\(203\) 9.80181e27i 2.00149i
\(204\) 3.54776e27i 0.682956i
\(205\) 5.05239e27i 0.917171i
\(206\) 2.13059e27i 0.364832i
\(207\) 4.46136e27 + 7.72773e26i 0.720814 + 0.124855i
\(208\) −3.85369e25 −0.00587648
\(209\) −2.36454e27 −0.340402
\(210\) 1.21959e28 1.65799
\(211\) 8.17419e27 1.04968 0.524838 0.851202i \(-0.324126\pi\)
0.524838 + 0.851202i \(0.324126\pi\)
\(212\) 4.63248e27i 0.562061i
\(213\) 1.31027e28 1.50247
\(214\) 9.06989e27i 0.983189i
\(215\) −1.33254e28 −1.36590
\(216\) 3.65150e27 0.354018
\(217\) 1.08696e28i 0.997001i
\(218\) 4.50430e27i 0.390976i
\(219\) −2.00668e28 −1.64873
\(220\) −7.09463e27 −0.551897
\(221\) 9.53942e27i 0.702772i
\(222\) 5.01284e27i 0.349823i
\(223\) −7.61982e27 −0.503833 −0.251916 0.967749i \(-0.581061\pi\)
−0.251916 + 0.967749i \(0.581061\pi\)
\(224\) 2.00459e28i 1.25617i
\(225\) −1.97135e28 −1.17104
\(226\) 1.55963e28i 0.878455i
\(227\) 2.76857e28i 1.47892i 0.673199 + 0.739461i \(0.264920\pi\)
−0.673199 + 0.739461i \(0.735080\pi\)
\(228\) 9.76544e27i 0.494850i
\(229\) 3.30372e28i 1.58846i 0.607614 + 0.794232i \(0.292127\pi\)
−0.607614 + 0.794232i \(0.707873\pi\)
\(230\) −3.74329e27 + 2.16107e28i −0.170812 + 0.986130i
\(231\) −2.12860e28 −0.922041
\(232\) −3.87381e28 −1.59324
\(233\) −1.69123e28 −0.660588 −0.330294 0.943878i \(-0.607148\pi\)
−0.330294 + 0.943878i \(0.607148\pi\)
\(234\) 1.01873e28 0.377980
\(235\) 1.63754e28i 0.577269i
\(236\) −1.97972e27 −0.0663224
\(237\) 7.90698e28i 2.51786i
\(238\) −2.17835e28 −0.659484
\(239\) 3.66645e28 1.05553 0.527766 0.849390i \(-0.323030\pi\)
0.527766 + 0.849390i \(0.323030\pi\)
\(240\) 5.47011e26i 0.0149783i
\(241\) 3.77303e28i 0.982846i 0.870921 + 0.491423i \(0.163523\pi\)
−0.870921 + 0.491423i \(0.836477\pi\)
\(242\) 1.72814e28 0.428346
\(243\) −5.17618e28 −1.22105
\(244\) 1.47805e28i 0.331904i
\(245\) 4.41251e28i 0.943394i
\(246\) 2.28107e28 0.464428
\(247\) 2.62578e28i 0.509208i
\(248\) −4.29580e28 −0.793641
\(249\) 9.50655e28i 1.67352i
\(250\) 3.58382e28i 0.601266i
\(251\) 8.27468e28i 1.32332i 0.749802 + 0.661662i \(0.230149\pi\)
−0.749802 + 0.661662i \(0.769851\pi\)
\(252\) 3.71404e28i 0.566291i
\(253\) 6.53330e27 3.77179e28i 0.0949918 0.548405i
\(254\) 6.79684e28 0.942546
\(255\) 1.35407e29 1.79126
\(256\) −7.95681e28 −1.00429
\(257\) −1.30943e29 −1.57719 −0.788596 0.614911i \(-0.789192\pi\)
−0.788596 + 0.614911i \(0.789192\pi\)
\(258\) 6.01621e28i 0.691650i
\(259\) 4.91404e28 0.539313
\(260\) 7.87846e28i 0.825584i
\(261\) 1.16217e29 1.16301
\(262\) 2.65152e28 0.253443
\(263\) 2.04693e29i 1.86910i 0.355828 + 0.934552i \(0.384199\pi\)
−0.355828 + 0.934552i \(0.615801\pi\)
\(264\) 8.41251e28i 0.733970i
\(265\) −1.76807e29 −1.47418
\(266\) −5.99604e28 −0.477843
\(267\) 1.18307e29i 0.901310i
\(268\) 3.87358e28i 0.282160i
\(269\) 2.27355e29 1.58371 0.791856 0.610708i \(-0.209115\pi\)
0.791856 + 0.610708i \(0.209115\pi\)
\(270\) 5.30645e28i 0.353540i
\(271\) 1.31621e29 0.838871 0.419435 0.907785i \(-0.362228\pi\)
0.419435 + 0.907785i \(0.362228\pi\)
\(272\) 9.77034e26i 0.00595776i
\(273\) 2.36377e29i 1.37928i
\(274\) 1.69158e29i 0.944682i
\(275\) 1.66665e29i 0.890946i
\(276\) −1.55773e29 2.69822e28i −0.797229 0.138092i
\(277\) −2.41347e29 −1.18273 −0.591363 0.806405i \(-0.701410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(278\) 2.00456e27 0.00940765
\(279\) 1.28877e29 0.579330
\(280\) −4.72498e29 −2.03472
\(281\) 3.28290e29i 1.35451i −0.735750 0.677254i \(-0.763170\pi\)
0.735750 0.677254i \(-0.236830\pi\)
\(282\) 7.39324e28 0.292311
\(283\) 2.54573e29i 0.964662i 0.875989 + 0.482331i \(0.160210\pi\)
−0.875989 + 0.482331i \(0.839790\pi\)
\(284\) −1.93284e29 −0.702061
\(285\) 3.72716e29 1.29789
\(286\) 8.61271e28i 0.287572i
\(287\) 2.23611e29i 0.715996i
\(288\) 2.37679e29 0.729928
\(289\) 9.75942e28 0.287508
\(290\) 5.62952e29i 1.59109i
\(291\) 4.02390e29i 1.09127i
\(292\) 2.96013e29 0.770402
\(293\) 5.95188e29i 1.48677i 0.668866 + 0.743383i \(0.266780\pi\)
−0.668866 + 0.743383i \(0.733220\pi\)
\(294\) −1.99218e29 −0.477706
\(295\) 7.55597e28i 0.173951i
\(296\) 1.94209e29i 0.429309i
\(297\) 9.26155e28i 0.196610i
\(298\) 5.33765e29i 1.08832i
\(299\) 4.18851e29 + 7.25511e28i 0.820361 + 0.142099i
\(300\) 6.88317e29 1.29519
\(301\) 5.89763e29 1.06630
\(302\) −3.09684e29 −0.538065
\(303\) 1.39049e30 2.32198
\(304\) 2.68935e27i 0.00431682i
\(305\) 5.64127e29 0.870520
\(306\) 2.58280e29i 0.383208i
\(307\) −7.02080e29 −1.00167 −0.500837 0.865542i \(-0.666974\pi\)
−0.500837 + 0.865542i \(0.666974\pi\)
\(308\) 3.13998e29 0.430842
\(309\) 5.86151e29i 0.773584i
\(310\) 6.24277e29i 0.792569i
\(311\) −5.34746e29 −0.653164 −0.326582 0.945169i \(-0.605897\pi\)
−0.326582 + 0.945169i \(0.605897\pi\)
\(312\) −9.34194e29 −1.09795
\(313\) 4.04750e29i 0.457778i 0.973453 + 0.228889i \(0.0735093\pi\)
−0.973453 + 0.228889i \(0.926491\pi\)
\(314\) 4.96023e29i 0.539940i
\(315\) 1.41753e30 1.48527
\(316\) 1.16639e30i 1.17652i
\(317\) −1.39151e30 −1.35137 −0.675686 0.737189i \(-0.736153\pi\)
−0.675686 + 0.737189i \(0.736153\pi\)
\(318\) 7.98257e29i 0.746478i
\(319\) 9.82541e29i 0.884836i
\(320\) 1.16443e30i 1.00998i
\(321\) 2.49524e30i 2.08474i
\(322\) 1.65672e29 9.56456e29i 0.133346 0.769830i
\(323\) −6.65719e29 −0.516251
\(324\) 9.84457e29 0.735625
\(325\) −1.85078e30 −1.33277
\(326\) −1.32793e30 −0.921643
\(327\) 1.23919e30i 0.829020i
\(328\) −8.83742e29 −0.569953
\(329\) 7.24752e29i 0.450649i
\(330\) 1.22253e30 0.732979
\(331\) −1.11503e29 −0.0644691 −0.0322345 0.999480i \(-0.510262\pi\)
−0.0322345 + 0.999480i \(0.510262\pi\)
\(332\) 1.40235e30i 0.781986i
\(333\) 5.82643e29i 0.313380i
\(334\) −6.09189e28 −0.0316078
\(335\) −1.47842e30 −0.740050
\(336\) 2.42099e28i 0.0116929i
\(337\) 2.89378e30i 1.34867i −0.738424 0.674337i \(-0.764430\pi\)
0.738424 0.674337i \(-0.235570\pi\)
\(338\) −4.23330e29 −0.190405
\(339\) 4.29073e30i 1.86266i
\(340\) −1.99744e30 −0.837003
\(341\) 1.08958e30i 0.440763i
\(342\) 7.10933e29i 0.277661i
\(343\) 1.38551e30i 0.522493i
\(344\) 2.33082e30i 0.848805i
\(345\) −1.02982e30 + 5.94536e30i −0.362188 + 2.09098i
\(346\) −2.15986e30 −0.733688
\(347\) −3.21652e30 −1.05544 −0.527719 0.849419i \(-0.676953\pi\)
−0.527719 + 0.849419i \(0.676953\pi\)
\(348\) −4.05784e30 −1.28631
\(349\) 5.34785e30 1.63785 0.818925 0.573901i \(-0.194570\pi\)
0.818925 + 0.573901i \(0.194570\pi\)
\(350\) 4.22631e30i 1.25068i
\(351\) −1.02848e30 −0.294110
\(352\) 2.00942e30i 0.555340i
\(353\) −6.63138e29 −0.177136 −0.0885681 0.996070i \(-0.528229\pi\)
−0.0885681 + 0.996070i \(0.528229\pi\)
\(354\) 3.41140e29 0.0880833
\(355\) 7.37702e30i 1.84137i
\(356\) 1.74519e30i 0.421156i
\(357\) −5.99291e30 −1.39836
\(358\) 3.32627e30 0.750518
\(359\) 3.45859e30i 0.754686i −0.926074 0.377343i \(-0.876838\pi\)
0.926074 0.377343i \(-0.123162\pi\)
\(360\) 5.60227e30i 1.18232i
\(361\) 3.06633e30 0.625940
\(362\) 4.11934e30i 0.813439i
\(363\) 4.75433e30 0.908259
\(364\) 3.48689e30i 0.644498i
\(365\) 1.12979e31i 2.02061i
\(366\) 2.54694e30i 0.440805i
\(367\) 4.45532e30i 0.746253i 0.927780 + 0.373127i \(0.121714\pi\)
−0.927780 + 0.373127i \(0.878286\pi\)
\(368\) −4.28990e28 7.43074e27i −0.00695462 0.00120464i
\(369\) 2.65129e30 0.416046
\(370\) −2.82230e30 −0.428729
\(371\) 7.82523e30 1.15083
\(372\) −4.49989e30 −0.640747
\(373\) 1.27650e31i 1.76000i 0.474969 + 0.880002i \(0.342459\pi\)
−0.474969 + 0.880002i \(0.657541\pi\)
\(374\) −2.18360e30 −0.291550
\(375\) 9.85954e30i 1.27492i
\(376\) −2.86432e30 −0.358729
\(377\) 1.09109e31 1.32363
\(378\) 2.34856e30i 0.275994i
\(379\) 8.82933e30i 1.00521i 0.864516 + 0.502606i \(0.167625\pi\)
−0.864516 + 0.502606i \(0.832375\pi\)
\(380\) −5.49808e30 −0.606468
\(381\) 1.86990e31 1.99856
\(382\) 1.36373e30i 0.141244i
\(383\) 8.17359e30i 0.820404i −0.911995 0.410202i \(-0.865458\pi\)
0.911995 0.410202i \(-0.134542\pi\)
\(384\) −8.23955e30 −0.801547
\(385\) 1.19843e31i 1.13002i
\(386\) −4.57383e30 −0.418054
\(387\) 6.99264e30i 0.619598i
\(388\) 5.93581e30i 0.509917i
\(389\) 6.50131e30i 0.541509i 0.962648 + 0.270754i \(0.0872731\pi\)
−0.962648 + 0.270754i \(0.912727\pi\)
\(390\) 1.35760e31i 1.09647i
\(391\) 1.83940e30 1.06192e31i 0.144064 0.831708i
\(392\) 7.71817e30 0.586249
\(393\) 7.29467e30 0.537397
\(394\) 4.76681e30 0.340623
\(395\) 4.45174e31 3.08578
\(396\) 3.72298e30i 0.250351i
\(397\) −1.55425e31 −1.01399 −0.506996 0.861948i \(-0.669244\pi\)
−0.506996 + 0.861948i \(0.669244\pi\)
\(398\) 1.38988e30i 0.0879790i
\(399\) −1.64959e31 −1.01321
\(400\) 1.89559e29 0.0112986
\(401\) 1.53590e30i 0.0888445i 0.999013 + 0.0444223i \(0.0141447\pi\)
−0.999013 + 0.0444223i \(0.985855\pi\)
\(402\) 6.67485e30i 0.374739i
\(403\) 1.20995e31 0.659338
\(404\) −2.05117e31 −1.08499
\(405\) 3.75736e31i 1.92940i
\(406\) 2.49154e31i 1.24210i
\(407\) 4.92587e30 0.238424
\(408\) 2.36848e31i 1.11313i
\(409\) −2.47264e31 −1.12845 −0.564223 0.825623i \(-0.690824\pi\)
−0.564223 + 0.825623i \(0.690824\pi\)
\(410\) 1.28428e31i 0.569184i
\(411\) 4.65375e31i 2.00309i
\(412\) 8.64654e30i 0.361473i
\(413\) 3.34416e30i 0.135796i
\(414\) 1.13404e31 + 1.96433e30i 0.447327 + 0.0774836i
\(415\) 5.35232e31 2.05100
\(416\) 2.23143e31 0.830735
\(417\) 5.51479e29 0.0199479
\(418\) −6.01048e30 −0.211249
\(419\) 2.49482e30i 0.0852061i 0.999092 + 0.0426031i \(0.0135651\pi\)
−0.999092 + 0.0426031i \(0.986435\pi\)
\(420\) −4.94946e31 −1.64273
\(421\) 2.74504e30i 0.0885449i 0.999019 + 0.0442725i \(0.0140970\pi\)
−0.999019 + 0.0442725i \(0.985903\pi\)
\(422\) 2.07781e31 0.651414
\(423\) 8.59317e30 0.261860
\(424\) 3.09263e31i 0.916090i
\(425\) 4.69232e31i 1.35120i
\(426\) 3.33061e31 0.932413
\(427\) −2.49674e31 −0.679578
\(428\) 3.68083e31i 0.974138i
\(429\) 2.36946e31i 0.609765i
\(430\) −3.38721e31 −0.847659
\(431\) 4.06630e31i 0.989627i 0.868999 + 0.494814i \(0.164764\pi\)
−0.868999 + 0.494814i \(0.835236\pi\)
\(432\) 1.05338e29 0.00249332
\(433\) 3.01559e31i 0.694253i 0.937818 + 0.347126i \(0.112843\pi\)
−0.937818 + 0.347126i \(0.887157\pi\)
\(434\) 2.76296e31i 0.618725i
\(435\) 1.54875e32i 3.37373i
\(436\) 1.82798e31i 0.387376i
\(437\) 5.06307e30 2.92300e31i 0.104385 0.602631i
\(438\) −5.10082e31 −1.02318
\(439\) −5.10820e31 −0.996997 −0.498499 0.866891i \(-0.666115\pi\)
−0.498499 + 0.866891i \(0.666115\pi\)
\(440\) −4.73636e31 −0.899524
\(441\) −2.31551e31 −0.427941
\(442\) 2.42484e31i 0.436131i
\(443\) −4.41029e30 −0.0772010 −0.0386005 0.999255i \(-0.512290\pi\)
−0.0386005 + 0.999255i \(0.512290\pi\)
\(444\) 2.03436e31i 0.346603i
\(445\) −6.66084e31 −1.10461
\(446\) −1.93690e31 −0.312671
\(447\) 1.46845e32i 2.30765i
\(448\) 5.15360e31i 0.788450i
\(449\) −5.99267e31 −0.892616 −0.446308 0.894879i \(-0.647261\pi\)
−0.446308 + 0.894879i \(0.647261\pi\)
\(450\) −5.01101e31 −0.726733
\(451\) 2.24150e31i 0.316534i
\(452\) 6.32942e31i 0.870368i
\(453\) −8.51979e31 −1.14091
\(454\) 7.03748e31i 0.917798i
\(455\) 1.33084e32 1.69039
\(456\) 6.51938e31i 0.806545i
\(457\) 5.88611e31i 0.709307i −0.934998 0.354653i \(-0.884599\pi\)
0.934998 0.354653i \(-0.115401\pi\)
\(458\) 8.39779e31i 0.985779i
\(459\) 2.60752e31i 0.298178i
\(460\) 1.51913e31 8.77024e31i 0.169240 0.977052i
\(461\) 1.33008e32 1.44367 0.721833 0.692068i \(-0.243300\pi\)
0.721833 + 0.692068i \(0.243300\pi\)
\(462\) −5.41073e31 −0.572205
\(463\) 1.03421e32 1.06570 0.532852 0.846208i \(-0.321120\pi\)
0.532852 + 0.846208i \(0.321120\pi\)
\(464\) −1.11751e30 −0.0112211
\(465\) 1.71746e32i 1.68055i
\(466\) −4.29896e31 −0.409952
\(467\) 9.99569e31i 0.928988i 0.885576 + 0.464494i \(0.153764\pi\)
−0.885576 + 0.464494i \(0.846236\pi\)
\(468\) −4.13430e31 −0.374500
\(469\) 6.54328e31 0.577726
\(470\) 4.16250e31i 0.358245i
\(471\) 1.36462e32i 1.14488i
\(472\) −1.32166e31 −0.108097
\(473\) 5.91183e31 0.471399
\(474\) 2.00989e32i 1.56255i
\(475\) 1.29159e32i 0.979042i
\(476\) 8.84038e31 0.653412
\(477\) 9.27814e31i 0.668714i
\(478\) 9.31983e31 0.655048
\(479\) 1.49113e32i 1.02209i −0.859553 0.511046i \(-0.829258\pi\)
0.859553 0.511046i \(-0.170742\pi\)
\(480\) 3.16739e32i 2.11742i
\(481\) 5.47009e31i 0.356659i
\(482\) 9.59074e31i 0.609941i
\(483\) 4.55785e31 2.63133e32i 0.282745 1.63234i
\(484\) −7.01330e31 −0.424403
\(485\) 2.26551e32 1.33741
\(486\) −1.31574e32 −0.757767
\(487\) −1.37978e32 −0.775285 −0.387643 0.921810i \(-0.626711\pi\)
−0.387643 + 0.921810i \(0.626711\pi\)
\(488\) 9.86746e31i 0.540963i
\(489\) −3.65329e32 −1.95424
\(490\) 1.12163e32i 0.585457i
\(491\) 1.81487e32 0.924419 0.462209 0.886771i \(-0.347057\pi\)
0.462209 + 0.886771i \(0.347057\pi\)
\(492\) −9.25727e31 −0.460152
\(493\) 2.76627e32i 1.34194i
\(494\) 6.67453e31i 0.316007i
\(495\) 1.42094e32 0.656621
\(496\) −1.23924e30 −0.00558955
\(497\) 3.26496e32i 1.43748i
\(498\) 2.41649e32i 1.03856i
\(499\) 3.45332e32 1.44887 0.724437 0.689341i \(-0.242100\pi\)
0.724437 + 0.689341i \(0.242100\pi\)
\(500\) 1.45442e32i 0.595730i
\(501\) −1.67596e31 −0.0670208
\(502\) 2.10336e32i 0.821237i
\(503\) 5.08675e32i 1.93921i −0.244676 0.969605i \(-0.578682\pi\)
0.244676 0.969605i \(-0.421318\pi\)
\(504\) 2.47948e32i 0.922985i
\(505\) 7.82868e32i 2.84572i
\(506\) 1.66071e31 9.58760e31i 0.0589506 0.340333i
\(507\) −1.16463e32 −0.403733
\(508\) −2.75836e32 −0.933869
\(509\) 8.52710e31 0.281960 0.140980 0.990012i \(-0.454975\pi\)
0.140980 + 0.990012i \(0.454975\pi\)
\(510\) 3.44194e32 1.11163
\(511\) 5.00028e32i 1.57741i
\(512\) −4.58092e30 −0.0141160
\(513\) 7.17736e31i 0.216051i
\(514\) −3.32847e32 −0.978784
\(515\) 3.30011e32 0.948074
\(516\) 2.44155e32i 0.685283i
\(517\) 7.26497e31i 0.199227i
\(518\) 1.24911e32 0.334690
\(519\) −5.94203e32 −1.55570
\(520\) 5.25965e32i 1.34560i
\(521\) 6.19733e32i 1.54936i −0.632354 0.774680i \(-0.717911\pi\)
0.632354 0.774680i \(-0.282089\pi\)
\(522\) 2.95415e32 0.721749
\(523\) 3.84882e32i 0.918983i −0.888182 0.459491i \(-0.848032\pi\)
0.888182 0.459491i \(-0.151968\pi\)
\(524\) −1.07607e32 −0.251110
\(525\) 1.16271e33i 2.65192i
\(526\) 5.20312e32i 1.15994i
\(527\) 3.06762e32i 0.668457i
\(528\) 2.42682e30i 0.00516929i
\(529\) 4.52272e32 + 1.61527e32i 0.941741 + 0.336338i
\(530\) −4.49430e32 −0.914853
\(531\) 3.96507e31 0.0789072
\(532\) 2.43337e32 0.473444
\(533\) 2.48914e32 0.473504
\(534\) 3.00726e32i 0.559340i
\(535\) 1.40486e33 2.55497
\(536\) 2.58599e32i 0.459886i
\(537\) 9.15098e32 1.59139
\(538\) 5.77917e32 0.982830
\(539\) 1.95762e32i 0.325583i
\(540\) 2.15351e32i 0.350286i
\(541\) −3.09149e32 −0.491813 −0.245907 0.969294i \(-0.579086\pi\)
−0.245907 + 0.969294i \(0.579086\pi\)
\(542\) 3.34571e32 0.520592
\(543\) 1.13328e33i 1.72481i
\(544\) 5.65737e32i 0.842225i
\(545\) −6.97682e32 −1.01601
\(546\) 6.00852e32i 0.855964i
\(547\) 1.06440e33 1.48339 0.741697 0.670735i \(-0.234021\pi\)
0.741697 + 0.670735i \(0.234021\pi\)
\(548\) 6.86493e32i 0.935985i
\(549\) 2.96031e32i 0.394884i
\(550\) 4.23649e32i 0.552909i
\(551\) 7.61433e32i 0.972328i
\(552\) −1.03994e33 1.80132e32i −1.29939 0.225073i
\(553\) −1.97028e33 −2.40894
\(554\) −6.13484e32 −0.733983
\(555\) −7.76450e32 −0.909071
\(556\) −8.13508e30 −0.00932104
\(557\) 7.14655e32i 0.801371i 0.916216 + 0.400686i \(0.131228\pi\)
−0.916216 + 0.400686i \(0.868772\pi\)
\(558\) 3.27596e32 0.359524
\(559\) 6.56498e32i 0.705167i
\(560\) −1.36305e31 −0.0143303
\(561\) −6.00734e32 −0.618199
\(562\) 8.34486e32i 0.840588i
\(563\) 5.05716e31i 0.0498662i 0.999689 + 0.0249331i \(0.00793727\pi\)
−0.999689 + 0.0249331i \(0.992063\pi\)
\(564\) −3.00039e32 −0.289620
\(565\) −2.41574e33 −2.28281
\(566\) 6.47104e32i 0.598656i
\(567\) 1.66295e33i 1.50620i
\(568\) −1.29036e33 −1.14427
\(569\) 1.29822e33i 1.12720i 0.826046 + 0.563602i \(0.190585\pi\)
−0.826046 + 0.563602i \(0.809415\pi\)
\(570\) 9.47414e32 0.805455
\(571\) 3.51345e32i 0.292483i 0.989249 + 0.146241i \(0.0467176\pi\)
−0.989249 + 0.146241i \(0.953282\pi\)
\(572\) 3.49529e32i 0.284925i
\(573\) 3.75180e32i 0.299491i
\(574\) 5.68402e32i 0.444337i
\(575\) −2.06028e33 3.56870e32i −1.57729 0.273210i
\(576\) 6.11047e32 0.458147
\(577\) −6.61462e32 −0.485730 −0.242865 0.970060i \(-0.578087\pi\)
−0.242865 + 0.970060i \(0.578087\pi\)
\(578\) 2.48077e32 0.178423
\(579\) −1.25832e33 −0.886437
\(580\) 2.28462e33i 1.57644i
\(581\) −2.36886e33 −1.60113
\(582\) 1.02284e33i 0.677225i
\(583\) 7.84407e32 0.508767
\(584\) 1.97618e33 1.25566
\(585\) 1.57793e33i 0.982241i
\(586\) 1.51292e33i 0.922666i
\(587\) −4.14432e32 −0.247626 −0.123813 0.992306i \(-0.539512\pi\)
−0.123813 + 0.992306i \(0.539512\pi\)
\(588\) 8.08485e32 0.473308
\(589\) 8.44380e32i 0.484345i
\(590\) 1.92067e32i 0.107951i
\(591\) 1.31141e33 0.722252
\(592\) 5.60251e30i 0.00302358i
\(593\) −2.03259e33 −1.07496 −0.537480 0.843276i \(-0.680624\pi\)
−0.537480 + 0.843276i \(0.680624\pi\)
\(594\) 2.35421e32i 0.122014i
\(595\) 3.37409e33i 1.71377i
\(596\) 2.16618e33i 1.07830i
\(597\) 3.82372e32i 0.186550i
\(598\) 1.06469e33 + 1.84419e32i 0.509105 + 0.0881844i
\(599\) −1.34782e33 −0.631701 −0.315851 0.948809i \(-0.602290\pi\)
−0.315851 + 0.948809i \(0.602290\pi\)
\(600\) 4.59519e33 2.11100
\(601\) −1.60546e33 −0.722947 −0.361474 0.932382i \(-0.617726\pi\)
−0.361474 + 0.932382i \(0.617726\pi\)
\(602\) 1.49913e33 0.661731
\(603\) 7.75818e32i 0.335700i
\(604\) 1.25679e33 0.533112
\(605\) 2.67676e33i 1.11313i
\(606\) 3.53452e33 1.44099
\(607\) 1.42779e33 0.570689 0.285344 0.958425i \(-0.407892\pi\)
0.285344 + 0.958425i \(0.407892\pi\)
\(608\) 1.55723e33i 0.610252i
\(609\) 6.85454e33i 2.63373i
\(610\) 1.43396e33 0.540232
\(611\) 8.06762e32 0.298024
\(612\) 1.04818e33i 0.379680i
\(613\) 5.89613e32i 0.209431i 0.994502 + 0.104716i \(0.0333932\pi\)
−0.994502 + 0.104716i \(0.966607\pi\)
\(614\) −1.78463e33 −0.621625
\(615\) 3.53321e33i 1.20689i
\(616\) 2.09624e33 0.702220
\(617\) 5.32793e33i 1.75040i −0.483764 0.875198i \(-0.660731\pi\)
0.483764 0.875198i \(-0.339269\pi\)
\(618\) 1.48995e33i 0.480076i
\(619\) 2.25769e32i 0.0713472i 0.999363 + 0.0356736i \(0.0113577\pi\)
−0.999363 + 0.0356736i \(0.988642\pi\)
\(620\) 2.53350e33i 0.785273i
\(621\) −1.14489e33 1.98312e32i −0.348070 0.0602908i
\(622\) −1.35928e33 −0.405345
\(623\) 2.94799e33 0.862321
\(624\) −2.69494e31 −0.00773276
\(625\) −1.36039e32 −0.0382914
\(626\) 1.02884e33i 0.284091i
\(627\) −1.65356e33 −0.447929
\(628\) 2.01301e33i 0.534970i
\(629\) 1.38684e33 0.361592
\(630\) 3.60325e33 0.921738
\(631\) 5.19609e33i 1.30414i 0.758159 + 0.652070i \(0.226099\pi\)
−0.758159 + 0.652070i \(0.773901\pi\)
\(632\) 7.78680e33i 1.91758i
\(633\) 5.71633e33 1.38125
\(634\) −3.53711e33 −0.838643
\(635\) 1.05278e34i 2.44936i
\(636\) 3.23956e33i 0.739606i
\(637\) −2.17390e33 −0.487041
\(638\) 2.49754e33i 0.549117i
\(639\) 3.87117e33 0.835279
\(640\) 4.63898e33i 0.982343i
\(641\) 4.86886e33i 1.01188i −0.862567 0.505942i \(-0.831145\pi\)
0.862567 0.505942i \(-0.168855\pi\)
\(642\) 6.34270e33i 1.29376i
\(643\) 7.79323e32i 0.156022i 0.996952 + 0.0780110i \(0.0248569\pi\)
−0.996952 + 0.0780110i \(0.975143\pi\)
\(644\) −6.72347e32 + 3.88158e33i −0.132118 + 0.762743i
\(645\) −9.31864e33 −1.79736
\(646\) −1.69221e33 −0.320378
\(647\) 5.61019e33 1.04262 0.521310 0.853367i \(-0.325443\pi\)
0.521310 + 0.853367i \(0.325443\pi\)
\(648\) 6.57221e33 1.19898
\(649\) 3.35222e32i 0.0600338i
\(650\) −4.70454e33 −0.827098
\(651\) 7.60124e33i 1.31194i
\(652\) 5.38911e33 0.913159
\(653\) −1.33164e33 −0.221528 −0.110764 0.993847i \(-0.535330\pi\)
−0.110764 + 0.993847i \(0.535330\pi\)
\(654\) 3.14992e33i 0.514478i
\(655\) 4.10700e33i 0.658612i
\(656\) −2.54940e31 −0.00401413
\(657\) −5.92869e33 −0.916588
\(658\) 1.84226e33i 0.279667i
\(659\) 1.91061e33i 0.284805i −0.989809 0.142402i \(-0.954517\pi\)
0.989809 0.142402i \(-0.0454827\pi\)
\(660\) −4.96138e33 −0.726231
\(661\) 1.95955e33i 0.281669i −0.990033 0.140835i \(-0.955021\pi\)
0.990033 0.140835i \(-0.0449786\pi\)
\(662\) −2.83432e32 −0.0400086
\(663\) 6.67105e33i 0.924766i
\(664\) 9.36205e33i 1.27454i
\(665\) 9.28740e33i 1.24175i
\(666\) 1.48103e33i 0.194479i
\(667\) 1.21460e34 + 2.10386e33i 1.56647 + 0.271336i
\(668\) 2.47227e32 0.0313168
\(669\) −5.32865e33 −0.662985
\(670\) −3.75803e33 −0.459265
\(671\) −2.50275e33 −0.300433
\(672\) 1.40184e34i 1.65298i
\(673\) 3.67103e33 0.425213 0.212607 0.977138i \(-0.431805\pi\)
0.212607 + 0.977138i \(0.431805\pi\)
\(674\) 7.35576e33i 0.836968i
\(675\) 5.05896e33 0.565478
\(676\) 1.71800e33 0.188653
\(677\) 3.61652e33i 0.390146i 0.980789 + 0.195073i \(0.0624943\pi\)
−0.980789 + 0.195073i \(0.937506\pi\)
\(678\) 1.09067e34i 1.15594i
\(679\) −1.00268e34 −1.04406
\(680\) −1.33349e34 −1.36421
\(681\) 1.93610e34i 1.94609i
\(682\) 2.76961e33i 0.273531i
\(683\) −1.41895e34 −1.37695 −0.688477 0.725259i \(-0.741720\pi\)
−0.688477 + 0.725259i \(0.741720\pi\)
\(684\) 2.88517e33i 0.275105i
\(685\) 2.62013e34 2.45491
\(686\) 3.52186e33i 0.324252i
\(687\) 2.31034e34i 2.09023i
\(688\) 6.72390e31i 0.00597806i
\(689\) 8.71070e33i 0.761066i
\(690\) −2.61773e33 + 1.51126e34i −0.224769 + 1.29763i
\(691\) 1.53752e33 0.129743 0.0648716 0.997894i \(-0.479336\pi\)
0.0648716 + 0.997894i \(0.479336\pi\)
\(692\) 8.76533e33 0.726934
\(693\) −6.28889e33 −0.512596
\(694\) −8.17615e33 −0.654991
\(695\) 3.10490e32i 0.0244473i
\(696\) −2.70901e34 −2.09652
\(697\) 6.31077e33i 0.480053i
\(698\) 1.35938e34 1.01643
\(699\) −1.18270e34 −0.869256
\(700\) 1.71516e34i 1.23916i
\(701\) 2.01123e34i 1.42839i −0.699947 0.714195i \(-0.746793\pi\)
0.699947 0.714195i \(-0.253207\pi\)
\(702\) −2.61431e33 −0.182521
\(703\) 3.81737e33 0.261999
\(704\) 5.16601e33i 0.348565i
\(705\) 1.14516e34i 0.759618i
\(706\) −1.68564e33 −0.109928
\(707\) 3.46486e34i 2.22153i
\(708\) −1.38445e33 −0.0872725
\(709\) 1.17767e33i 0.0729908i 0.999334 + 0.0364954i \(0.0116194\pi\)
−0.999334 + 0.0364954i \(0.988381\pi\)
\(710\) 1.87518e34i 1.14273i
\(711\) 2.33610e34i 1.39977i
\(712\) 1.16508e34i 0.686432i
\(713\) 1.34691e34 + 2.33305e33i 0.780305 + 0.135160i
\(714\) −1.52335e34 −0.867803
\(715\) 1.33404e34 0.747303
\(716\) −1.34990e34 −0.743609
\(717\) 2.56400e34 1.38896
\(718\) 8.79147e33i 0.468347i
\(719\) −3.45260e34 −1.80884 −0.904419 0.426645i \(-0.859696\pi\)
−0.904419 + 0.426645i \(0.859696\pi\)
\(720\) 1.61613e32i 0.00832696i
\(721\) −1.46058e34 −0.740121
\(722\) 7.79437e33 0.388449
\(723\) 2.63853e34i 1.29331i
\(724\) 1.67175e34i 0.805951i
\(725\) −5.36696e34 −2.54491
\(726\) 1.20851e34 0.563653
\(727\) 4.15565e34i 1.90645i 0.302261 + 0.953225i \(0.402259\pi\)
−0.302261 + 0.953225i \(0.597741\pi\)
\(728\) 2.32784e34i 1.05045i
\(729\) −9.24506e33 −0.410374
\(730\) 2.87184e34i 1.25396i
\(731\) 1.66443e34 0.714920
\(732\) 1.03362e34i 0.436747i
\(733\) 1.68928e34i 0.702189i −0.936340 0.351095i \(-0.885810\pi\)
0.936340 0.351095i \(-0.114190\pi\)
\(734\) 1.13251e34i 0.463114i
\(735\) 3.08573e34i 1.24140i
\(736\) 2.48401e34 + 4.30266e33i 0.983148 + 0.170296i
\(737\) 6.55904e33 0.255406
\(738\) 6.73937e33 0.258192
\(739\) 2.35594e34 0.888037 0.444019 0.896018i \(-0.353552\pi\)
0.444019 + 0.896018i \(0.353552\pi\)
\(740\) 1.14537e34 0.424782
\(741\) 1.83625e34i 0.670058i
\(742\) 1.98911e34 0.714187
\(743\) 1.80673e34i 0.638303i 0.947704 + 0.319152i \(0.103398\pi\)
−0.947704 + 0.319152i \(0.896602\pi\)
\(744\) −3.00411e34 −1.04434
\(745\) 8.26761e34 2.82816
\(746\) 3.24475e34i 1.09223i
\(747\) 2.80868e34i 0.930370i
\(748\) 8.86167e33 0.288866
\(749\) −6.21768e34 −1.99456
\(750\) 2.50622e34i 0.791195i
\(751\) 4.06101e34i 1.26170i 0.775906 + 0.630848i \(0.217293\pi\)
−0.775906 + 0.630848i \(0.782707\pi\)
\(752\) −8.26292e31 −0.00252650
\(753\) 5.78660e34i 1.74134i
\(754\) 2.77348e34 0.821426
\(755\) 4.79676e34i 1.39825i
\(756\) 9.53113e33i 0.273453i
\(757\) 2.01142e34i 0.568005i −0.958824 0.284003i \(-0.908338\pi\)
0.958824 0.284003i \(-0.0916624\pi\)
\(758\) 2.24435e34i 0.623820i
\(759\) 4.56883e33 2.63767e34i 0.124998 0.721637i
\(760\) −3.67051e34 −0.988468
\(761\) 5.35041e34 1.41831 0.709155 0.705052i \(-0.249077\pi\)
0.709155 + 0.705052i \(0.249077\pi\)
\(762\) 4.75313e34 1.24028
\(763\) 3.08784e34 0.793158
\(764\) 5.53443e33i 0.139943i
\(765\) 4.00056e34 0.995827
\(766\) 2.07766e34i 0.509131i
\(767\) 3.72257e33 0.0898047
\(768\) −5.56431e34 −1.32153
\(769\) 4.62225e33i 0.108078i −0.998539 0.0540390i \(-0.982790\pi\)
0.998539 0.0540390i \(-0.0172095\pi\)
\(770\) 3.04632e34i 0.701272i
\(771\) −9.15703e34 −2.07540
\(772\) 1.85620e34 0.414206
\(773\) 4.14954e34i 0.911688i −0.890060 0.455844i \(-0.849338\pi\)
0.890060 0.455844i \(-0.150662\pi\)
\(774\) 1.77747e34i 0.384514i
\(775\) −5.95162e34 −1.26769
\(776\) 3.96273e34i 0.831102i
\(777\) 3.43645e34 0.709673
\(778\) 1.65258e34i 0.336053i
\(779\) 1.73708e34i 0.347832i
\(780\) 5.50952e34i 1.08637i
\(781\) 3.27282e34i 0.635492i
\(782\) 4.67561e33 2.69932e34i 0.0894041 0.516146i
\(783\) −2.98242e34 −0.561600
\(784\) 2.22652e32 0.00412890
\(785\) 7.68301e34 1.40312
\(786\) 1.85425e34 0.333501
\(787\) 1.61464e34i 0.286008i −0.989722 0.143004i \(-0.954324\pi\)
0.989722 0.143004i \(-0.0456762\pi\)
\(788\) −1.93451e34 −0.337487
\(789\) 1.43144e35i 2.45952i
\(790\) 1.13160e35 1.91499
\(791\) 1.06917e35 1.78209
\(792\) 2.48545e34i 0.408041i
\(793\) 2.77926e34i 0.449419i
\(794\) −3.95078e34 −0.629269
\(795\) −1.23644e35 −1.93984
\(796\) 5.64052e33i 0.0871691i
\(797\) 1.17547e35i 1.78941i 0.446655 + 0.894706i \(0.352615\pi\)
−0.446655 + 0.894706i \(0.647385\pi\)
\(798\) −4.19311e34 −0.628785
\(799\) 2.04540e34i 0.302146i
\(800\) −1.09761e35 −1.59723
\(801\) 3.49534e34i 0.501071i
\(802\) 3.90414e33i 0.0551357i
\(803\) 5.01233e34i 0.697353i
\(804\) 2.70885e34i 0.371289i
\(805\) 1.48148e35 + 2.56613e34i 2.00053 + 0.346520i
\(806\) 3.07561e34 0.409176
\(807\) 1.58992e35 2.08398
\(808\) −1.36936e35 −1.76840
\(809\) −1.03496e35 −1.31686 −0.658431 0.752641i \(-0.728780\pi\)
−0.658431 + 0.752641i \(0.728780\pi\)
\(810\) 9.55092e34i 1.19736i
\(811\) −4.75680e34 −0.587576 −0.293788 0.955871i \(-0.594916\pi\)
−0.293788 + 0.955871i \(0.594916\pi\)
\(812\) 1.01114e35i 1.23066i
\(813\) 9.20447e34 1.10386
\(814\) 1.25212e34 0.147963
\(815\) 2.05685e35i 2.39504i
\(816\) 6.83254e32i 0.00783971i
\(817\) 4.58145e34 0.518010
\(818\) −6.28524e34 −0.700297
\(819\) 6.98370e34i 0.766794i
\(820\) 5.21197e34i 0.563944i
\(821\) −8.46205e34 −0.902314 −0.451157 0.892445i \(-0.648988\pi\)
−0.451157 + 0.892445i \(0.648988\pi\)
\(822\) 1.18295e35i 1.24309i
\(823\) 1.61285e34 0.167031 0.0835154 0.996506i \(-0.473385\pi\)
0.0835154 + 0.996506i \(0.473385\pi\)
\(824\) 5.77241e34i 0.589157i
\(825\) 1.16551e35i 1.17238i
\(826\) 8.50059e33i 0.0842730i
\(827\) 1.06505e35i 1.04064i 0.853970 + 0.520322i \(0.174188\pi\)
−0.853970 + 0.520322i \(0.825812\pi\)
\(828\) −4.60227e34 7.97181e33i −0.443209 0.0767703i
\(829\) −9.14234e34 −0.867766 −0.433883 0.900969i \(-0.642857\pi\)
−0.433883 + 0.900969i \(0.642857\pi\)
\(830\) 1.36052e35 1.27282
\(831\) −1.68777e35 −1.55633
\(832\) 5.73676e34 0.521419
\(833\) 5.51152e34i 0.493778i
\(834\) 1.40182e33 0.0123794
\(835\) 9.43587e33i 0.0821380i
\(836\) 2.43923e34 0.209304
\(837\) −3.30731e34 −0.279749
\(838\) 6.34163e33i 0.0528777i
\(839\) 4.49497e34i 0.369473i 0.982788 + 0.184737i \(0.0591432\pi\)
−0.982788 + 0.184737i \(0.940857\pi\)
\(840\) −3.30425e35 −2.67745
\(841\) 1.91214e35 1.52746
\(842\) 6.97768e33i 0.0549497i
\(843\) 2.29577e35i 1.78237i
\(844\) −8.43238e34 −0.645418
\(845\) 6.55706e34i 0.494799i
\(846\) 2.18431e34 0.162507
\(847\) 1.18469e35i 0.868970i
\(848\) 8.92156e32i 0.00645195i
\(849\) 1.78026e35i 1.26938i
\(850\) 1.19275e35i 0.838538i
\(851\) −1.05475e34 + 6.08926e34i −0.0731130 + 0.422095i
\(852\) −1.35166e35 −0.923830
\(853\) 8.90497e34 0.600128 0.300064 0.953919i \(-0.402992\pi\)
0.300064 + 0.953919i \(0.402992\pi\)
\(854\) −6.34652e34 −0.421736
\(855\) 1.10118e35 0.721547
\(856\) 2.45731e35i 1.58772i
\(857\) −5.24238e34 −0.334009 −0.167005 0.985956i \(-0.553409\pi\)
−0.167005 + 0.985956i \(0.553409\pi\)
\(858\) 6.02299e34i 0.378412i
\(859\) 5.73350e34 0.355224 0.177612 0.984101i \(-0.443163\pi\)
0.177612 + 0.984101i \(0.443163\pi\)
\(860\) 1.37463e35 0.839855
\(861\) 1.56374e35i 0.942167i
\(862\) 1.03362e35i 0.614149i
\(863\) −1.78496e35 −1.04592 −0.522961 0.852357i \(-0.675173\pi\)
−0.522961 + 0.852357i \(0.675173\pi\)
\(864\) −6.09942e34 −0.352471
\(865\) 3.34545e35i 1.90661i
\(866\) 7.66539e34i 0.430844i
\(867\) 6.82490e34 0.378327
\(868\) 1.12129e35i 0.613029i
\(869\) −1.97502e35 −1.06496
\(870\) 3.93680e35i 2.09369i
\(871\) 7.28370e34i 0.382062i
\(872\) 1.22035e35i 0.631376i
\(873\) 1.18885e35i 0.606675i
\(874\) 1.28699e34 7.43003e34i 0.0647796 0.373984i
\(875\) −2.45682e35 −1.21977
\(876\) 2.07006e35 1.01376
\(877\) 1.39024e35 0.671575 0.335788 0.941938i \(-0.390998\pi\)
0.335788 + 0.941938i \(0.390998\pi\)
\(878\) −1.29846e35 −0.618722
\(879\) 4.16223e35i 1.95641i
\(880\) −1.36634e33 −0.00633527
\(881\) 3.77161e35i 1.72511i −0.505964 0.862554i \(-0.668863\pi\)
0.505964 0.862554i \(-0.331137\pi\)
\(882\) −5.88584e34 −0.265574
\(883\) −2.90854e35 −1.29463 −0.647317 0.762221i \(-0.724109\pi\)
−0.647317 + 0.762221i \(0.724109\pi\)
\(884\) 9.84073e34i 0.432116i
\(885\) 5.28400e34i 0.228899i
\(886\) −1.12106e34 −0.0479098
\(887\) −1.71434e35 −0.722791 −0.361396 0.932413i \(-0.617700\pi\)
−0.361396 + 0.932413i \(0.617700\pi\)
\(888\) 1.35813e35i 0.564920i
\(889\) 4.65944e35i 1.91211i
\(890\) −1.69313e35 −0.685505
\(891\) 1.66696e35i 0.665874i
\(892\) 7.86050e34 0.309793
\(893\) 5.63008e34i 0.218926i
\(894\) 3.73269e35i 1.43210i
\(895\) 5.15213e35i 1.95034i
\(896\) 2.05315e35i 0.766873i
\(897\) 2.92908e35 + 5.07360e34i 1.07950 + 0.186985i
\(898\) −1.52329e35 −0.553945
\(899\) 3.50866e35 1.25900
\(900\) 2.03361e35 0.720043
\(901\) 2.20844e35 0.771593
\(902\) 5.69771e34i 0.196436i
\(903\) 4.12429e35 1.40313
\(904\) 4.22551e35i 1.41859i
\(905\) 6.38054e35 2.11385
\(906\) −2.16566e35 −0.708031
\(907\) 2.82539e34i 0.0911571i −0.998961 0.0455785i \(-0.985487\pi\)
0.998961 0.0455785i \(-0.0145131\pi\)
\(908\) 2.85602e35i 0.909349i
\(909\) 4.10818e35 1.29087
\(910\) 3.38288e35 1.04903
\(911\) 5.14033e35i 1.57315i 0.617494 + 0.786576i \(0.288148\pi\)
−0.617494 + 0.786576i \(0.711852\pi\)
\(912\) 1.88070e33i 0.00568042i
\(913\) −2.37456e35 −0.707839
\(914\) 1.49620e35i 0.440186i
\(915\) 3.94502e35 1.14550
\(916\) 3.40807e35i 0.976704i
\(917\) 1.81770e35i 0.514150i
\(918\) 6.62811e34i 0.185045i
\(919\) 5.17091e35i 1.42489i 0.701729 + 0.712444i \(0.252412\pi\)
−0.701729 + 0.712444i \(0.747588\pi\)
\(920\) 1.01417e35 5.85499e35i 0.275840 1.59247i
\(921\) −4.90975e35 −1.31808
\(922\) 3.38096e35 0.895918
\(923\) 3.63441e35 0.950635
\(924\) 2.19583e35 0.566938
\(925\) 2.69067e35i 0.685741i
\(926\) 2.62888e35 0.661361
\(927\) 1.73177e35i 0.430064i
\(928\) 6.47076e35 1.58628
\(929\) −2.85109e35 −0.689957 −0.344978 0.938611i \(-0.612114\pi\)
−0.344978 + 0.938611i \(0.612114\pi\)
\(930\) 4.36566e35i 1.04293i
\(931\) 1.51708e35i 0.357777i
\(932\) 1.74464e35 0.406178
\(933\) −3.73955e35 −0.859488
\(934\) 2.54082e35i 0.576517i
\(935\) 3.38222e35i 0.757639i
\(936\) −2.76005e35 −0.610390
\(937\) 4.82264e35i 1.05296i 0.850189 + 0.526478i \(0.176488\pi\)
−0.850189 + 0.526478i \(0.823512\pi\)
\(938\) 1.66325e35 0.358528
\(939\) 2.83048e35i 0.602382i
\(940\) 1.68926e35i 0.354947i
\(941\) 5.39815e35i 1.11988i 0.828535 + 0.559938i \(0.189175\pi\)
−0.828535 + 0.559938i \(0.810825\pi\)
\(942\) 3.46876e35i 0.710498i
\(943\) 2.77089e35 + 4.79960e34i 0.560376 + 0.0970654i
\(944\) −3.81269e32 −0.000761320
\(945\) −3.63773e35 −0.717214
\(946\) 1.50274e35 0.292543
\(947\) −6.96308e35 −1.33845 −0.669224 0.743061i \(-0.733373\pi\)
−0.669224 + 0.743061i \(0.733373\pi\)
\(948\) 8.15673e35i 1.54816i
\(949\) −5.56610e35 −1.04317
\(950\) 3.28312e35i 0.607580i
\(951\) −9.73102e35 −1.77825
\(952\) 5.90182e35 1.06498
\(953\) 2.53890e35i 0.452408i −0.974080 0.226204i \(-0.927368\pi\)
0.974080 0.226204i \(-0.0726317\pi\)
\(954\) 2.35843e35i 0.414994i
\(955\) −2.11232e35 −0.367044
\(956\) −3.78226e35 −0.649018
\(957\) 6.87105e35i 1.16434i
\(958\) 3.79034e35i 0.634296i
\(959\) −1.15963e36 −1.91644
\(960\) 8.14303e35i 1.32902i
\(961\) −2.31324e35 −0.372856
\(962\) 1.39045e35i 0.221338i
\(963\) 7.37212e35i 1.15898i
\(964\) 3.89220e35i 0.604326i
\(965\) 7.08451e35i 1.08638i
\(966\) 1.15857e35 6.68863e35i 0.175467 1.01301i
\(967\) 1.39622e34 0.0208851 0.0104425 0.999945i \(-0.496676\pi\)
0.0104425 + 0.999945i \(0.496676\pi\)
\(968\) −4.68206e35 −0.691724
\(969\) −4.65547e35 −0.679326
\(970\) 5.75875e35 0.829979
\(971\) 7.68732e35i 1.09432i −0.837028 0.547160i \(-0.815709\pi\)
0.837028 0.547160i \(-0.184291\pi\)
\(972\) 5.33967e35 0.750791
\(973\) 1.37418e34i 0.0190850i
\(974\) −3.50728e35 −0.481131
\(975\) −1.29428e36 −1.75377
\(976\) 2.84654e33i 0.00380995i
\(977\) 2.95612e35i 0.390829i 0.980721 + 0.195415i \(0.0626053\pi\)
−0.980721 + 0.195415i \(0.937395\pi\)
\(978\) −9.28637e35 −1.21277
\(979\) 2.95509e35 0.381222
\(980\) 4.55188e35i 0.580067i
\(981\) 3.66115e35i 0.460882i
\(982\) 4.61327e35 0.573681
\(983\) 1.58130e36i 1.94255i 0.237965 + 0.971274i \(0.423520\pi\)
−0.237965 + 0.971274i \(0.576480\pi\)
\(984\) −6.18013e35 −0.749992
\(985\) 7.38343e35i 0.885163i
\(986\) 7.03164e35i 0.832787i
\(987\) 5.06829e35i 0.593001i
\(988\) 2.70872e35i 0.313098i
\(989\) −1.26587e35 + 7.30809e35i −0.144555 + 0.834542i
\(990\) 3.61193e35 0.407490
\(991\) 1.35345e35 0.150854 0.0754271 0.997151i \(-0.475968\pi\)
0.0754271 + 0.997151i \(0.475968\pi\)
\(992\) 7.17566e35 0.790172
\(993\) −7.79757e34 −0.0848337
\(994\) 8.29927e35i 0.892079i
\(995\) 2.15281e35 0.228628
\(996\) 9.80682e35i 1.02900i
\(997\) 8.11789e35 0.841592 0.420796 0.907155i \(-0.361751\pi\)
0.420796 + 0.907155i \(0.361751\pi\)
\(998\) 8.77807e35 0.899151
\(999\) 1.49520e35i 0.151326i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.27 44
23.22 odd 2 inner 23.25.b.c.22.28 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.27 44 1.1 even 1 trivial
23.25.b.c.22.28 yes 44 23.22 odd 2 inner