Properties

Label 23.25.b.c.22.18
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.18
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2739.52 q^{2} -10954.6 q^{3} -9.27226e6 q^{4} -2.86680e8i q^{5} +3.00102e7 q^{6} +2.46062e10i q^{7} +7.13630e10 q^{8} -2.82310e11 q^{9} +7.85365e11i q^{10} -4.90962e12i q^{11} +1.01573e11 q^{12} -1.92690e13 q^{13} -6.74091e13i q^{14} +3.14045e12i q^{15} -3.99374e13 q^{16} -1.36095e14i q^{17} +7.73392e14 q^{18} +2.47427e15i q^{19} +2.65817e15i q^{20} -2.69550e14i q^{21} +1.34500e16i q^{22} +(1.62284e16 + 1.47271e16i) q^{23} -7.81750e14 q^{24} -2.25809e16 q^{25} +5.27877e16 q^{26} +6.18646e15 q^{27} -2.28155e17i q^{28} -6.01690e17 q^{29} -8.60333e15i q^{30} -5.44628e17 q^{31} -1.08786e18 q^{32} +5.37826e16i q^{33} +3.72836e17i q^{34} +7.05411e18 q^{35} +2.61765e18 q^{36} +1.13458e19i q^{37} -6.77830e18i q^{38} +2.11083e17 q^{39} -2.04584e19i q^{40} -3.48372e19 q^{41} +7.38437e17i q^{42} +8.67301e18i q^{43} +4.55232e19i q^{44} +8.09326e19i q^{45} +(-4.44581e19 - 4.03452e19i) q^{46} +1.32257e20 q^{47} +4.37496e17 q^{48} -4.13884e20 q^{49} +6.18608e19 q^{50} +1.49086e18i q^{51} +1.78667e20 q^{52} -1.82135e20i q^{53} -1.69479e19 q^{54} -1.40749e21 q^{55} +1.75597e21i q^{56} -2.71045e19i q^{57} +1.64834e21 q^{58} -7.47014e20 q^{59} -2.91191e19i q^{60} +7.14079e20i q^{61} +1.49202e21 q^{62} -6.94657e21i q^{63} +3.65026e21 q^{64} +5.52404e21i q^{65} -1.47338e20i q^{66} -4.33668e21i q^{67} +1.26191e21i q^{68} +(-1.77775e20 - 1.61329e20i) q^{69} -1.93249e22 q^{70} +2.99449e22 q^{71} -2.01465e22 q^{72} -1.89373e22 q^{73} -3.10819e22i q^{74} +2.47364e20 q^{75} -2.29421e22i q^{76} +1.20807e23 q^{77} -5.78266e20 q^{78} -1.64671e22i q^{79} +1.14493e22i q^{80} +7.96648e22 q^{81} +9.54371e22 q^{82} +3.52773e22i q^{83} +2.49934e21i q^{84} -3.90159e22 q^{85} -2.37599e22i q^{86} +6.59125e21 q^{87} -3.50365e23i q^{88} +1.37936e23i q^{89} -2.21716e23i q^{90} -4.74136e23i q^{91} +(-1.50474e23 - 1.36554e23i) q^{92} +5.96616e21 q^{93} -3.62320e23 q^{94} +7.09323e23 q^{95} +1.19171e22 q^{96} +2.08536e23i q^{97} +1.13384e24 q^{98} +1.38603e24i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2739.52 −0.668827 −0.334414 0.942426i \(-0.608538\pi\)
−0.334414 + 0.942426i \(0.608538\pi\)
\(3\) −10954.6 −0.0206129 −0.0103065 0.999947i \(-0.503281\pi\)
−0.0103065 + 0.999947i \(0.503281\pi\)
\(4\) −9.27226e6 −0.552670
\(5\) 2.86680e8i 1.17424i −0.809499 0.587121i \(-0.800261\pi\)
0.809499 0.587121i \(-0.199739\pi\)
\(6\) 3.00102e7 0.0137865
\(7\) 2.46062e10i 1.77774i 0.458160 + 0.888870i \(0.348509\pi\)
−0.458160 + 0.888870i \(0.651491\pi\)
\(8\) 7.13630e10 1.03847
\(9\) −2.82310e11 −0.999575
\(10\) 7.85365e11i 0.785365i
\(11\) 4.90962e12i 1.56435i −0.623056 0.782177i \(-0.714109\pi\)
0.623056 0.782177i \(-0.285891\pi\)
\(12\) 1.01573e11 0.0113921
\(13\) −1.92690e13 −0.827063 −0.413531 0.910490i \(-0.635705\pi\)
−0.413531 + 0.910490i \(0.635705\pi\)
\(14\) 6.74091e13i 1.18900i
\(15\) 3.14045e12i 0.0242046i
\(16\) −3.99374e13 −0.141886
\(17\) 1.36095e14i 0.233591i −0.993156 0.116796i \(-0.962738\pi\)
0.993156 0.116796i \(-0.0372622\pi\)
\(18\) 7.73392e14 0.668543
\(19\) 2.47427e15i 1.11790i 0.829201 + 0.558950i \(0.188796\pi\)
−0.829201 + 0.558950i \(0.811204\pi\)
\(20\) 2.65817e15i 0.648968i
\(21\) 2.69550e14i 0.0366444i
\(22\) 1.34500e16i 1.04628i
\(23\) 1.62284e16 + 1.47271e16i 0.740530 + 0.672023i
\(24\) −7.81750e14 −0.0214059
\(25\) −2.25809e16 −0.378845
\(26\) 5.27877e16 0.553162
\(27\) 6.18646e15 0.0412171
\(28\) 2.28155e17i 0.982503i
\(29\) −6.01690e17 −1.70058 −0.850290 0.526315i \(-0.823573\pi\)
−0.850290 + 0.526315i \(0.823573\pi\)
\(30\) 8.60333e15i 0.0161887i
\(31\) −5.44628e17 −0.691448 −0.345724 0.938336i \(-0.612367\pi\)
−0.345724 + 0.938336i \(0.612367\pi\)
\(32\) −1.08786e18 −0.943571
\(33\) 5.37826e16i 0.0322459i
\(34\) 3.72836e17i 0.156232i
\(35\) 7.05411e18 2.08750
\(36\) 2.61765e18 0.552435
\(37\) 1.13458e19i 1.72350i 0.507329 + 0.861752i \(0.330633\pi\)
−0.507329 + 0.861752i \(0.669367\pi\)
\(38\) 6.77830e18i 0.747683i
\(39\) 2.11083e17 0.0170482
\(40\) 2.04584e19i 1.21941i
\(41\) −3.48372e19 −1.54396 −0.771981 0.635645i \(-0.780734\pi\)
−0.771981 + 0.635645i \(0.780734\pi\)
\(42\) 7.38437e17i 0.0245088i
\(43\) 8.67301e18i 0.217044i 0.994094 + 0.108522i \(0.0346119\pi\)
−0.994094 + 0.108522i \(0.965388\pi\)
\(44\) 4.55232e19i 0.864572i
\(45\) 8.09326e19i 1.17374i
\(46\) −4.44581e19 4.03452e19i −0.495287 0.449467i
\(47\) 1.32257e20 1.13827 0.569133 0.822245i \(-0.307279\pi\)
0.569133 + 0.822245i \(0.307279\pi\)
\(48\) 4.37496e17 0.00292469
\(49\) −4.13884e20 −2.16036
\(50\) 6.18608e19 0.253382
\(51\) 1.49086e18i 0.00481500i
\(52\) 1.78667e20 0.457093
\(53\) 1.82135e20i 0.370752i −0.982668 0.185376i \(-0.940650\pi\)
0.982668 0.185376i \(-0.0593503\pi\)
\(54\) −1.69479e19 −0.0275671
\(55\) −1.40749e21 −1.83693
\(56\) 1.75597e21i 1.84613i
\(57\) 2.71045e19i 0.0230432i
\(58\) 1.64834e21 1.13739
\(59\) −7.47014e20 −0.419860 −0.209930 0.977716i \(-0.567324\pi\)
−0.209930 + 0.977716i \(0.567324\pi\)
\(60\) 2.91191e19i 0.0133771i
\(61\) 7.14079e20i 0.269022i 0.990912 + 0.134511i \(0.0429464\pi\)
−0.990912 + 0.134511i \(0.957054\pi\)
\(62\) 1.49202e21 0.462460
\(63\) 6.94657e21i 1.77698i
\(64\) 3.65026e21 0.772972
\(65\) 5.52404e21i 0.971172i
\(66\) 1.47338e20i 0.0215670i
\(67\) 4.33668e21i 0.529981i −0.964251 0.264990i \(-0.914631\pi\)
0.964251 0.264990i \(-0.0853688\pi\)
\(68\) 1.26191e21i 0.129099i
\(69\) −1.77775e20 1.61329e20i −0.0152645 0.0138524i
\(70\) −1.93249e22 −1.39617
\(71\) 2.99449e22 1.82483 0.912415 0.409265i \(-0.134215\pi\)
0.912415 + 0.409265i \(0.134215\pi\)
\(72\) −2.01465e22 −1.03803
\(73\) −1.89373e22 −0.826881 −0.413440 0.910531i \(-0.635673\pi\)
−0.413440 + 0.910531i \(0.635673\pi\)
\(74\) 3.10819e22i 1.15273i
\(75\) 2.47364e20 0.00780910
\(76\) 2.29421e22i 0.617830i
\(77\) 1.20807e23 2.78101
\(78\) −5.78266e20 −0.0114023
\(79\) 1.64671e22i 0.278671i −0.990245 0.139335i \(-0.955503\pi\)
0.990245 0.139335i \(-0.0444966\pi\)
\(80\) 1.14493e22i 0.166609i
\(81\) 7.96648e22 0.998726
\(82\) 9.54371e22 1.03264
\(83\) 3.52773e22i 0.330033i 0.986291 + 0.165017i \(0.0527678\pi\)
−0.986291 + 0.165017i \(0.947232\pi\)
\(84\) 2.49934e21i 0.0202523i
\(85\) −3.90159e22 −0.274293
\(86\) 2.37599e22i 0.145165i
\(87\) 6.59125e21 0.0350539
\(88\) 3.50365e23i 1.62453i
\(89\) 1.37936e23i 0.558469i 0.960223 + 0.279235i \(0.0900807\pi\)
−0.960223 + 0.279235i \(0.909919\pi\)
\(90\) 2.21716e23i 0.785032i
\(91\) 4.74136e23i 1.47030i
\(92\) −1.50474e23 1.36554e23i −0.409269 0.371407i
\(93\) 5.96616e21 0.0142528
\(94\) −3.62320e23 −0.761304
\(95\) 7.09323e23 1.31269
\(96\) 1.19171e22 0.0194498
\(97\) 2.08536e23i 0.300553i 0.988644 + 0.150277i \(0.0480164\pi\)
−0.988644 + 0.150277i \(0.951984\pi\)
\(98\) 1.13384e24 1.44491
\(99\) 1.38603e24i 1.56369i
\(100\) 2.09376e23 0.209376
\(101\) 1.19453e24 1.06008 0.530040 0.847972i \(-0.322177\pi\)
0.530040 + 0.847972i \(0.322177\pi\)
\(102\) 4.08425e21i 0.00322040i
\(103\) 3.59869e23i 0.252405i −0.992004 0.126203i \(-0.959721\pi\)
0.992004 0.126203i \(-0.0402789\pi\)
\(104\) −1.37509e24 −0.858878
\(105\) −7.72746e22 −0.0430294
\(106\) 4.98962e23i 0.247969i
\(107\) 3.54957e24i 1.57605i −0.615643 0.788026i \(-0.711103\pi\)
0.615643 0.788026i \(-0.288897\pi\)
\(108\) −5.73625e22 −0.0227794
\(109\) 5.17485e24i 1.83984i −0.392105 0.919920i \(-0.628253\pi\)
0.392105 0.919920i \(-0.371747\pi\)
\(110\) 3.85584e24 1.22859
\(111\) 1.24288e23i 0.0355265i
\(112\) 9.82707e23i 0.252236i
\(113\) 1.15328e24i 0.266069i −0.991111 0.133035i \(-0.957528\pi\)
0.991111 0.133035i \(-0.0424722\pi\)
\(114\) 7.42532e22i 0.0154119i
\(115\) 4.22198e24 4.65237e24i 0.789118 0.869562i
\(116\) 5.57903e24 0.939859
\(117\) 5.43982e24 0.826711
\(118\) 2.04646e24 0.280814
\(119\) 3.34879e24 0.415264
\(120\) 2.24112e23i 0.0251357i
\(121\) −1.42546e25 −1.44721
\(122\) 1.95623e24i 0.179929i
\(123\) 3.81626e23 0.0318256
\(124\) 5.04994e24 0.382143
\(125\) 1.06140e25i 0.729387i
\(126\) 1.90302e25i 1.18850i
\(127\) 1.21224e25 0.688562 0.344281 0.938867i \(-0.388123\pi\)
0.344281 + 0.938867i \(0.388123\pi\)
\(128\) 8.25137e24 0.426586
\(129\) 9.50090e22i 0.00447392i
\(130\) 1.51332e25i 0.649547i
\(131\) 2.80894e25 1.09973 0.549867 0.835252i \(-0.314678\pi\)
0.549867 + 0.835252i \(0.314678\pi\)
\(132\) 4.98687e23i 0.0178214i
\(133\) −6.08823e25 −1.98734
\(134\) 1.18804e25i 0.354466i
\(135\) 1.77354e24i 0.0483988i
\(136\) 9.71218e24i 0.242577i
\(137\) 7.52786e24i 0.172197i −0.996287 0.0860983i \(-0.972560\pi\)
0.996287 0.0860983i \(-0.0274399\pi\)
\(138\) 4.87019e23 + 4.41964e23i 0.0102093 + 0.00926483i
\(139\) 2.16977e24 0.0417095 0.0208548 0.999783i \(-0.493361\pi\)
0.0208548 + 0.999783i \(0.493361\pi\)
\(140\) −6.54076e25 −1.15370
\(141\) −1.44882e24 −0.0234630
\(142\) −8.20345e25 −1.22050
\(143\) 9.46033e25i 1.29382i
\(144\) 1.12747e25 0.141826
\(145\) 1.72493e26i 1.99689i
\(146\) 5.18790e25 0.553041
\(147\) 4.53391e24 0.0445313
\(148\) 1.05201e26i 0.952529i
\(149\) 1.34910e25i 0.112671i −0.998412 0.0563353i \(-0.982058\pi\)
0.998412 0.0563353i \(-0.0179416\pi\)
\(150\) −6.77657e23 −0.00522294
\(151\) −1.07201e26 −0.762914 −0.381457 0.924387i \(-0.624578\pi\)
−0.381457 + 0.924387i \(0.624578\pi\)
\(152\) 1.76571e26i 1.16090i
\(153\) 3.84210e25i 0.233492i
\(154\) −3.30953e26 −1.86002
\(155\) 1.56134e26i 0.811928i
\(156\) −1.95722e24 −0.00942202
\(157\) 3.67688e26i 1.63940i −0.572796 0.819698i \(-0.694141\pi\)
0.572796 0.819698i \(-0.305859\pi\)
\(158\) 4.51118e25i 0.186383i
\(159\) 1.99521e24i 0.00764228i
\(160\) 3.11869e26i 1.10798i
\(161\) −3.62379e26 + 3.99320e26i −1.19468 + 1.31647i
\(162\) −2.18243e26 −0.667975
\(163\) 3.20281e26 0.910499 0.455250 0.890364i \(-0.349550\pi\)
0.455250 + 0.890364i \(0.349550\pi\)
\(164\) 3.23020e26 0.853302
\(165\) 1.54184e25 0.0378645
\(166\) 9.66427e25i 0.220735i
\(167\) 1.29054e26 0.274268 0.137134 0.990553i \(-0.456211\pi\)
0.137134 + 0.990553i \(0.456211\pi\)
\(168\) 1.92359e25i 0.0380540i
\(169\) −1.71507e26 −0.315967
\(170\) 1.06885e26 0.183454
\(171\) 6.98509e26i 1.11743i
\(172\) 8.04185e25i 0.119954i
\(173\) −2.62009e26 −0.364555 −0.182278 0.983247i \(-0.558347\pi\)
−0.182278 + 0.983247i \(0.558347\pi\)
\(174\) −1.80568e25 −0.0234450
\(175\) 5.55631e26i 0.673488i
\(176\) 1.96077e26i 0.221960i
\(177\) 8.18320e24 0.00865454
\(178\) 3.77879e26i 0.373519i
\(179\) 4.90735e26 0.453534 0.226767 0.973949i \(-0.427184\pi\)
0.226767 + 0.973949i \(0.427184\pi\)
\(180\) 7.50428e26i 0.648693i
\(181\) 7.46775e26i 0.604014i −0.953306 0.302007i \(-0.902343\pi\)
0.953306 0.302007i \(-0.0976566\pi\)
\(182\) 1.29890e27i 0.983378i
\(183\) 7.82241e24i 0.00554533i
\(184\) 1.15811e27 + 1.05097e27i 0.769017 + 0.697874i
\(185\) 3.25260e27 2.02381
\(186\) −1.63444e25 −0.00953265
\(187\) −6.68176e26 −0.365420
\(188\) −1.22632e27 −0.629086
\(189\) 1.52225e26i 0.0732732i
\(190\) −1.94320e27 −0.877961
\(191\) 9.55778e26i 0.405468i 0.979234 + 0.202734i \(0.0649827\pi\)
−0.979234 + 0.202734i \(0.935017\pi\)
\(192\) −3.99869e25 −0.0159332
\(193\) 9.47524e26 0.354734 0.177367 0.984145i \(-0.443242\pi\)
0.177367 + 0.984145i \(0.443242\pi\)
\(194\) 5.71289e26i 0.201018i
\(195\) 6.05133e25i 0.0200187i
\(196\) 3.83764e27 1.19396
\(197\) −6.73351e26 −0.197082 −0.0985410 0.995133i \(-0.531418\pi\)
−0.0985410 + 0.995133i \(0.531418\pi\)
\(198\) 3.79706e27i 1.04584i
\(199\) 9.68492e26i 0.251107i −0.992087 0.125554i \(-0.959929\pi\)
0.992087 0.125554i \(-0.0400707\pi\)
\(200\) −1.61144e27 −0.393418
\(201\) 4.75064e25i 0.0109245i
\(202\) −3.27242e27 −0.709011
\(203\) 1.48053e28i 3.02319i
\(204\) 1.38237e25i 0.00266110i
\(205\) 9.98713e27i 1.81299i
\(206\) 9.85868e26i 0.168815i
\(207\) −4.58145e27 4.15761e27i −0.740216 0.671737i
\(208\) 7.69552e26 0.117349
\(209\) 1.21477e28 1.74879
\(210\) 2.11695e26 0.0287792
\(211\) 1.13991e28 1.46380 0.731900 0.681412i \(-0.238634\pi\)
0.731900 + 0.681412i \(0.238634\pi\)
\(212\) 1.68880e27i 0.204903i
\(213\) −3.28033e26 −0.0376151
\(214\) 9.72410e27i 1.05411i
\(215\) 2.48638e27 0.254863
\(216\) 4.41485e26 0.0428026
\(217\) 1.34012e28i 1.22922i
\(218\) 1.41766e28i 1.23054i
\(219\) 2.07449e26 0.0170444
\(220\) 1.30506e28 1.01522
\(221\) 2.62242e27i 0.193195i
\(222\) 3.40488e26i 0.0237611i
\(223\) −2.58963e28 −1.71230 −0.856149 0.516728i \(-0.827150\pi\)
−0.856149 + 0.516728i \(0.827150\pi\)
\(224\) 2.67682e28i 1.67742i
\(225\) 6.37481e27 0.378684
\(226\) 3.15944e27i 0.177954i
\(227\) 1.45554e28i 0.777522i −0.921339 0.388761i \(-0.872903\pi\)
0.921339 0.388761i \(-0.127097\pi\)
\(228\) 2.51320e26i 0.0127353i
\(229\) 2.46317e28i 1.18432i 0.805820 + 0.592160i \(0.201725\pi\)
−0.805820 + 0.592160i \(0.798275\pi\)
\(230\) −1.15662e28 + 1.27453e28i −0.527783 + 0.581587i
\(231\) −1.32339e27 −0.0573248
\(232\) −4.29384e28 −1.76600
\(233\) 2.20706e28 0.862069 0.431035 0.902335i \(-0.358149\pi\)
0.431035 + 0.902335i \(0.358149\pi\)
\(234\) −1.49025e28 −0.552927
\(235\) 3.79154e28i 1.33660i
\(236\) 6.92651e27 0.232044
\(237\) 1.80389e26i 0.00574422i
\(238\) −9.17407e27 −0.277740
\(239\) −3.39023e28 −0.976011 −0.488006 0.872841i \(-0.662275\pi\)
−0.488006 + 0.872841i \(0.662275\pi\)
\(240\) 1.25421e26i 0.00343429i
\(241\) 7.00766e28i 1.82544i 0.408582 + 0.912722i \(0.366023\pi\)
−0.408582 + 0.912722i \(0.633977\pi\)
\(242\) 3.90507e28 0.967931
\(243\) −2.61993e27 −0.0618037
\(244\) 6.62113e27i 0.148680i
\(245\) 1.18652e29i 2.53678i
\(246\) −1.04547e27 −0.0212858
\(247\) 4.76766e28i 0.924574i
\(248\) −3.88663e28 −0.718047
\(249\) 3.86447e26i 0.00680295i
\(250\) 2.90772e28i 0.487834i
\(251\) 6.94667e28i 1.11094i 0.831535 + 0.555472i \(0.187462\pi\)
−0.831535 + 0.555472i \(0.812538\pi\)
\(252\) 6.44104e28i 0.982086i
\(253\) 7.23045e28 7.96754e28i 1.05128 1.15845i
\(254\) −3.32094e28 −0.460529
\(255\) 4.27401e26 0.00565397
\(256\) −8.38459e28 −1.05828
\(257\) 2.52176e28 0.303743 0.151871 0.988400i \(-0.451470\pi\)
0.151871 + 0.988400i \(0.451470\pi\)
\(258\) 2.60279e26i 0.00299228i
\(259\) −2.79176e29 −3.06394
\(260\) 5.12203e28i 0.536738i
\(261\) 1.69863e29 1.69986
\(262\) −7.69515e28 −0.735532
\(263\) 1.00843e29i 0.920826i −0.887705 0.460413i \(-0.847701\pi\)
0.887705 0.460413i \(-0.152299\pi\)
\(264\) 3.83809e27i 0.0334864i
\(265\) −5.22145e28 −0.435352
\(266\) 1.66788e29 1.32918
\(267\) 1.51103e27i 0.0115117i
\(268\) 4.02109e28i 0.292904i
\(269\) −2.42276e29 −1.68765 −0.843825 0.536618i \(-0.819702\pi\)
−0.843825 + 0.536618i \(0.819702\pi\)
\(270\) 4.85863e27i 0.0323705i
\(271\) 1.13062e29 0.720587 0.360294 0.932839i \(-0.382677\pi\)
0.360294 + 0.932839i \(0.382677\pi\)
\(272\) 5.43529e27i 0.0331433i
\(273\) 5.19395e27i 0.0303072i
\(274\) 2.06227e28i 0.115170i
\(275\) 1.10864e29i 0.592648i
\(276\) 1.64838e27 + 1.49589e27i 0.00843623 + 0.00765578i
\(277\) 2.45377e29 1.20247 0.601237 0.799071i \(-0.294675\pi\)
0.601237 + 0.799071i \(0.294675\pi\)
\(278\) −5.94411e27 −0.0278965
\(279\) 1.53754e29 0.691155
\(280\) 5.03403e29 2.16780
\(281\) 1.82027e29i 0.751034i −0.926815 0.375517i \(-0.877465\pi\)
0.926815 0.375517i \(-0.122535\pi\)
\(282\) 3.96905e27 0.0156927
\(283\) 1.73983e29i 0.659278i 0.944107 + 0.329639i \(0.106927\pi\)
−0.944107 + 0.329639i \(0.893073\pi\)
\(284\) −2.77657e29 −1.00853
\(285\) −7.77032e27 −0.0270583
\(286\) 2.59167e29i 0.865342i
\(287\) 8.57211e29i 2.74476i
\(288\) 3.07114e29 0.943170
\(289\) 3.20927e29 0.945435
\(290\) 4.72547e29i 1.33558i
\(291\) 2.28442e27i 0.00619528i
\(292\) 1.75591e29 0.456992
\(293\) 1.41977e29i 0.354655i −0.984152 0.177327i \(-0.943255\pi\)
0.984152 0.177327i \(-0.0567451\pi\)
\(294\) −1.24207e28 −0.0297837
\(295\) 2.14154e29i 0.493017i
\(296\) 8.09667e29i 1.78980i
\(297\) 3.03732e28i 0.0644781i
\(298\) 3.69590e28i 0.0753572i
\(299\) −3.12706e29 2.83777e29i −0.612465 0.555805i
\(300\) −2.29362e27 −0.00431586
\(301\) −2.13410e29 −0.385848
\(302\) 2.93679e29 0.510258
\(303\) −1.30855e28 −0.0218514
\(304\) 9.88157e28i 0.158614i
\(305\) 2.04712e29 0.315897
\(306\) 1.05255e29i 0.156166i
\(307\) 4.80574e29 0.685646 0.342823 0.939400i \(-0.388617\pi\)
0.342823 + 0.939400i \(0.388617\pi\)
\(308\) −1.12015e30 −1.53698
\(309\) 3.94221e27i 0.00520281i
\(310\) 4.27732e29i 0.543040i
\(311\) 7.32540e29 0.894760 0.447380 0.894344i \(-0.352357\pi\)
0.447380 + 0.894344i \(0.352357\pi\)
\(312\) 1.50635e28 0.0177040
\(313\) 4.58754e29i 0.518857i −0.965762 0.259428i \(-0.916466\pi\)
0.965762 0.259428i \(-0.0835341\pi\)
\(314\) 1.00729e30i 1.09647i
\(315\) −1.99144e30 −2.08661
\(316\) 1.52687e29i 0.154013i
\(317\) 9.85269e29 0.956849 0.478425 0.878129i \(-0.341208\pi\)
0.478425 + 0.878129i \(0.341208\pi\)
\(318\) 5.46591e27i 0.00511137i
\(319\) 2.95407e30i 2.66031i
\(320\) 1.04646e30i 0.907656i
\(321\) 3.88839e28i 0.0324870i
\(322\) 9.92743e29 1.09395e30i 0.799036 0.880491i
\(323\) 3.36736e29 0.261132
\(324\) −7.38673e29 −0.551966
\(325\) 4.35111e29 0.313329
\(326\) −8.77415e29 −0.608967
\(327\) 5.66882e28i 0.0379245i
\(328\) −2.48609e30 −1.60336
\(329\) 3.25434e30i 2.02354i
\(330\) −4.22390e28 −0.0253248
\(331\) 3.09442e29 0.178913 0.0894567 0.995991i \(-0.471487\pi\)
0.0894567 + 0.995991i \(0.471487\pi\)
\(332\) 3.27100e29i 0.182399i
\(333\) 3.20301e30i 1.72277i
\(334\) −3.53547e29 −0.183438
\(335\) −1.24324e30 −0.622326
\(336\) 1.07651e28i 0.00519933i
\(337\) 2.17132e30i 1.01196i 0.862544 + 0.505982i \(0.168870\pi\)
−0.862544 + 0.505982i \(0.831130\pi\)
\(338\) 4.69847e29 0.211327
\(339\) 1.26337e28i 0.00548447i
\(340\) 3.61765e29 0.151593
\(341\) 2.67392e30i 1.08167i
\(342\) 1.91358e30i 0.747365i
\(343\) 5.47003e30i 2.06281i
\(344\) 6.18932e29i 0.225394i
\(345\) −4.62499e28 + 5.09647e28i −0.0162660 + 0.0179242i
\(346\) 7.17778e29 0.243824
\(347\) 3.45573e30 1.13393 0.566964 0.823742i \(-0.308118\pi\)
0.566964 + 0.823742i \(0.308118\pi\)
\(348\) −6.11158e28 −0.0193732
\(349\) −1.82620e30 −0.559297 −0.279649 0.960102i \(-0.590218\pi\)
−0.279649 + 0.960102i \(0.590218\pi\)
\(350\) 1.52216e30i 0.450447i
\(351\) −1.19207e29 −0.0340891
\(352\) 5.34099e30i 1.47608i
\(353\) −6.92669e30 −1.85025 −0.925123 0.379667i \(-0.876038\pi\)
−0.925123 + 0.379667i \(0.876038\pi\)
\(354\) −2.24180e28 −0.00578840
\(355\) 8.58461e30i 2.14279i
\(356\) 1.27898e30i 0.308649i
\(357\) −3.66845e28 −0.00855981
\(358\) −1.34438e30 −0.303336
\(359\) 5.71296e30i 1.24660i −0.781982 0.623301i \(-0.785791\pi\)
0.781982 0.623301i \(-0.214209\pi\)
\(360\) 5.77559e30i 1.21890i
\(361\) −1.22323e30 −0.249702
\(362\) 2.04580e30i 0.403981i
\(363\) 1.56153e29 0.0298311
\(364\) 4.39632e30i 0.812592i
\(365\) 5.42894e30i 0.970958i
\(366\) 2.14296e28i 0.00370887i
\(367\) 3.15787e30i 0.528934i 0.964395 + 0.264467i \(0.0851960\pi\)
−0.964395 + 0.264467i \(0.914804\pi\)
\(368\) −6.48121e29 5.88163e29i −0.105071 0.0953506i
\(369\) 9.83487e30 1.54331
\(370\) −8.91056e30 −1.35358
\(371\) 4.48165e30 0.659100
\(372\) −5.53198e28 −0.00787708
\(373\) 6.48513e30i 0.894154i −0.894495 0.447077i \(-0.852465\pi\)
0.894495 0.447077i \(-0.147535\pi\)
\(374\) 1.83048e30 0.244403
\(375\) 1.16271e29i 0.0150348i
\(376\) 9.43825e30 1.18205
\(377\) 1.15940e31 1.40649
\(378\) 4.17024e29i 0.0490072i
\(379\) 2.92287e30i 0.332766i −0.986061 0.166383i \(-0.946791\pi\)
0.986061 0.166383i \(-0.0532088\pi\)
\(380\) −6.57703e30 −0.725482
\(381\) −1.32795e29 −0.0141933
\(382\) 2.61837e30i 0.271188i
\(383\) 1.39480e31i 1.40000i 0.714143 + 0.700000i \(0.246817\pi\)
−0.714143 + 0.700000i \(0.753183\pi\)
\(384\) −9.03901e28 −0.00879319
\(385\) 3.46330e31i 3.26559i
\(386\) −2.59576e30 −0.237256
\(387\) 2.44847e30i 0.216952i
\(388\) 1.93360e30i 0.166107i
\(389\) 5.19165e30i 0.432424i 0.976346 + 0.216212i \(0.0693703\pi\)
−0.976346 + 0.216212i \(0.930630\pi\)
\(390\) 1.65777e29i 0.0133891i
\(391\) 2.00429e30 2.20862e30i 0.156979 0.172981i
\(392\) −2.95360e31 −2.24346
\(393\) −3.07707e29 −0.0226687
\(394\) 1.84466e30 0.131814
\(395\) −4.72078e30 −0.327227
\(396\) 1.28516e31i 0.864204i
\(397\) 1.80049e31 1.17464 0.587321 0.809354i \(-0.300183\pi\)
0.587321 + 0.809354i \(0.300183\pi\)
\(398\) 2.65320e30i 0.167947i
\(399\) 6.66938e29 0.0409648
\(400\) 9.01822e29 0.0537528
\(401\) 2.42839e31i 1.40471i 0.711828 + 0.702354i \(0.247867\pi\)
−0.711828 + 0.702354i \(0.752133\pi\)
\(402\) 1.30145e29i 0.00730657i
\(403\) 1.04944e31 0.571871
\(404\) −1.10760e31 −0.585875
\(405\) 2.28383e31i 1.17275i
\(406\) 4.05594e31i 2.02199i
\(407\) 5.57033e31 2.69617
\(408\) 1.06393e29i 0.00500022i
\(409\) 2.58216e31 1.17843 0.589215 0.807976i \(-0.299437\pi\)
0.589215 + 0.807976i \(0.299437\pi\)
\(410\) 2.73599e31i 1.21257i
\(411\) 8.24643e28i 0.00354948i
\(412\) 3.33680e30i 0.139497i
\(413\) 1.83812e31i 0.746402i
\(414\) 1.25509e31 + 1.13898e31i 0.495077 + 0.449276i
\(415\) 1.01133e31 0.387539
\(416\) 2.09620e31 0.780392
\(417\) −2.37688e28 −0.000859756
\(418\) −3.32788e31 −1.16964
\(419\) 5.03109e31i 1.71828i −0.511741 0.859139i \(-0.670999\pi\)
0.511741 0.859139i \(-0.329001\pi\)
\(420\) 7.16511e29 0.0237811
\(421\) 2.14517e31i 0.691953i 0.938243 + 0.345976i \(0.112452\pi\)
−0.938243 + 0.345976i \(0.887548\pi\)
\(422\) −3.12281e31 −0.979029
\(423\) −3.73374e31 −1.13778
\(424\) 1.29977e31i 0.385014i
\(425\) 3.07316e30i 0.0884948i
\(426\) 8.98652e29 0.0251580
\(427\) −1.75708e31 −0.478251
\(428\) 3.29125e31i 0.871036i
\(429\) 1.03634e30i 0.0266694i
\(430\) −6.81148e30 −0.170459
\(431\) 3.72287e31i 0.906046i −0.891499 0.453023i \(-0.850346\pi\)
0.891499 0.453023i \(-0.149654\pi\)
\(432\) −2.47071e29 −0.00584813
\(433\) 7.72335e31i 1.77808i −0.457831 0.889039i \(-0.651373\pi\)
0.457831 0.889039i \(-0.348627\pi\)
\(434\) 3.67129e31i 0.822133i
\(435\) 1.88958e30i 0.0411618i
\(436\) 4.79826e31i 1.01682i
\(437\) −3.64388e31 + 4.01535e31i −0.751255 + 0.827840i
\(438\) −5.68311e29 −0.0113998
\(439\) −2.70823e31 −0.528580 −0.264290 0.964443i \(-0.585138\pi\)
−0.264290 + 0.964443i \(0.585138\pi\)
\(440\) −1.00443e32 −1.90759
\(441\) 1.16843e32 2.15944
\(442\) 7.18416e30i 0.129214i
\(443\) 1.86220e31 0.325974 0.162987 0.986628i \(-0.447887\pi\)
0.162987 + 0.986628i \(0.447887\pi\)
\(444\) 1.15243e30i 0.0196344i
\(445\) 3.95437e31 0.655778
\(446\) 7.09434e31 1.14523
\(447\) 1.47788e29i 0.00232247i
\(448\) 8.98190e31i 1.37414i
\(449\) −7.82638e31 −1.16575 −0.582874 0.812563i \(-0.698072\pi\)
−0.582874 + 0.812563i \(0.698072\pi\)
\(450\) −1.74639e31 −0.253274
\(451\) 1.71037e32i 2.41530i
\(452\) 1.06936e31i 0.147049i
\(453\) 1.17434e30 0.0157259
\(454\) 3.98747e31i 0.520028i
\(455\) −1.35926e32 −1.72649
\(456\) 1.93426e30i 0.0239296i
\(457\) 7.58384e30i 0.0913892i −0.998955 0.0456946i \(-0.985450\pi\)
0.998955 0.0456946i \(-0.0145501\pi\)
\(458\) 6.74791e31i 0.792106i
\(459\) 8.41950e29i 0.00962795i
\(460\) −3.91473e31 + 4.31380e31i −0.436122 + 0.480581i
\(461\) −1.54501e32 −1.67695 −0.838473 0.544944i \(-0.816551\pi\)
−0.838473 + 0.544944i \(0.816551\pi\)
\(462\) 3.62544e30 0.0383404
\(463\) 1.86902e31 0.192593 0.0962966 0.995353i \(-0.469300\pi\)
0.0962966 + 0.995353i \(0.469300\pi\)
\(464\) 2.40299e31 0.241288
\(465\) 1.71038e30i 0.0167362i
\(466\) −6.04627e31 −0.576576
\(467\) 1.41735e31i 0.131727i −0.997829 0.0658635i \(-0.979020\pi\)
0.997829 0.0658635i \(-0.0209802\pi\)
\(468\) −5.04394e31 −0.456899
\(469\) 1.06709e32 0.942168
\(470\) 1.03870e32i 0.893955i
\(471\) 4.02786e30i 0.0337927i
\(472\) −5.33091e31 −0.436011
\(473\) 4.25812e31 0.339534
\(474\) 4.94180e29i 0.00384189i
\(475\) 5.58712e31i 0.423511i
\(476\) −3.10509e31 −0.229504
\(477\) 5.14185e31i 0.370594i
\(478\) 9.28760e31 0.652783
\(479\) 1.66052e32i 1.13820i −0.822268 0.569101i \(-0.807291\pi\)
0.822268 0.569101i \(-0.192709\pi\)
\(480\) 3.41638e30i 0.0228387i
\(481\) 2.18621e32i 1.42545i
\(482\) 1.91976e32i 1.22091i
\(483\) 3.96970e30 4.37438e30i 0.0246259 0.0271363i
\(484\) 1.32172e32 0.799827
\(485\) 5.97833e31 0.352922
\(486\) 7.17735e30 0.0413360
\(487\) −1.23348e32 −0.693081 −0.346541 0.938035i \(-0.612644\pi\)
−0.346541 + 0.938035i \(0.612644\pi\)
\(488\) 5.09588e31i 0.279371i
\(489\) −3.50853e30 −0.0187681
\(490\) 3.25050e32i 1.69667i
\(491\) 3.00997e32 1.53315 0.766573 0.642157i \(-0.221960\pi\)
0.766573 + 0.642157i \(0.221960\pi\)
\(492\) −3.53853e30 −0.0175890
\(493\) 8.18873e31i 0.397241i
\(494\) 1.30611e32i 0.618381i
\(495\) 3.97348e32 1.83615
\(496\) 2.17510e31 0.0981069
\(497\) 7.36830e32i 3.24407i
\(498\) 1.05868e30i 0.00455000i
\(499\) 2.27582e32 0.954840 0.477420 0.878675i \(-0.341572\pi\)
0.477420 + 0.878675i \(0.341572\pi\)
\(500\) 9.84155e31i 0.403110i
\(501\) −1.41373e30 −0.00565347
\(502\) 1.90305e32i 0.743029i
\(503\) 8.02741e31i 0.306027i 0.988224 + 0.153013i \(0.0488978\pi\)
−0.988224 + 0.153013i \(0.951102\pi\)
\(504\) 4.95728e32i 1.84534i
\(505\) 3.42447e32i 1.24479i
\(506\) −1.98079e32 + 2.18272e32i −0.703126 + 0.774805i
\(507\) 1.87878e30 0.00651300
\(508\) −1.12402e32 −0.380547
\(509\) −1.41901e32 −0.469216 −0.234608 0.972090i \(-0.575381\pi\)
−0.234608 + 0.972090i \(0.575381\pi\)
\(510\) −1.17087e30 −0.00378153
\(511\) 4.65974e32i 1.46998i
\(512\) 9.12623e31 0.281224
\(513\) 1.53070e31i 0.0460766i
\(514\) −6.90839e31 −0.203151
\(515\) −1.03167e32 −0.296385
\(516\) 8.80948e29i 0.00247260i
\(517\) 6.49330e32i 1.78065i
\(518\) 7.64807e32 2.04925
\(519\) 2.87019e30 0.00751454
\(520\) 3.94212e32i 1.00853i
\(521\) 4.99447e32i 1.24864i −0.781169 0.624319i \(-0.785377\pi\)
0.781169 0.624319i \(-0.214623\pi\)
\(522\) −4.65342e32 −1.13691
\(523\) 1.12022e32i 0.267475i −0.991017 0.133737i \(-0.957302\pi\)
0.991017 0.133737i \(-0.0426979\pi\)
\(524\) −2.60453e32 −0.607790
\(525\) 6.08668e30i 0.0138825i
\(526\) 2.76262e32i 0.615873i
\(527\) 7.41214e31i 0.161516i
\(528\) 2.14794e30i 0.00457524i
\(529\) 4.64742e31 + 4.77997e32i 0.0967707 + 0.995307i
\(530\) 1.43043e32 0.291176
\(531\) 2.10889e32 0.419682
\(532\) 5.64517e32 1.09834
\(533\) 6.71277e32 1.27695
\(534\) 4.13950e30i 0.00769933i
\(535\) −1.01759e33 −1.85067
\(536\) 3.09479e32i 0.550368i
\(537\) −5.37578e30 −0.00934867
\(538\) 6.63718e32 1.12875
\(539\) 2.03201e33i 3.37957i
\(540\) 1.64447e31i 0.0267486i
\(541\) −1.08434e33 −1.72503 −0.862516 0.506030i \(-0.831112\pi\)
−0.862516 + 0.506030i \(0.831112\pi\)
\(542\) −3.09736e32 −0.481948
\(543\) 8.18059e30i 0.0124505i
\(544\) 1.48053e32i 0.220410i
\(545\) −1.48353e33 −2.16042
\(546\) 1.42289e31i 0.0202703i
\(547\) 8.54290e32 1.19058 0.595288 0.803512i \(-0.297038\pi\)
0.595288 + 0.803512i \(0.297038\pi\)
\(548\) 6.98003e31i 0.0951679i
\(549\) 2.01591e32i 0.268908i
\(550\) 3.03713e32i 0.396379i
\(551\) 1.48874e33i 1.90108i
\(552\) −1.26866e31 1.15129e31i −0.0158517 0.0143852i
\(553\) 4.05192e32 0.495404
\(554\) −6.72213e32 −0.804248
\(555\) −3.56308e31 −0.0417167
\(556\) −2.01186e31 −0.0230516
\(557\) 5.12682e31i 0.0574891i 0.999587 + 0.0287446i \(0.00915094\pi\)
−0.999587 + 0.0287446i \(0.990849\pi\)
\(558\) −4.21211e32 −0.462263
\(559\) 1.67120e32i 0.179509i
\(560\) −2.81723e32 −0.296187
\(561\) 7.31957e30 0.00753236
\(562\) 4.98666e32i 0.502312i
\(563\) 1.50656e33i 1.48554i 0.669546 + 0.742770i \(0.266489\pi\)
−0.669546 + 0.742770i \(0.733511\pi\)
\(564\) 1.34338e31 0.0129673
\(565\) −3.30624e32 −0.312430
\(566\) 4.76628e32i 0.440943i
\(567\) 1.96025e33i 1.77547i
\(568\) 2.13696e33 1.89503
\(569\) 3.51772e32i 0.305432i −0.988270 0.152716i \(-0.951198\pi\)
0.988270 0.152716i \(-0.0488020\pi\)
\(570\) 2.12869e31 0.0180973
\(571\) 7.07820e32i 0.589237i 0.955615 + 0.294618i \(0.0951925\pi\)
−0.955615 + 0.294618i \(0.904807\pi\)
\(572\) 8.77186e32i 0.715055i
\(573\) 1.04701e31i 0.00835789i
\(574\) 2.34834e33i 1.83577i
\(575\) −3.66453e32 3.32552e32i −0.280546 0.254592i
\(576\) −1.03050e33 −0.772644
\(577\) −1.11213e33 −0.816666 −0.408333 0.912833i \(-0.633890\pi\)
−0.408333 + 0.912833i \(0.633890\pi\)
\(578\) −8.79184e32 −0.632333
\(579\) −1.03797e31 −0.00731210
\(580\) 1.59940e33i 1.10362i
\(581\) −8.68039e32 −0.586713
\(582\) 6.25822e30i 0.00414357i
\(583\) −8.94213e32 −0.579987
\(584\) −1.35142e33 −0.858689
\(585\) 1.55949e33i 0.970760i
\(586\) 3.88948e32i 0.237203i
\(587\) 2.84195e33 1.69809 0.849043 0.528323i \(-0.177179\pi\)
0.849043 + 0.528323i \(0.177179\pi\)
\(588\) −4.20396e31 −0.0246111
\(589\) 1.34756e33i 0.772971i
\(590\) 5.86679e32i 0.329744i
\(591\) 7.37626e30 0.00406244
\(592\) 4.53119e32i 0.244541i
\(593\) 1.84643e33 0.976508 0.488254 0.872701i \(-0.337634\pi\)
0.488254 + 0.872701i \(0.337634\pi\)
\(594\) 8.32078e31i 0.0431247i
\(595\) 9.60032e32i 0.487621i
\(596\) 1.25093e32i 0.0622696i
\(597\) 1.06094e31i 0.00517605i
\(598\) 8.56662e32 + 7.77411e32i 0.409634 + 0.371738i
\(599\) 6.34885e32 0.297559 0.148780 0.988870i \(-0.452466\pi\)
0.148780 + 0.988870i \(0.452466\pi\)
\(600\) 1.76526e31 0.00810950
\(601\) 9.60133e32 0.432352 0.216176 0.976354i \(-0.430641\pi\)
0.216176 + 0.976354i \(0.430641\pi\)
\(602\) 5.84640e32 0.258066
\(603\) 1.22429e33i 0.529755i
\(604\) 9.93996e32 0.421640
\(605\) 4.08651e33i 1.69937i
\(606\) 3.58479e31 0.0146148
\(607\) −2.00017e33 −0.799472 −0.399736 0.916630i \(-0.630898\pi\)
−0.399736 + 0.916630i \(0.630898\pi\)
\(608\) 2.69166e33i 1.05482i
\(609\) 1.62186e32i 0.0623167i
\(610\) −5.60813e32 −0.211281
\(611\) −2.54846e33 −0.941418
\(612\) 3.56250e32i 0.129044i
\(613\) 2.49179e33i 0.885087i 0.896747 + 0.442544i \(0.145924\pi\)
−0.896747 + 0.442544i \(0.854076\pi\)
\(614\) −1.31654e33 −0.458579
\(615\) 1.09405e32i 0.0373709i
\(616\) 8.62115e33 2.88800
\(617\) 2.10525e33i 0.691642i −0.938300 0.345821i \(-0.887600\pi\)
0.938300 0.345821i \(-0.112400\pi\)
\(618\) 1.07997e31i 0.00347978i
\(619\) 8.35614e32i 0.264069i 0.991245 + 0.132035i \(0.0421510\pi\)
−0.991245 + 0.132035i \(0.957849\pi\)
\(620\) 1.44772e33i 0.448728i
\(621\) 1.00397e32 + 9.11088e31i 0.0305225 + 0.0276988i
\(622\) −2.00680e33 −0.598440
\(623\) −3.39409e33 −0.992812
\(624\) −8.43010e30 −0.00241890
\(625\) −4.38874e33 −1.23532
\(626\) 1.25676e33i 0.347026i
\(627\) −1.33073e32 −0.0360477
\(628\) 3.40930e33i 0.906045i
\(629\) 1.54410e33 0.402596
\(630\) 5.45559e33 1.39558
\(631\) 7.39626e33i 1.85635i −0.372145 0.928174i \(-0.621378\pi\)
0.372145 0.928174i \(-0.378622\pi\)
\(632\) 1.17514e33i 0.289391i
\(633\) −1.24872e32 −0.0301732
\(634\) −2.69916e33 −0.639967
\(635\) 3.47524e33i 0.808538i
\(636\) 1.85001e31i 0.00422366i
\(637\) 7.97512e33 1.78675
\(638\) 8.09272e33i 1.77929i
\(639\) −8.45373e33 −1.82406
\(640\) 2.36551e33i 0.500915i
\(641\) 6.20470e33i 1.28951i 0.764390 + 0.644754i \(0.223040\pi\)
−0.764390 + 0.644754i \(0.776960\pi\)
\(642\) 1.06523e32i 0.0217282i
\(643\) 3.78048e33i 0.756860i 0.925630 + 0.378430i \(0.123536\pi\)
−0.925630 + 0.378430i \(0.876464\pi\)
\(644\) 3.36007e33 3.70260e33i 0.660265 0.727573i
\(645\) −2.72372e31 −0.00525347
\(646\) −9.22495e32 −0.174652
\(647\) 3.91850e33 0.728230 0.364115 0.931354i \(-0.381372\pi\)
0.364115 + 0.931354i \(0.381372\pi\)
\(648\) 5.68512e33 1.03714
\(649\) 3.66755e33i 0.656810i
\(650\) −1.19199e33 −0.209563
\(651\) 1.46805e32i 0.0253377i
\(652\) −2.96973e33 −0.503206
\(653\) 8.74974e33 1.45558 0.727791 0.685799i \(-0.240547\pi\)
0.727791 + 0.685799i \(0.240547\pi\)
\(654\) 1.55298e32i 0.0253649i
\(655\) 8.05269e33i 1.29135i
\(656\) 1.39130e33 0.219067
\(657\) 5.34617e33 0.826530
\(658\) 8.91532e33i 1.35340i
\(659\) 1.05771e33i 0.157667i 0.996888 + 0.0788334i \(0.0251195\pi\)
−0.996888 + 0.0788334i \(0.974880\pi\)
\(660\) −1.42964e32 −0.0209266
\(661\) 5.81304e33i 0.835576i 0.908545 + 0.417788i \(0.137194\pi\)
−0.908545 + 0.417788i \(0.862806\pi\)
\(662\) −8.47721e32 −0.119662
\(663\) 2.87274e31i 0.00398231i
\(664\) 2.51749e33i 0.342729i
\(665\) 1.74538e34i 2.33361i
\(666\) 8.77471e33i 1.15224i
\(667\) −9.76450e33 8.86117e33i −1.25933 1.14283i
\(668\) −1.19663e33 −0.151580
\(669\) 2.83683e32 0.0352955
\(670\) 3.40588e33 0.416228
\(671\) 3.50585e33 0.420846
\(672\) 2.93233e32i 0.0345766i
\(673\) −3.28535e32 −0.0380541 −0.0190270 0.999819i \(-0.506057\pi\)
−0.0190270 + 0.999819i \(0.506057\pi\)
\(674\) 5.94837e33i 0.676829i
\(675\) −1.39696e32 −0.0156149
\(676\) 1.59026e33 0.174625
\(677\) 1.04976e34i 1.13247i −0.824244 0.566234i \(-0.808400\pi\)
0.824244 0.566234i \(-0.191600\pi\)
\(678\) 3.46103e31i 0.00366816i
\(679\) −5.13129e33 −0.534305
\(680\) −2.78429e33 −0.284844
\(681\) 1.59448e32i 0.0160270i
\(682\) 7.32524e33i 0.723451i
\(683\) −6.94793e33 −0.674229 −0.337114 0.941464i \(-0.609451\pi\)
−0.337114 + 0.941464i \(0.609451\pi\)
\(684\) 6.47676e33i 0.617568i
\(685\) −2.15809e33 −0.202201
\(686\) 1.49852e34i 1.37967i
\(687\) 2.69830e32i 0.0244123i
\(688\) 3.46377e32i 0.0307956i
\(689\) 3.50956e33i 0.306635i
\(690\) 1.26702e32 1.39619e32i 0.0108792 0.0119882i
\(691\) −3.88128e32 −0.0327521 −0.0163760 0.999866i \(-0.505213\pi\)
−0.0163760 + 0.999866i \(0.505213\pi\)
\(692\) 2.42942e33 0.201479
\(693\) −3.41050e34 −2.77983
\(694\) −9.46702e33 −0.758402
\(695\) 6.22029e32i 0.0489771i
\(696\) 4.70371e32 0.0364024
\(697\) 4.74118e33i 0.360656i
\(698\) 5.00290e33 0.374073
\(699\) −2.41773e32 −0.0177698
\(700\) 5.15195e33i 0.372216i
\(701\) 1.29242e34i 0.917884i −0.888466 0.458942i \(-0.848229\pi\)
0.888466 0.458942i \(-0.151771\pi\)
\(702\) 3.26569e32 0.0227997
\(703\) −2.80724e34 −1.92671
\(704\) 1.79214e34i 1.20920i
\(705\) 4.15347e32i 0.0275513i
\(706\) 1.89758e34 1.23750
\(707\) 2.93927e34i 1.88455i
\(708\) −7.58768e31 −0.00478311
\(709\) 2.52294e34i 1.56369i 0.623471 + 0.781846i \(0.285722\pi\)
−0.623471 + 0.781846i \(0.714278\pi\)
\(710\) 2.35177e34i 1.43316i
\(711\) 4.64881e33i 0.278552i
\(712\) 9.84356e33i 0.579952i
\(713\) −8.83847e33 8.02081e33i −0.512039 0.464669i
\(714\) 1.00498e32 0.00572504
\(715\) 2.71209e34 1.51926
\(716\) −4.55022e33 −0.250655
\(717\) 3.71385e32 0.0201184
\(718\) 1.56508e34i 0.833762i
\(719\) 8.59057e33 0.450065 0.225033 0.974351i \(-0.427751\pi\)
0.225033 + 0.974351i \(0.427751\pi\)
\(720\) 3.23223e33i 0.166538i
\(721\) 8.85502e33 0.448710
\(722\) 3.35107e33 0.167008
\(723\) 7.67657e32i 0.0376277i
\(724\) 6.92430e33i 0.333820i
\(725\) 1.35867e34 0.644256
\(726\) −4.27783e32 −0.0199519
\(727\) 2.06739e34i 0.948441i 0.880406 + 0.474220i \(0.157270\pi\)
−0.880406 + 0.474220i \(0.842730\pi\)
\(728\) 3.38358e34i 1.52686i
\(729\) −2.24710e34 −0.997452
\(730\) 1.48727e34i 0.649404i
\(731\) 1.18036e33 0.0506997
\(732\) 7.25315e31i 0.00306474i
\(733\) 4.39338e34i 1.82621i −0.407721 0.913106i \(-0.633677\pi\)
0.407721 0.913106i \(-0.366323\pi\)
\(734\) 8.65103e33i 0.353765i
\(735\) 1.29978e33i 0.0522905i
\(736\) −1.76543e34 1.60211e34i −0.698743 0.634101i
\(737\) −2.12914e34 −0.829078
\(738\) −2.69428e34 −1.03221
\(739\) 3.93866e34 1.48462 0.742310 0.670056i \(-0.233730\pi\)
0.742310 + 0.670056i \(0.233730\pi\)
\(740\) −3.01590e34 −1.11850
\(741\) 5.22276e32i 0.0190582i
\(742\) −1.22776e34 −0.440824
\(743\) 3.60130e34i 1.27231i −0.771561 0.636155i \(-0.780524\pi\)
0.771561 0.636155i \(-0.219476\pi\)
\(744\) 4.25763e32 0.0148011
\(745\) −3.86762e33 −0.132303
\(746\) 1.77661e34i 0.598035i
\(747\) 9.95911e33i 0.329893i
\(748\) 6.19551e33 0.201956
\(749\) 8.73414e34 2.80181
\(750\) 3.18527e32i 0.0100557i
\(751\) 5.44722e33i 0.169237i 0.996413 + 0.0846186i \(0.0269672\pi\)
−0.996413 + 0.0846186i \(0.973033\pi\)
\(752\) −5.28199e33 −0.161504
\(753\) 7.60977e32i 0.0228998i
\(754\) −3.17618e34 −0.940697
\(755\) 3.07324e34i 0.895846i
\(756\) 1.41147e33i 0.0404959i
\(757\) 2.43566e34i 0.687805i −0.939005 0.343903i \(-0.888251\pi\)
0.939005 0.343903i \(-0.111749\pi\)
\(758\) 8.00726e33i 0.222563i
\(759\) −7.92064e32 + 8.72809e32i −0.0216700 + 0.0238791i
\(760\) 5.06194e34 1.36318
\(761\) −5.64836e33 −0.149729 −0.0748646 0.997194i \(-0.523852\pi\)
−0.0748646 + 0.997194i \(0.523852\pi\)
\(762\) 3.63794e32 0.00949285
\(763\) 1.27334e35 3.27076
\(764\) 8.86223e33i 0.224090i
\(765\) 1.10146e34 0.274176
\(766\) 3.82109e34i 0.936358i
\(767\) 1.43942e34 0.347251
\(768\) 9.18495e32 0.0218143
\(769\) 8.17177e33i 0.191073i −0.995426 0.0955366i \(-0.969543\pi\)
0.995426 0.0955366i \(-0.0304567\pi\)
\(770\) 9.48776e34i 2.18411i
\(771\) −2.76247e32 −0.00626102
\(772\) −8.78570e33 −0.196051
\(773\) 2.00912e34i 0.441421i −0.975339 0.220710i \(-0.929162\pi\)
0.975339 0.220710i \(-0.0708376\pi\)
\(774\) 6.70764e33i 0.145104i
\(775\) 1.22982e34 0.261952
\(776\) 1.48818e34i 0.312115i
\(777\) 3.05825e33 0.0631568
\(778\) 1.42226e34i 0.289217i
\(779\) 8.61965e34i 1.72600i
\(780\) 5.61096e32i 0.0110637i
\(781\) 1.47018e35i 2.85468i
\(782\) −5.49080e33 + 6.05055e33i −0.104992 + 0.115695i
\(783\) −3.72234e33 −0.0700930
\(784\) 1.65294e34 0.306524
\(785\) −1.05409e35 −1.92505
\(786\) 8.42969e32 0.0151615
\(787\) 4.59658e34i 0.814212i 0.913381 + 0.407106i \(0.133462\pi\)
−0.913381 + 0.407106i \(0.866538\pi\)
\(788\) 6.24349e33 0.108921
\(789\) 1.10469e33i 0.0189809i
\(790\) 1.29327e34 0.218858
\(791\) 2.83779e34 0.473002
\(792\) 9.89113e34i 1.62384i
\(793\) 1.37596e34i 0.222498i
\(794\) −4.93249e34 −0.785633
\(795\) 5.71987e32 0.00897389
\(796\) 8.98011e33i 0.138779i
\(797\) 8.12717e34i 1.23720i −0.785707 0.618599i \(-0.787700\pi\)
0.785707 0.618599i \(-0.212300\pi\)
\(798\) −1.82709e33 −0.0273984
\(799\) 1.79996e34i 0.265889i
\(800\) 2.45649e34 0.357467
\(801\) 3.89408e34i 0.558232i
\(802\) 6.65261e34i 0.939507i
\(803\) 9.29747e34i 1.29353i
\(804\) 4.40492e32i 0.00603762i
\(805\) 1.14477e35 + 1.03887e35i 1.54585 + 1.40285i
\(806\) −2.87497e34 −0.382483
\(807\) 2.65402e33 0.0347874
\(808\) 8.52449e34 1.10086
\(809\) −1.28489e35 −1.63488 −0.817439 0.576015i \(-0.804607\pi\)
−0.817439 + 0.576015i \(0.804607\pi\)
\(810\) 6.25660e34i 0.784364i
\(811\) −1.11678e35 −1.37949 −0.689744 0.724053i \(-0.742277\pi\)
−0.689744 + 0.724053i \(0.742277\pi\)
\(812\) 1.37279e35i 1.67083i
\(813\) −1.23855e33 −0.0148534
\(814\) −1.52600e35 −1.80327
\(815\) 9.18182e34i 1.06915i
\(816\) 5.95412e31i 0.000683181i
\(817\) −2.14593e34 −0.242634
\(818\) −7.07388e34 −0.788166
\(819\) 1.33853e35i 1.46968i
\(820\) 9.26033e34i 1.00198i
\(821\) 4.46275e33 0.0475866 0.0237933 0.999717i \(-0.492426\pi\)
0.0237933 + 0.999717i \(0.492426\pi\)
\(822\) 2.25912e32i 0.00237399i
\(823\) 6.13916e34 0.635786 0.317893 0.948127i \(-0.397025\pi\)
0.317893 + 0.948127i \(0.397025\pi\)
\(824\) 2.56813e34i 0.262115i
\(825\) 1.21446e33i 0.0122162i
\(826\) 5.03555e34i 0.499214i
\(827\) 9.05474e34i 0.884729i 0.896835 + 0.442364i \(0.145860\pi\)
−0.896835 + 0.442364i \(0.854140\pi\)
\(828\) 4.24804e34 + 3.85504e34i 0.409095 + 0.371249i
\(829\) 4.87698e34 0.462910 0.231455 0.972846i \(-0.425651\pi\)
0.231455 + 0.972846i \(0.425651\pi\)
\(830\) −2.77055e34 −0.259197
\(831\) −2.68799e33 −0.0247865
\(832\) −7.03367e34 −0.639296
\(833\) 5.63277e34i 0.504641i
\(834\) 6.51151e31 0.000575028
\(835\) 3.69973e34i 0.322057i
\(836\) −1.12637e35 −0.966506
\(837\) −3.36932e33 −0.0284995
\(838\) 1.37828e35i 1.14923i
\(839\) 1.36779e34i 0.112429i 0.998419 + 0.0562144i \(0.0179030\pi\)
−0.998419 + 0.0562144i \(0.982097\pi\)
\(840\) −5.51455e33 −0.0446847
\(841\) 2.36846e35 1.89197
\(842\) 5.87673e34i 0.462797i
\(843\) 1.99402e33i 0.0154810i
\(844\) −1.05696e35 −0.808998
\(845\) 4.91677e34i 0.371022i
\(846\) 1.02286e35 0.760980
\(847\) 3.50751e35i 2.57275i
\(848\) 7.27400e33i 0.0526045i
\(849\) 1.90590e33i 0.0135896i
\(850\) 8.41897e33i 0.0591878i
\(851\) −1.67090e35 + 1.84124e35i −1.15823 + 1.27631i
\(852\) 3.04161e33 0.0207887
\(853\) −2.02411e35 −1.36410 −0.682049 0.731306i \(-0.738911\pi\)
−0.682049 + 0.731306i \(0.738911\pi\)
\(854\) 4.81354e34 0.319868
\(855\) −2.00249e35 −1.31213
\(856\) 2.53308e35i 1.63668i
\(857\) 2.08398e35 1.32777 0.663887 0.747833i \(-0.268905\pi\)
0.663887 + 0.747833i \(0.268905\pi\)
\(858\) 2.83906e33i 0.0178372i
\(859\) 1.82146e35 1.12850 0.564251 0.825604i \(-0.309165\pi\)
0.564251 + 0.825604i \(0.309165\pi\)
\(860\) −2.30544e34 −0.140855
\(861\) 9.39036e33i 0.0565776i
\(862\) 1.01989e35i 0.605988i
\(863\) −4.74578e34 −0.278086 −0.139043 0.990286i \(-0.544403\pi\)
−0.139043 + 0.990286i \(0.544403\pi\)
\(864\) −6.73003e33 −0.0388912
\(865\) 7.51128e34i 0.428076i
\(866\) 2.11582e35i 1.18923i
\(867\) −3.51561e33 −0.0194882
\(868\) 1.24260e35i 0.679350i
\(869\) −8.08470e34 −0.435940
\(870\) 5.17654e33i 0.0275301i
\(871\) 8.35635e34i 0.438327i
\(872\) 3.69293e35i 1.91062i
\(873\) 5.88718e34i 0.300425i
\(874\) 9.98248e34 1.10001e35i 0.502460 0.553682i
\(875\) 2.61170e35 1.29666
\(876\) −1.92352e33 −0.00941995
\(877\) 2.37984e35 1.14961 0.574807 0.818289i \(-0.305077\pi\)
0.574807 + 0.818289i \(0.305077\pi\)
\(878\) 7.41923e34 0.353529
\(879\) 1.55529e33i 0.00731047i
\(880\) 5.62114e34 0.260635
\(881\) 9.63897e34i 0.440879i −0.975401 0.220440i \(-0.929251\pi\)
0.975401 0.220440i \(-0.0707492\pi\)
\(882\) −3.20094e35 −1.44429
\(883\) −4.82464e34 −0.214752 −0.107376 0.994219i \(-0.534245\pi\)
−0.107376 + 0.994219i \(0.534245\pi\)
\(884\) 2.43158e34i 0.106773i
\(885\) 2.34596e33i 0.0101625i
\(886\) −5.10154e34 −0.218020
\(887\) −3.30209e35 −1.39221 −0.696105 0.717940i \(-0.745085\pi\)
−0.696105 + 0.717940i \(0.745085\pi\)
\(888\) 8.86954e33i 0.0368931i
\(889\) 2.98285e35i 1.22408i
\(890\) −1.08331e35 −0.438602
\(891\) 3.91123e35i 1.56236i
\(892\) 2.40117e35 0.946336
\(893\) 3.27239e35i 1.27247i
\(894\) 4.04869e32i 0.00155333i
\(895\) 1.40684e35i 0.532559i
\(896\) 2.03035e35i 0.758359i
\(897\) 3.42555e33 + 3.10865e33i 0.0126247 + 0.0114568i
\(898\) 2.14405e35 0.779684
\(899\) 3.27698e35 1.17586
\(900\) −5.91089e34 −0.209287
\(901\) −2.47878e34 −0.0866044
\(902\) 4.68559e35i 1.61542i
\(903\) 2.33781e33 0.00795346
\(904\) 8.23018e34i 0.276305i
\(905\) −2.14086e35 −0.709259
\(906\) −3.21712e33 −0.0105179
\(907\) 1.55779e35i 0.502600i −0.967909 0.251300i \(-0.919142\pi\)
0.967909 0.251300i \(-0.0808581\pi\)
\(908\) 1.34961e35i 0.429713i
\(909\) −3.37226e35 −1.05963
\(910\) 3.72370e35 1.15472
\(911\) 4.16565e35i 1.27486i 0.770508 + 0.637430i \(0.220003\pi\)
−0.770508 + 0.637430i \(0.779997\pi\)
\(912\) 1.08248e33i 0.00326951i
\(913\) 1.73198e35 0.516289
\(914\) 2.07761e34i 0.0611236i
\(915\) −2.24253e33 −0.00651157
\(916\) 2.28392e35i 0.654539i
\(917\) 6.91175e35i 1.95504i
\(918\) 2.30653e33i 0.00643944i
\(919\) 4.82434e34i 0.132939i −0.997788 0.0664694i \(-0.978827\pi\)
0.997788 0.0664694i \(-0.0211735\pi\)
\(920\) 3.01293e35 3.32007e35i 0.819473 0.903013i
\(921\) −5.26448e33 −0.0141332
\(922\) 4.23257e35 1.12159
\(923\) −5.77008e35 −1.50925
\(924\) 1.22708e34 0.0316817
\(925\) 2.56197e35i 0.652941i
\(926\) −5.12020e34 −0.128812
\(927\) 1.01595e35i 0.252298i
\(928\) 6.54557e35 1.60462
\(929\) 1.54125e35 0.372978 0.186489 0.982457i \(-0.440289\pi\)
0.186489 + 0.982457i \(0.440289\pi\)
\(930\) 4.68561e33i 0.0111936i
\(931\) 1.02406e36i 2.41507i
\(932\) −2.04644e35 −0.476440
\(933\) −8.02464e33 −0.0184436
\(934\) 3.88286e34i 0.0881026i
\(935\) 1.91553e35i 0.429091i
\(936\) 3.88202e35 0.858514
\(937\) 5.55643e35i 1.21317i −0.795020 0.606584i \(-0.792539\pi\)
0.795020 0.606584i \(-0.207461\pi\)
\(938\) −2.92332e35 −0.630147
\(939\) 5.02544e33i 0.0106952i
\(940\) 3.51562e35i 0.738699i
\(941\) 2.53976e34i 0.0526888i 0.999653 + 0.0263444i \(0.00838665\pi\)
−0.999653 + 0.0263444i \(0.991613\pi\)
\(942\) 1.10344e34i 0.0226015i
\(943\) −5.65353e35 5.13052e35i −1.14335 1.03758i
\(944\) 2.98338e34 0.0595723
\(945\) 4.36400e34 0.0860405
\(946\) −1.16652e35 −0.227090
\(947\) −5.49575e35 −1.05640 −0.528199 0.849121i \(-0.677132\pi\)
−0.528199 + 0.849121i \(0.677132\pi\)
\(948\) 1.67262e33i 0.00317466i
\(949\) 3.64902e35 0.683882
\(950\) 1.53060e35i 0.283256i
\(951\) −1.07932e34 −0.0197235
\(952\) 2.38980e35 0.431239
\(953\) 1.99150e35i 0.354866i −0.984133 0.177433i \(-0.943221\pi\)
0.984133 0.177433i \(-0.0567793\pi\)
\(954\) 1.40862e35i 0.247864i
\(955\) 2.74003e35 0.476118
\(956\) 3.14351e35 0.539412
\(957\) 3.23605e34i 0.0548368i
\(958\) 4.54904e35i 0.761260i
\(959\) 1.85232e35 0.306121
\(960\) 1.14635e34i 0.0187095i
\(961\) −3.23793e35 −0.521899
\(962\) 5.98916e35i 0.953378i
\(963\) 1.00208e36i 1.57538i
\(964\) 6.49768e35i 1.00887i
\(965\) 2.71637e35i 0.416544i
\(966\) −1.08751e34 + 1.19837e34i −0.0164705 + 0.0181495i
\(967\) 3.14175e35 0.469953 0.234976 0.972001i \(-0.424499\pi\)
0.234976 + 0.972001i \(0.424499\pi\)
\(968\) −1.01725e36 −1.50288
\(969\) −3.68880e33 −0.00538269
\(970\) −1.63777e35 −0.236044
\(971\) 1.25851e36i 1.79154i 0.444521 + 0.895768i \(0.353374\pi\)
−0.444521 + 0.895768i \(0.646626\pi\)
\(972\) 2.42927e34 0.0341571
\(973\) 5.33897e34i 0.0741487i
\(974\) 3.37913e35 0.463552
\(975\) −4.76645e33 −0.00645862
\(976\) 2.85184e34i 0.0381705i
\(977\) 3.15353e35i 0.416929i 0.978030 + 0.208464i \(0.0668465\pi\)
−0.978030 + 0.208464i \(0.933154\pi\)
\(978\) 9.61169e33 0.0125526
\(979\) 6.77215e35 0.873644
\(980\) 1.10018e36i 1.40200i
\(981\) 1.46091e36i 1.83906i
\(982\) −8.24585e35 −1.02541
\(983\) 3.36453e35i 0.413316i 0.978413 + 0.206658i \(0.0662588\pi\)
−0.978413 + 0.206658i \(0.933741\pi\)
\(984\) 2.72340e34 0.0330499
\(985\) 1.93036e35i 0.231422i
\(986\) 2.24332e35i 0.265685i
\(987\) 3.56498e34i 0.0417111i
\(988\) 4.42070e35i 0.510984i
\(989\) −1.27729e35 + 1.40750e35i −0.145859 + 0.160728i
\(990\) −1.08854e36 −1.22807
\(991\) −6.07030e34 −0.0676591 −0.0338296 0.999428i \(-0.510770\pi\)
−0.0338296 + 0.999428i \(0.510770\pi\)
\(992\) 5.92481e35 0.652431
\(993\) −3.38979e33 −0.00368793
\(994\) 2.01856e36i 2.16973i
\(995\) −2.77647e35 −0.294861
\(996\) 3.58323e33i 0.00375979i
\(997\) 1.08803e36 1.12797 0.563986 0.825784i \(-0.309267\pi\)
0.563986 + 0.825784i \(0.309267\pi\)
\(998\) −6.23464e35 −0.638623
\(999\) 7.01901e34i 0.0710379i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.18 yes 44
23.22 odd 2 inner 23.25.b.c.22.17 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.17 44 23.22 odd 2 inner
23.25.b.c.22.18 yes 44 1.1 even 1 trivial