Properties

Label 23.25.b.c.22.14
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.14
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4410.99 q^{2} -600091. q^{3} +2.67964e6 q^{4} +2.08680e8i q^{5} +2.64700e9 q^{6} +9.90757e8i q^{7} +6.21843e10 q^{8} +7.76795e10 q^{9} -9.20488e11i q^{10} -3.04648e12i q^{11} -1.60803e12 q^{12} -2.90487e13 q^{13} -4.37022e12i q^{14} -1.25227e14i q^{15} -3.19251e14 q^{16} +7.59542e14i q^{17} -3.42644e14 q^{18} -3.40778e15i q^{19} +5.59189e14i q^{20} -5.94544e14i q^{21} +1.34380e16i q^{22} +(-1.35383e16 + 1.72327e16i) q^{23} -3.73162e16 q^{24} +1.60571e16 q^{25} +1.28133e17 q^{26} +1.22869e17 q^{27} +2.65487e15i q^{28} -1.97404e17 q^{29} +5.52376e17i q^{30} +1.05721e18 q^{31} +3.64936e17 q^{32} +1.82817e18i q^{33} -3.35033e18i q^{34} -2.06752e17 q^{35} +2.08153e17 q^{36} +5.88277e18i q^{37} +1.50317e19i q^{38} +1.74318e19 q^{39} +1.29766e19i q^{40} +1.01351e19 q^{41} +2.62253e18i q^{42} +5.06956e19i q^{43} -8.16349e18i q^{44} +1.62102e19i q^{45} +(5.97173e19 - 7.60132e19i) q^{46} -2.15998e20 q^{47} +1.91580e20 q^{48} +1.90600e20 q^{49} -7.08279e19 q^{50} -4.55794e20i q^{51} -7.78400e19 q^{52} +6.98504e20i q^{53} -5.41973e20 q^{54} +6.35742e20 q^{55} +6.16095e19i q^{56} +2.04498e21i q^{57} +8.70748e20 q^{58} +1.97235e21 q^{59} -3.35564e20i q^{60} +2.54538e21i q^{61} -4.66336e21 q^{62} +7.69615e19i q^{63} +3.74642e21 q^{64} -6.06189e21i q^{65} -8.06403e21i q^{66} +1.45735e22i q^{67} +2.03530e21i q^{68} +(8.12421e21 - 1.03412e22i) q^{69} +9.11979e20 q^{70} -8.48225e21 q^{71} +4.83044e21 q^{72} -2.09881e22 q^{73} -2.59489e22i q^{74} -9.63574e21 q^{75} -9.13163e21i q^{76} +3.01833e21 q^{77} -7.68917e22 q^{78} -6.62640e22i q^{79} -6.66215e22i q^{80} -9.56713e22 q^{81} -4.47057e22 q^{82} -1.10895e23i q^{83} -1.59317e21i q^{84} -1.58501e23 q^{85} -2.23618e23i q^{86} +1.18460e23 q^{87} -1.89444e23i q^{88} +3.42705e23i q^{89} -7.15030e22i q^{90} -2.87802e22i q^{91} +(-3.62778e22 + 4.61774e22i) q^{92} -6.34424e23 q^{93} +9.52767e23 q^{94} +7.11137e23 q^{95} -2.18995e23 q^{96} +2.21681e23i q^{97} -8.40734e23 q^{98} -2.36649e23i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4410.99 −1.07690 −0.538451 0.842657i \(-0.680990\pi\)
−0.538451 + 0.842657i \(0.680990\pi\)
\(3\) −600091. −1.12918 −0.564588 0.825373i \(-0.690965\pi\)
−0.564588 + 0.825373i \(0.690965\pi\)
\(4\) 2.67964e6 0.159719
\(5\) 2.08680e8i 0.854755i 0.904073 + 0.427377i \(0.140562\pi\)
−0.904073 + 0.427377i \(0.859438\pi\)
\(6\) 2.64700e9 1.21601
\(7\) 9.90757e8i 0.0715798i 0.999359 + 0.0357899i \(0.0113947\pi\)
−0.999359 + 0.0357899i \(0.988605\pi\)
\(8\) 6.21843e10 0.904901
\(9\) 7.76795e10 0.275040
\(10\) 9.20488e11i 0.920488i
\(11\) 3.04648e12i 0.970704i −0.874319 0.485352i \(-0.838691\pi\)
0.874319 0.485352i \(-0.161309\pi\)
\(12\) −1.60803e12 −0.180351
\(13\) −2.90487e13 −1.24683 −0.623413 0.781893i \(-0.714254\pi\)
−0.623413 + 0.781893i \(0.714254\pi\)
\(14\) 4.37022e12i 0.0770845i
\(15\) 1.25227e14i 0.965169i
\(16\) −3.19251e14 −1.13421
\(17\) 7.59542e14i 1.30366i 0.758365 + 0.651830i \(0.225999\pi\)
−0.758365 + 0.651830i \(0.774001\pi\)
\(18\) −3.42644e14 −0.296191
\(19\) 3.40778e15i 1.53967i −0.638241 0.769836i \(-0.720338\pi\)
0.638241 0.769836i \(-0.279662\pi\)
\(20\) 5.59189e14i 0.136521i
\(21\) 5.94544e14i 0.0808263i
\(22\) 1.34380e16i 1.04535i
\(23\) −1.35383e16 + 1.72327e16i −0.617775 + 0.786355i
\(24\) −3.73162e16 −1.02179
\(25\) 1.60571e16 0.269394
\(26\) 1.28133e17 1.34271
\(27\) 1.22869e17 0.818608
\(28\) 2.65487e15i 0.0114327i
\(29\) −1.97404e17 −0.557931 −0.278965 0.960301i \(-0.589991\pi\)
−0.278965 + 0.960301i \(0.589991\pi\)
\(30\) 5.52376e17i 1.03939i
\(31\) 1.05721e18 1.34221 0.671107 0.741360i \(-0.265819\pi\)
0.671107 + 0.741360i \(0.265819\pi\)
\(32\) 3.64936e17 0.316532
\(33\) 1.82817e18i 1.09610i
\(34\) 3.35033e18i 1.40392i
\(35\) −2.06752e17 −0.0611832
\(36\) 2.08153e17 0.0439292
\(37\) 5.88277e18i 0.893638i 0.894624 + 0.446819i \(0.147443\pi\)
−0.894624 + 0.446819i \(0.852557\pi\)
\(38\) 1.50317e19i 1.65808i
\(39\) 1.74318e19 1.40789
\(40\) 1.29766e19i 0.773468i
\(41\) 1.01351e19 0.449180 0.224590 0.974453i \(-0.427896\pi\)
0.224590 + 0.974453i \(0.427896\pi\)
\(42\) 2.62253e18i 0.0870420i
\(43\) 5.06956e19i 1.26867i 0.773058 + 0.634336i \(0.218726\pi\)
−0.773058 + 0.634336i \(0.781274\pi\)
\(44\) 8.16349e18i 0.155040i
\(45\) 1.62102e19i 0.235092i
\(46\) 5.97173e19 7.60132e19i 0.665283 0.846828i
\(47\) −2.15998e20 −1.85899 −0.929493 0.368841i \(-0.879755\pi\)
−0.929493 + 0.368841i \(0.879755\pi\)
\(48\) 1.91580e20 1.28072
\(49\) 1.90600e20 0.994876
\(50\) −7.08279e19 −0.290111
\(51\) 4.55794e20i 1.47206i
\(52\) −7.78400e19 −0.199142
\(53\) 6.98504e20i 1.42186i 0.703260 + 0.710932i \(0.251727\pi\)
−0.703260 + 0.710932i \(0.748273\pi\)
\(54\) −5.41973e20 −0.881561
\(55\) 6.35742e20 0.829714
\(56\) 6.16095e19i 0.0647726i
\(57\) 2.04498e21i 1.73856i
\(58\) 8.70748e20 0.600837
\(59\) 1.97235e21 1.10856 0.554280 0.832330i \(-0.312994\pi\)
0.554280 + 0.832330i \(0.312994\pi\)
\(60\) 3.35564e20i 0.154156i
\(61\) 2.54538e21i 0.958948i 0.877556 + 0.479474i \(0.159173\pi\)
−0.877556 + 0.479474i \(0.840827\pi\)
\(62\) −4.66336e21 −1.44543
\(63\) 7.69615e19i 0.0196873i
\(64\) 3.74642e21 0.793335
\(65\) 6.06189e21i 1.06573i
\(66\) 8.06403e21i 1.18039i
\(67\) 1.45735e22i 1.78101i 0.454974 + 0.890505i \(0.349649\pi\)
−0.454974 + 0.890505i \(0.650351\pi\)
\(68\) 2.03530e21i 0.208220i
\(69\) 8.12421e21 1.03412e22i 0.697577 0.887934i
\(70\) 9.11979e20 0.0658883
\(71\) −8.48225e21 −0.516905 −0.258453 0.966024i \(-0.583213\pi\)
−0.258453 + 0.966024i \(0.583213\pi\)
\(72\) 4.83044e21 0.248884
\(73\) −2.09881e22 −0.916430 −0.458215 0.888841i \(-0.651511\pi\)
−0.458215 + 0.888841i \(0.651511\pi\)
\(74\) 2.59489e22i 0.962361i
\(75\) −9.63574e21 −0.304194
\(76\) 9.13163e21i 0.245915i
\(77\) 3.01833e21 0.0694828
\(78\) −7.68917e22 −1.51616
\(79\) 6.62640e22i 1.12138i −0.828026 0.560690i \(-0.810536\pi\)
0.828026 0.560690i \(-0.189464\pi\)
\(80\) 6.66215e22i 0.969471i
\(81\) −9.56713e22 −1.19939
\(82\) −4.47057e22 −0.483723
\(83\) 1.10895e23i 1.03747i −0.854936 0.518734i \(-0.826404\pi\)
0.854936 0.518734i \(-0.173596\pi\)
\(84\) 1.59317e21i 0.0129095i
\(85\) −1.58501e23 −1.11431
\(86\) 2.23618e23i 1.36624i
\(87\) 1.18460e23 0.630002
\(88\) 1.89444e23i 0.878391i
\(89\) 3.42705e23i 1.38752i 0.720205 + 0.693761i \(0.244048\pi\)
−0.720205 + 0.693761i \(0.755952\pi\)
\(90\) 7.15030e22i 0.253171i
\(91\) 2.87802e22i 0.0892476i
\(92\) −3.62778e22 + 4.61774e22i −0.0986704 + 0.125596i
\(93\) −6.34424e23 −1.51560
\(94\) 9.52767e23 2.00195
\(95\) 7.11137e23 1.31604
\(96\) −2.18995e23 −0.357420
\(97\) 2.21681e23i 0.319498i 0.987158 + 0.159749i \(0.0510684\pi\)
−0.987158 + 0.159749i \(0.948932\pi\)
\(98\) −8.40734e23 −1.07138
\(99\) 2.36649e23i 0.266983i
\(100\) 4.30274e22 0.0430274
\(101\) −4.32059e23 −0.383431 −0.191715 0.981451i \(-0.561405\pi\)
−0.191715 + 0.981451i \(0.561405\pi\)
\(102\) 2.01050e24i 1.58527i
\(103\) 1.05273e24i 0.738366i −0.929357 0.369183i \(-0.879638\pi\)
0.929357 0.369183i \(-0.120362\pi\)
\(104\) −1.80637e24 −1.12825
\(105\) 1.24070e23 0.0690866
\(106\) 3.08109e24i 1.53121i
\(107\) 3.32639e24i 1.47696i −0.674276 0.738479i \(-0.735544\pi\)
0.674276 0.738479i \(-0.264456\pi\)
\(108\) 3.29244e23 0.130747
\(109\) 2.97757e24i 1.05863i 0.848426 + 0.529314i \(0.177551\pi\)
−0.848426 + 0.529314i \(0.822449\pi\)
\(110\) −2.80425e24 −0.893521
\(111\) 3.53020e24i 1.00907i
\(112\) 3.16301e23i 0.0811865i
\(113\) 1.17831e23i 0.0271843i 0.999908 + 0.0135922i \(0.00432665\pi\)
−0.999908 + 0.0135922i \(0.995673\pi\)
\(114\) 9.02038e24i 1.87226i
\(115\) −3.59612e24 2.82518e24i −0.672141 0.528046i
\(116\) −5.28972e23 −0.0891122
\(117\) −2.25648e24 −0.342927
\(118\) −8.70001e24 −1.19381
\(119\) −7.52521e23 −0.0933158
\(120\) 7.78716e24i 0.873382i
\(121\) 5.68665e23 0.0577341
\(122\) 1.12277e25i 1.03269i
\(123\) −6.08196e24 −0.507204
\(124\) 2.83295e24 0.214377
\(125\) 1.57891e25i 1.08502i
\(126\) 3.39476e23i 0.0212013i
\(127\) 3.93983e24 0.223786 0.111893 0.993720i \(-0.464309\pi\)
0.111893 + 0.993720i \(0.464309\pi\)
\(128\) −2.26480e25 −1.17088
\(129\) 3.04220e25i 1.43255i
\(130\) 2.67389e25i 1.14769i
\(131\) 1.53631e25 0.601482 0.300741 0.953706i \(-0.402766\pi\)
0.300741 + 0.953706i \(0.402766\pi\)
\(132\) 4.89883e24i 0.175067i
\(133\) 3.37628e24 0.110209
\(134\) 6.42836e25i 1.91797i
\(135\) 2.56403e25i 0.699709i
\(136\) 4.72316e25i 1.17968i
\(137\) 4.62219e25i 1.05731i 0.848838 + 0.528653i \(0.177303\pi\)
−0.848838 + 0.528653i \(0.822697\pi\)
\(138\) −3.58358e25 + 4.56148e25i −0.751222 + 0.956219i
\(139\) 9.74177e25 1.87267 0.936333 0.351114i \(-0.114197\pi\)
0.936333 + 0.351114i \(0.114197\pi\)
\(140\) −5.54020e23 −0.00977212
\(141\) 1.29619e26 2.09912
\(142\) 3.74152e25 0.556657
\(143\) 8.84963e25i 1.21030i
\(144\) −2.47993e25 −0.311953
\(145\) 4.11944e25i 0.476894i
\(146\) 9.25785e25 0.986906
\(147\) −1.14377e26 −1.12339
\(148\) 1.57637e25i 0.142731i
\(149\) 1.58346e26i 1.32243i 0.750199 + 0.661213i \(0.229958\pi\)
−0.750199 + 0.661213i \(0.770042\pi\)
\(150\) 4.25032e25 0.327587
\(151\) −1.00820e26 −0.717505 −0.358753 0.933433i \(-0.616798\pi\)
−0.358753 + 0.933433i \(0.616798\pi\)
\(152\) 2.11910e26i 1.39325i
\(153\) 5.90008e25i 0.358559i
\(154\) −1.33138e25 −0.0748262
\(155\) 2.20620e26i 1.14726i
\(156\) 4.67111e25 0.224866
\(157\) 1.31913e26i 0.588156i 0.955781 + 0.294078i \(0.0950125\pi\)
−0.955781 + 0.294078i \(0.904987\pi\)
\(158\) 2.92290e26i 1.20762i
\(159\) 4.19166e26i 1.60554i
\(160\) 7.61551e25i 0.270557i
\(161\) −1.70734e25 1.34132e25i −0.0562872 0.0442202i
\(162\) 4.22006e26 1.29163
\(163\) 1.63351e26 0.464378 0.232189 0.972671i \(-0.425411\pi\)
0.232189 + 0.972671i \(0.425411\pi\)
\(164\) 2.71584e25 0.0717426
\(165\) −3.81503e26 −0.936894
\(166\) 4.89157e26i 1.11725i
\(167\) 4.71219e26 1.00144 0.500720 0.865609i \(-0.333069\pi\)
0.500720 + 0.865609i \(0.333069\pi\)
\(168\) 3.69713e25i 0.0731397i
\(169\) 3.01024e26 0.554575
\(170\) 6.99149e26 1.20000
\(171\) 2.64715e26i 0.423472i
\(172\) 1.35846e26i 0.202631i
\(173\) −6.15036e26 −0.855750 −0.427875 0.903838i \(-0.640738\pi\)
−0.427875 + 0.903838i \(0.640738\pi\)
\(174\) −5.22528e26 −0.678451
\(175\) 1.59087e25i 0.0192832i
\(176\) 9.72595e26i 1.10098i
\(177\) −1.18359e27 −1.25176
\(178\) 1.51167e27i 1.49423i
\(179\) −1.12860e27 −1.04304 −0.521521 0.853238i \(-0.674635\pi\)
−0.521521 + 0.853238i \(0.674635\pi\)
\(180\) 4.34375e25i 0.0375487i
\(181\) 2.44687e27i 1.97910i −0.144178 0.989552i \(-0.546054\pi\)
0.144178 0.989552i \(-0.453946\pi\)
\(182\) 1.26949e26i 0.0961110i
\(183\) 1.52746e27i 1.08282i
\(184\) −8.41869e26 + 1.07160e27i −0.559025 + 0.711573i
\(185\) −1.22762e27 −0.763841
\(186\) 2.79844e27 1.63215
\(187\) 2.31393e27 1.26547
\(188\) −5.78798e26 −0.296915
\(189\) 1.21733e26i 0.0585958i
\(190\) −3.13682e27 −1.41725
\(191\) 1.33797e27i 0.567606i 0.958883 + 0.283803i \(0.0915962\pi\)
−0.958883 + 0.283803i \(0.908404\pi\)
\(192\) −2.24819e27 −0.895815
\(193\) 1.16340e27 0.435553 0.217776 0.975999i \(-0.430120\pi\)
0.217776 + 0.975999i \(0.430120\pi\)
\(194\) 9.77834e26i 0.344068i
\(195\) 3.63768e27i 1.20340i
\(196\) 5.10739e26 0.158901
\(197\) −7.49565e26 −0.219389 −0.109694 0.993965i \(-0.534987\pi\)
−0.109694 + 0.993965i \(0.534987\pi\)
\(198\) 1.04386e27i 0.287514i
\(199\) 7.27664e27i 1.88666i −0.331855 0.943330i \(-0.607675\pi\)
0.331855 0.943330i \(-0.392325\pi\)
\(200\) 9.98502e26 0.243775
\(201\) 8.74542e27i 2.01107i
\(202\) 1.90581e27 0.412917
\(203\) 1.95579e26i 0.0399366i
\(204\) 1.22136e27i 0.235117i
\(205\) 2.11499e27i 0.383939i
\(206\) 4.64360e27i 0.795148i
\(207\) −1.05165e27 + 1.33863e27i −0.169913 + 0.216279i
\(208\) 9.27383e27 1.41416
\(209\) −1.03818e28 −1.49457
\(210\) −5.47270e26 −0.0743996
\(211\) −9.47507e27 −1.21673 −0.608363 0.793659i \(-0.708174\pi\)
−0.608363 + 0.793659i \(0.708174\pi\)
\(212\) 1.87174e27i 0.227099i
\(213\) 5.09012e27 0.583678
\(214\) 1.46727e28i 1.59054i
\(215\) −1.05792e28 −1.08440
\(216\) 7.64050e27 0.740759
\(217\) 1.04744e27i 0.0960755i
\(218\) 1.31340e28i 1.14004i
\(219\) 1.25948e28 1.03481
\(220\) 1.70356e27 0.132521
\(221\) 2.20637e28i 1.62544i
\(222\) 1.55717e28i 1.08668i
\(223\) −2.45451e28 −1.62295 −0.811477 0.584384i \(-0.801336\pi\)
−0.811477 + 0.584384i \(0.801336\pi\)
\(224\) 3.61563e26i 0.0226573i
\(225\) 1.24731e27 0.0740942
\(226\) 5.19752e26i 0.0292748i
\(227\) 1.85135e28i 0.988961i −0.869189 0.494481i \(-0.835358\pi\)
0.869189 0.494481i \(-0.164642\pi\)
\(228\) 5.47981e27i 0.277682i
\(229\) 2.51005e28i 1.20686i −0.797416 0.603430i \(-0.793800\pi\)
0.797416 0.603430i \(-0.206200\pi\)
\(230\) 1.58625e28 + 1.24618e28i 0.723830 + 0.568654i
\(231\) −1.81127e27 −0.0784584
\(232\) −1.22754e28 −0.504872
\(233\) −7.79932e27 −0.304639 −0.152320 0.988331i \(-0.548674\pi\)
−0.152320 + 0.988331i \(0.548674\pi\)
\(234\) 9.95334e27 0.369299
\(235\) 4.50746e28i 1.58898i
\(236\) 5.28519e27 0.177058
\(237\) 3.97644e28i 1.26624i
\(238\) 3.31937e27 0.100492
\(239\) −1.12722e28 −0.324514 −0.162257 0.986749i \(-0.551877\pi\)
−0.162257 + 0.986749i \(0.551877\pi\)
\(240\) 3.99790e28i 1.09470i
\(241\) 3.25888e27i 0.0848915i −0.999099 0.0424457i \(-0.986485\pi\)
0.999099 0.0424457i \(-0.0135150\pi\)
\(242\) −2.50838e27 −0.0621739
\(243\) 2.27097e28 0.535719
\(244\) 6.82071e27i 0.153162i
\(245\) 3.97744e28i 0.850375i
\(246\) 2.68275e28 0.546209
\(247\) 9.89915e28i 1.91970i
\(248\) 6.57420e28 1.21457
\(249\) 6.65470e28i 1.17148i
\(250\) 6.96457e28i 1.16846i
\(251\) 4.57088e28i 0.730996i 0.930812 + 0.365498i \(0.119101\pi\)
−0.930812 + 0.365498i \(0.880899\pi\)
\(252\) 2.06229e26i 0.00314444i
\(253\) 5.24991e28 + 4.12442e28i 0.763318 + 0.599676i
\(254\) −1.73786e28 −0.240996
\(255\) 9.51153e28 1.25825
\(256\) 3.70459e28 0.467585
\(257\) 8.03698e28 0.968044 0.484022 0.875056i \(-0.339175\pi\)
0.484022 + 0.875056i \(0.339175\pi\)
\(258\) 1.34191e29i 1.54272i
\(259\) −5.82840e27 −0.0639664
\(260\) 1.62437e28i 0.170218i
\(261\) −1.53342e28 −0.153453
\(262\) −6.77664e28 −0.647738
\(263\) 3.39866e28i 0.310341i 0.987888 + 0.155170i \(0.0495927\pi\)
−0.987888 + 0.155170i \(0.950407\pi\)
\(264\) 1.13683e29i 0.991858i
\(265\) −1.45764e29 −1.21535
\(266\) −1.48928e28 −0.118685
\(267\) 2.05654e29i 1.56676i
\(268\) 3.90518e28i 0.284461i
\(269\) 1.00748e29 0.701791 0.350895 0.936415i \(-0.385877\pi\)
0.350895 + 0.936415i \(0.385877\pi\)
\(270\) 1.13099e29i 0.753518i
\(271\) 9.43583e27 0.0601379 0.0300690 0.999548i \(-0.490427\pi\)
0.0300690 + 0.999548i \(0.490427\pi\)
\(272\) 2.42485e29i 1.47862i
\(273\) 1.72707e28i 0.100776i
\(274\) 2.03884e29i 1.13862i
\(275\) 4.89178e28i 0.261502i
\(276\) 2.17700e28 2.77106e28i 0.111416 0.141820i
\(277\) 1.29492e29 0.634581 0.317291 0.948328i \(-0.397227\pi\)
0.317291 + 0.948328i \(0.397227\pi\)
\(278\) −4.29709e29 −2.01668
\(279\) 8.21237e28 0.369163
\(280\) −1.28567e28 −0.0553647
\(281\) 1.11509e29i 0.460079i −0.973181 0.230039i \(-0.926115\pi\)
0.973181 0.230039i \(-0.0738855\pi\)
\(282\) −5.71747e29 −2.26055
\(283\) 7.49221e28i 0.283905i −0.989873 0.141952i \(-0.954662\pi\)
0.989873 0.141952i \(-0.0453380\pi\)
\(284\) −2.27294e28 −0.0825597
\(285\) −4.26747e29 −1.48604
\(286\) 3.90357e29i 1.30337i
\(287\) 1.00414e28i 0.0321522i
\(288\) 2.83481e28 0.0870590
\(289\) −2.37455e29 −0.699532
\(290\) 1.81708e29i 0.513568i
\(291\) 1.33029e29i 0.360769i
\(292\) −5.62406e28 −0.146371
\(293\) 1.67819e29i 0.419208i −0.977786 0.209604i \(-0.932782\pi\)
0.977786 0.209604i \(-0.0672176\pi\)
\(294\) 5.04517e29 1.20978
\(295\) 4.11590e29i 0.947547i
\(296\) 3.65816e29i 0.808653i
\(297\) 3.74317e29i 0.794626i
\(298\) 6.98462e29i 1.42412i
\(299\) 3.93269e29 5.00586e29i 0.770257 0.980448i
\(300\) −2.58203e28 −0.0485855
\(301\) −5.02270e28 −0.0908112
\(302\) 4.44718e29 0.772683
\(303\) 2.59275e29 0.432961
\(304\) 1.08794e30i 1.74631i
\(305\) −5.31171e29 −0.819665
\(306\) 2.60252e29i 0.386133i
\(307\) −1.15119e30 −1.64243 −0.821216 0.570617i \(-0.806704\pi\)
−0.821216 + 0.570617i \(0.806704\pi\)
\(308\) 8.08803e27 0.0110977
\(309\) 6.31735e29i 0.833745i
\(310\) 9.73151e29i 1.23549i
\(311\) 5.86583e29 0.716482 0.358241 0.933629i \(-0.383377\pi\)
0.358241 + 0.933629i \(0.383377\pi\)
\(312\) 1.08399e30 1.27400
\(313\) 3.50404e29i 0.396311i 0.980171 + 0.198156i \(0.0634952\pi\)
−0.980171 + 0.198156i \(0.936505\pi\)
\(314\) 5.81868e29i 0.633386i
\(315\) −1.60603e28 −0.0168278
\(316\) 1.77564e29i 0.179106i
\(317\) −6.73771e29 −0.654336 −0.327168 0.944966i \(-0.606094\pi\)
−0.327168 + 0.944966i \(0.606094\pi\)
\(318\) 1.84894e30i 1.72901i
\(319\) 6.01388e29i 0.541585i
\(320\) 7.81804e29i 0.678107i
\(321\) 1.99614e30i 1.66775i
\(322\) 7.53106e28 + 5.91654e28i 0.0606158 + 0.0476208i
\(323\) 2.58835e30 2.00721
\(324\) −2.56365e29 −0.191566
\(325\) −4.66439e29 −0.335888
\(326\) −7.20542e29 −0.500090
\(327\) 1.78681e30i 1.19538i
\(328\) 6.30242e29 0.406463
\(329\) 2.14002e29i 0.133066i
\(330\) 1.68281e30 1.00894
\(331\) 1.22926e30 0.710734 0.355367 0.934727i \(-0.384356\pi\)
0.355367 + 0.934727i \(0.384356\pi\)
\(332\) 2.97159e29i 0.165703i
\(333\) 4.56971e29i 0.245786i
\(334\) −2.07854e30 −1.07845
\(335\) −3.04120e30 −1.52233
\(336\) 1.89809e29i 0.0916739i
\(337\) 2.09567e30i 0.976704i −0.872647 0.488352i \(-0.837598\pi\)
0.872647 0.488352i \(-0.162402\pi\)
\(338\) −1.32781e30 −0.597224
\(339\) 7.07093e28i 0.0306959i
\(340\) −4.24727e29 −0.177977
\(341\) 3.22078e30i 1.30289i
\(342\) 1.16765e30i 0.456038i
\(343\) 3.78648e29i 0.142793i
\(344\) 3.15247e30i 1.14802i
\(345\) 2.15800e30 + 1.69536e30i 0.758966 + 0.596257i
\(346\) 2.71292e30 0.921560
\(347\) 2.58156e30 0.847086 0.423543 0.905876i \(-0.360786\pi\)
0.423543 + 0.905876i \(0.360786\pi\)
\(348\) 3.17431e29 0.100623
\(349\) 3.64197e30 1.11540 0.557702 0.830042i \(-0.311683\pi\)
0.557702 + 0.830042i \(0.311683\pi\)
\(350\) 7.01733e28i 0.0207661i
\(351\) −3.56917e30 −1.02066
\(352\) 1.11177e30i 0.307259i
\(353\) −6.16437e30 −1.64662 −0.823308 0.567594i \(-0.807874\pi\)
−0.823308 + 0.567594i \(0.807874\pi\)
\(354\) 5.22080e30 1.34802
\(355\) 1.77008e30i 0.441827i
\(356\) 9.18325e29i 0.221614i
\(357\) 4.51581e29 0.105370
\(358\) 4.97822e30 1.12325
\(359\) 2.59830e30i 0.566964i 0.958978 + 0.283482i \(0.0914896\pi\)
−0.958978 + 0.283482i \(0.908510\pi\)
\(360\) 1.00802e30i 0.212735i
\(361\) −6.71421e30 −1.37059
\(362\) 1.07931e31i 2.13130i
\(363\) −3.41251e29 −0.0651919
\(364\) 7.71205e28i 0.0142545i
\(365\) 4.37981e30i 0.783323i
\(366\) 6.73762e30i 1.16609i
\(367\) 2.11320e30i 0.353955i 0.984215 + 0.176977i \(0.0566319\pi\)
−0.984215 + 0.176977i \(0.943368\pi\)
\(368\) 4.32212e30 5.50156e30i 0.700685 0.891891i
\(369\) 7.87287e29 0.123543
\(370\) 5.41502e30 0.822582
\(371\) −6.92047e29 −0.101777
\(372\) −1.70003e30 −0.242070
\(373\) 8.27959e29i 0.114157i −0.998370 0.0570785i \(-0.981821\pi\)
0.998370 0.0570785i \(-0.0181785\pi\)
\(374\) −1.02067e31 −1.36279
\(375\) 9.47491e30i 1.22518i
\(376\) −1.34317e31 −1.68220
\(377\) 5.73432e30 0.695642
\(378\) 5.36963e29i 0.0631020i
\(379\) 1.30508e31i 1.48582i −0.669393 0.742909i \(-0.733446\pi\)
0.669393 0.742909i \(-0.266554\pi\)
\(380\) 1.90559e30 0.210197
\(381\) −2.36426e30 −0.252694
\(382\) 5.90179e30i 0.611256i
\(383\) 3.64171e30i 0.365527i 0.983157 + 0.182764i \(0.0585043\pi\)
−0.983157 + 0.182764i \(0.941496\pi\)
\(384\) 1.35909e31 1.32213
\(385\) 6.29865e29i 0.0593908i
\(386\) −5.13174e30 −0.469048
\(387\) 3.93801e30i 0.348935i
\(388\) 5.94026e29i 0.0510299i
\(389\) 6.66496e30i 0.555140i 0.960705 + 0.277570i \(0.0895291\pi\)
−0.960705 + 0.277570i \(0.910471\pi\)
\(390\) 1.60458e31i 1.29594i
\(391\) −1.30889e31 1.02829e31i −1.02514 0.805368i
\(392\) 1.18523e31 0.900264
\(393\) −9.21924e30 −0.679180
\(394\) 3.30633e30 0.236261
\(395\) 1.38280e31 0.958504
\(396\) 6.34135e29i 0.0426422i
\(397\) −5.59012e30 −0.364699 −0.182350 0.983234i \(-0.558370\pi\)
−0.182350 + 0.983234i \(0.558370\pi\)
\(398\) 3.20972e31i 2.03175i
\(399\) −2.02608e30 −0.124446
\(400\) −5.12627e30 −0.305549
\(401\) 2.62935e31i 1.52095i −0.649365 0.760477i \(-0.724965\pi\)
0.649365 0.760477i \(-0.275035\pi\)
\(402\) 3.85760e31i 2.16573i
\(403\) −3.07106e31 −1.67351
\(404\) −1.15776e30 −0.0612412
\(405\) 1.99647e31i 1.02519i
\(406\) 8.62699e29i 0.0430078i
\(407\) 1.79218e31 0.867457
\(408\) 2.83432e31i 1.33207i
\(409\) −3.22952e31 −1.47387 −0.736934 0.675965i \(-0.763727\pi\)
−0.736934 + 0.675965i \(0.763727\pi\)
\(410\) 9.32921e30i 0.413465i
\(411\) 2.77373e31i 1.19389i
\(412\) 2.82095e30i 0.117931i
\(413\) 1.95412e30i 0.0793505i
\(414\) 4.63881e30 5.90467e30i 0.182980 0.232912i
\(415\) 2.31416e31 0.886780
\(416\) −1.06009e31 −0.394660
\(417\) −5.84595e31 −2.11457
\(418\) 4.57938e31 1.60950
\(419\) 4.07204e31i 1.39073i 0.718655 + 0.695367i \(0.244758\pi\)
−0.718655 + 0.695367i \(0.755242\pi\)
\(420\) 3.32462e29 0.0110345
\(421\) 2.74059e31i 0.884014i −0.897012 0.442007i \(-0.854267\pi\)
0.897012 0.442007i \(-0.145733\pi\)
\(422\) 4.17945e31 1.31030
\(423\) −1.67786e31 −0.511296
\(424\) 4.34360e31i 1.28665i
\(425\) 1.21961e31i 0.351199i
\(426\) −2.24525e31 −0.628564
\(427\) −2.52185e30 −0.0686413
\(428\) 8.91354e30i 0.235898i
\(429\) 5.31058e31i 1.36664i
\(430\) 4.66647e31 1.16780
\(431\) 1.39542e31i 0.339608i −0.985478 0.169804i \(-0.945687\pi\)
0.985478 0.169804i \(-0.0543135\pi\)
\(432\) −3.92260e31 −0.928472
\(433\) 3.93119e30i 0.0905042i 0.998976 + 0.0452521i \(0.0144091\pi\)
−0.998976 + 0.0452521i \(0.985591\pi\)
\(434\) 4.62025e30i 0.103464i
\(435\) 2.47204e31i 0.538497i
\(436\) 7.97881e30i 0.169083i
\(437\) 5.87252e31 + 4.61355e31i 1.21073 + 0.951171i
\(438\) −5.55555e31 −1.11439
\(439\) 5.82675e31 1.13724 0.568620 0.822600i \(-0.307477\pi\)
0.568620 + 0.822600i \(0.307477\pi\)
\(440\) 3.95331e31 0.750809
\(441\) 1.48057e31 0.273631
\(442\) 9.73227e31i 1.75044i
\(443\) −2.10094e31 −0.367763 −0.183881 0.982948i \(-0.558866\pi\)
−0.183881 + 0.982948i \(0.558866\pi\)
\(444\) 9.45967e30i 0.161169i
\(445\) −7.15157e31 −1.18599
\(446\) 1.08268e32 1.74776
\(447\) 9.50218e31i 1.49325i
\(448\) 3.71179e30i 0.0567868i
\(449\) −9.13734e31 −1.36102 −0.680509 0.732740i \(-0.738241\pi\)
−0.680509 + 0.732740i \(0.738241\pi\)
\(450\) −5.50188e30 −0.0797922
\(451\) 3.08763e31i 0.436021i
\(452\) 3.15745e29i 0.00434185i
\(453\) 6.05014e31 0.810190
\(454\) 8.16631e31i 1.06501i
\(455\) 6.00585e30 0.0762848
\(456\) 1.27166e32i 1.57323i
\(457\) 4.64917e31i 0.560248i −0.959964 0.280124i \(-0.909624\pi\)
0.959964 0.280124i \(-0.0903756\pi\)
\(458\) 1.10718e32i 1.29967i
\(459\) 9.33239e31i 1.06719i
\(460\) −9.63632e30 7.57046e30i −0.107354 0.0843390i
\(461\) 9.65031e31 1.04744 0.523721 0.851890i \(-0.324543\pi\)
0.523721 + 0.851890i \(0.324543\pi\)
\(462\) 7.98950e30 0.0844920
\(463\) −7.76934e31 −0.800594 −0.400297 0.916386i \(-0.631093\pi\)
−0.400297 + 0.916386i \(0.631093\pi\)
\(464\) 6.30215e31 0.632810
\(465\) 1.32392e32i 1.29546i
\(466\) 3.44027e31 0.328067
\(467\) 1.29167e32i 1.20046i 0.799826 + 0.600231i \(0.204925\pi\)
−0.799826 + 0.600231i \(0.795075\pi\)
\(468\) −6.04657e30 −0.0547720
\(469\) −1.44388e31 −0.127484
\(470\) 1.98824e32i 1.71117i
\(471\) 7.91599e31i 0.664132i
\(472\) 1.22649e32 1.00314
\(473\) 1.54443e32 1.23150
\(474\) 1.75401e32i 1.36361i
\(475\) 5.47192e31i 0.414779i
\(476\) −2.01649e30 −0.0149043
\(477\) 5.42594e31i 0.391070i
\(478\) 4.97215e31 0.349470
\(479\) 2.47226e32i 1.69460i 0.531112 + 0.847302i \(0.321774\pi\)
−0.531112 + 0.847302i \(0.678226\pi\)
\(480\) 4.56999e31i 0.305507i
\(481\) 1.70887e32i 1.11421i
\(482\) 1.43749e31i 0.0914199i
\(483\) 1.02456e31 + 8.04911e30i 0.0635582 + 0.0499324i
\(484\) 1.52382e30 0.00922123
\(485\) −4.62605e31 −0.273092
\(486\) −1.00173e32 −0.576917
\(487\) −1.08375e32 −0.608952 −0.304476 0.952520i \(-0.598481\pi\)
−0.304476 + 0.952520i \(0.598481\pi\)
\(488\) 1.58283e32i 0.867753i
\(489\) −9.80256e31 −0.524365
\(490\) 1.75445e32i 0.915771i
\(491\) −1.54420e32 −0.786548 −0.393274 0.919421i \(-0.628658\pi\)
−0.393274 + 0.919421i \(0.628658\pi\)
\(492\) −1.62975e31 −0.0810101
\(493\) 1.49937e32i 0.727352i
\(494\) 4.36651e32i 2.06733i
\(495\) 4.93841e31 0.228205
\(496\) −3.37517e32 −1.52235
\(497\) 8.40385e30i 0.0370000i
\(498\) 2.93538e32i 1.26157i
\(499\) −9.58770e31 −0.402261 −0.201130 0.979564i \(-0.564461\pi\)
−0.201130 + 0.979564i \(0.564461\pi\)
\(500\) 4.23092e31i 0.173299i
\(501\) −2.82774e32 −1.13080
\(502\) 2.01621e32i 0.787212i
\(503\) 2.55312e31i 0.0973321i −0.998815 0.0486660i \(-0.984503\pi\)
0.998815 0.0486660i \(-0.0154970\pi\)
\(504\) 4.78579e30i 0.0178151i
\(505\) 9.01623e31i 0.327739i
\(506\) −2.31573e32 1.81928e32i −0.822019 0.645793i
\(507\) −1.80642e32 −0.626214
\(508\) 1.05573e31 0.0357429
\(509\) 2.44999e32 0.810122 0.405061 0.914290i \(-0.367250\pi\)
0.405061 + 0.914290i \(0.367250\pi\)
\(510\) −4.19553e32 −1.35502
\(511\) 2.07941e31i 0.0655979i
\(512\) 2.16562e32 0.667333
\(513\) 4.18709e32i 1.26039i
\(514\) −3.54510e32 −1.04249
\(515\) 2.19685e32 0.631122
\(516\) 8.15200e31i 0.228806i
\(517\) 6.58035e32i 1.80452i
\(518\) 2.57090e31 0.0688856
\(519\) 3.69077e32 0.966293
\(520\) 3.76954e32i 0.964380i
\(521\) 1.39895e32i 0.349744i −0.984591 0.174872i \(-0.944049\pi\)
0.984591 0.174872i \(-0.0559511\pi\)
\(522\) 6.76392e31 0.165254
\(523\) 4.80620e32i 1.14758i 0.819004 + 0.573788i \(0.194527\pi\)
−0.819004 + 0.573788i \(0.805473\pi\)
\(524\) 4.11676e31 0.0960682
\(525\) 9.54668e30i 0.0217741i
\(526\) 1.49915e32i 0.334207i
\(527\) 8.02997e32i 1.74979i
\(528\) 5.83645e32i 1.24320i
\(529\) −1.13680e32 4.66602e32i −0.236709 0.971581i
\(530\) 6.42964e32 1.30881
\(531\) 1.53211e32 0.304899
\(532\) 9.04723e30 0.0176026
\(533\) −2.94410e32 −0.560049
\(534\) 9.07138e32i 1.68725i
\(535\) 6.94153e32 1.26244
\(536\) 9.06243e32i 1.61164i
\(537\) 6.77260e32 1.17778
\(538\) −4.44397e32 −0.755760
\(539\) 5.80659e32i 0.965730i
\(540\) 6.87067e31i 0.111757i
\(541\) 2.83872e32 0.451601 0.225801 0.974174i \(-0.427500\pi\)
0.225801 + 0.974174i \(0.427500\pi\)
\(542\) −4.16214e31 −0.0647627
\(543\) 1.46835e33i 2.23476i
\(544\) 2.77184e32i 0.412650i
\(545\) −6.21360e32 −0.904868
\(546\) 7.61810e31i 0.108526i
\(547\) 2.53339e32 0.353065 0.176533 0.984295i \(-0.443512\pi\)
0.176533 + 0.984295i \(0.443512\pi\)
\(548\) 1.23858e32i 0.168872i
\(549\) 1.97724e32i 0.263749i
\(550\) 2.15776e32i 0.281612i
\(551\) 6.72710e32i 0.859030i
\(552\) 5.05198e32 6.43059e32i 0.631238 0.803492i
\(553\) 6.56515e31 0.0802681
\(554\) −5.71190e32 −0.683382
\(555\) 7.36683e32 0.862512
\(556\) 2.61044e32 0.299100
\(557\) 8.05399e32i 0.903127i −0.892239 0.451564i \(-0.850866\pi\)
0.892239 0.451564i \(-0.149134\pi\)
\(558\) −3.62247e32 −0.397553
\(559\) 1.47264e33i 1.58181i
\(560\) 6.60057e31 0.0693945
\(561\) −1.38857e33 −1.42894
\(562\) 4.91863e32i 0.495460i
\(563\) 4.99664e31i 0.0492694i 0.999697 + 0.0246347i \(0.00784227\pi\)
−0.999697 + 0.0246347i \(0.992158\pi\)
\(564\) 3.47331e32 0.335270
\(565\) −2.45890e31 −0.0232359
\(566\) 3.30481e32i 0.305738i
\(567\) 9.47870e31i 0.0858523i
\(568\) −5.27463e32 −0.467748
\(569\) 6.57173e32i 0.570601i 0.958438 + 0.285300i \(0.0920934\pi\)
−0.958438 + 0.285300i \(0.907907\pi\)
\(570\) 1.88238e33 1.60033
\(571\) 1.30947e32i 0.109009i 0.998514 + 0.0545045i \(0.0173579\pi\)
−0.998514 + 0.0545045i \(0.982642\pi\)
\(572\) 2.37138e32i 0.193308i
\(573\) 8.02905e32i 0.640927i
\(574\) 4.42925e31i 0.0346248i
\(575\) −2.17386e32 + 2.76708e32i −0.166425 + 0.211840i
\(576\) 2.91020e32 0.218199
\(577\) −1.59489e33 −1.17117 −0.585586 0.810610i \(-0.699135\pi\)
−0.585586 + 0.810610i \(0.699135\pi\)
\(578\) 1.04741e33 0.753328
\(579\) −6.98145e32 −0.491816
\(580\) 1.10386e32i 0.0761690i
\(581\) 1.09870e32 0.0742617
\(582\) 5.86789e32i 0.388513i
\(583\) 2.12798e33 1.38021
\(584\) −1.30513e33 −0.829278
\(585\) 4.70884e32i 0.293119i
\(586\) 7.40249e32i 0.451447i
\(587\) 1.06280e33 0.635028 0.317514 0.948254i \(-0.397152\pi\)
0.317514 + 0.948254i \(0.397152\pi\)
\(588\) −3.06490e32 −0.179427
\(589\) 3.60275e33i 2.06657i
\(590\) 1.81552e33i 1.02042i
\(591\) 4.49807e32 0.247729
\(592\) 1.87808e33i 1.01357i
\(593\) −1.30642e33 −0.690919 −0.345460 0.938434i \(-0.612277\pi\)
−0.345460 + 0.938434i \(0.612277\pi\)
\(594\) 1.65111e33i 0.855734i
\(595\) 1.57036e32i 0.0797621i
\(596\) 4.24310e32i 0.211217i
\(597\) 4.36664e33i 2.13037i
\(598\) −1.73471e33 + 2.20808e33i −0.829492 + 1.05585i
\(599\) −2.64114e33 −1.23785 −0.618927 0.785448i \(-0.712432\pi\)
−0.618927 + 0.785448i \(0.712432\pi\)
\(600\) −5.99192e32 −0.275265
\(601\) 3.08301e33 1.38829 0.694146 0.719835i \(-0.255782\pi\)
0.694146 + 0.719835i \(0.255782\pi\)
\(602\) 2.21551e32 0.0977949
\(603\) 1.13206e33i 0.489849i
\(604\) −2.70162e32 −0.114599
\(605\) 1.18669e32i 0.0493485i
\(606\) −1.14366e33 −0.466257
\(607\) −3.56136e33 −1.42348 −0.711741 0.702442i \(-0.752093\pi\)
−0.711741 + 0.702442i \(0.752093\pi\)
\(608\) 1.24362e33i 0.487355i
\(609\) 1.17365e32i 0.0450954i
\(610\) 2.34299e33 0.882700
\(611\) 6.27446e33 2.31783
\(612\) 1.58101e32i 0.0572687i
\(613\) 3.59488e33i 1.27691i 0.769661 + 0.638453i \(0.220425\pi\)
−0.769661 + 0.638453i \(0.779575\pi\)
\(614\) 5.07790e33 1.76874
\(615\) 1.26919e33i 0.433535i
\(616\) 1.87692e32 0.0628750
\(617\) 5.62527e33i 1.84808i −0.382292 0.924042i \(-0.624865\pi\)
0.382292 0.924042i \(-0.375135\pi\)
\(618\) 2.78658e33i 0.897862i
\(619\) 5.20978e33i 1.64639i 0.567761 + 0.823193i \(0.307810\pi\)
−0.567761 + 0.823193i \(0.692190\pi\)
\(620\) 5.91181e32i 0.183240i
\(621\) −1.66343e33 + 2.11736e33i −0.505715 + 0.643717i
\(622\) −2.58741e33 −0.771581
\(623\) −3.39537e32 −0.0993186
\(624\) −5.56514e33 −1.59684
\(625\) −2.33780e33 −0.658033
\(626\) 1.54563e33i 0.426789i
\(627\) 6.22999e33 1.68763
\(628\) 3.53480e32i 0.0939397i
\(629\) −4.46821e33 −1.16500
\(630\) 7.08421e31 0.0181219
\(631\) 9.76546e32i 0.245098i 0.992462 + 0.122549i \(0.0391069\pi\)
−0.992462 + 0.122549i \(0.960893\pi\)
\(632\) 4.12058e33i 1.01474i
\(633\) 5.68590e33 1.37390
\(634\) 2.97200e33 0.704657
\(635\) 8.22165e32i 0.191282i
\(636\) 1.12321e33i 0.256435i
\(637\) −5.53666e33 −1.24044
\(638\) 2.65272e33i 0.583235i
\(639\) −6.58897e32 −0.142170
\(640\) 4.72620e33i 1.00081i
\(641\) 4.09971e33i 0.852034i 0.904715 + 0.426017i \(0.140084\pi\)
−0.904715 + 0.426017i \(0.859916\pi\)
\(642\) 8.80495e33i 1.79600i
\(643\) 8.64543e33i 1.73083i −0.501054 0.865416i \(-0.667054\pi\)
0.501054 0.865416i \(-0.332946\pi\)
\(644\) −4.57506e31 3.59425e31i −0.00899014 0.00706281i
\(645\) 6.34847e33 1.22448
\(646\) −1.14172e34 −2.16157
\(647\) −1.00030e34 −1.85900 −0.929500 0.368822i \(-0.879761\pi\)
−0.929500 + 0.368822i \(0.879761\pi\)
\(648\) −5.94925e33 −1.08533
\(649\) 6.00873e33i 1.07608i
\(650\) 2.05746e33 0.361718
\(651\) 6.28560e32i 0.108486i
\(652\) 4.37723e32 0.0741700
\(653\) −6.23459e32 −0.103717 −0.0518585 0.998654i \(-0.516514\pi\)
−0.0518585 + 0.998654i \(0.516514\pi\)
\(654\) 7.88161e33i 1.28731i
\(655\) 3.20597e33i 0.514120i
\(656\) −3.23564e33 −0.509464
\(657\) −1.63035e33 −0.252055
\(658\) 9.43960e32i 0.143299i
\(659\) 4.43499e33i 0.661101i −0.943788 0.330550i \(-0.892766\pi\)
0.943788 0.330550i \(-0.107234\pi\)
\(660\) −1.02229e33 −0.149640
\(661\) 3.31246e33i 0.476138i 0.971248 + 0.238069i \(0.0765144\pi\)
−0.971248 + 0.238069i \(0.923486\pi\)
\(662\) −5.42225e33 −0.765391
\(663\) 1.32402e34i 1.83541i
\(664\) 6.89592e33i 0.938805i
\(665\) 7.04564e32i 0.0942021i
\(666\) 2.01569e33i 0.264688i
\(667\) 2.67251e33 3.40180e33i 0.344675 0.438732i
\(668\) 1.26270e33 0.159949
\(669\) 1.47293e34 1.83260
\(670\) 1.34147e34 1.63940
\(671\) 7.75447e33 0.930854
\(672\) 2.16971e32i 0.0255841i
\(673\) −1.94600e32 −0.0225405 −0.0112702 0.999936i \(-0.503588\pi\)
−0.0112702 + 0.999936i \(0.503588\pi\)
\(674\) 9.24396e33i 1.05182i
\(675\) 1.97292e33 0.220528
\(676\) 8.06636e32 0.0885763
\(677\) 2.93763e33i 0.316908i −0.987366 0.158454i \(-0.949349\pi\)
0.987366 0.158454i \(-0.0506510\pi\)
\(678\) 3.11898e32i 0.0330565i
\(679\) −2.19632e32 −0.0228696
\(680\) −9.85630e33 −1.00834
\(681\) 1.11098e34i 1.11671i
\(682\) 1.42068e34i 1.40309i
\(683\) 8.72835e33 0.847000 0.423500 0.905896i \(-0.360801\pi\)
0.423500 + 0.905896i \(0.360801\pi\)
\(684\) 7.09340e32i 0.0676365i
\(685\) −9.64560e33 −0.903737
\(686\) 1.67021e33i 0.153774i
\(687\) 1.50626e34i 1.36276i
\(688\) 1.61847e34i 1.43894i
\(689\) 2.02906e34i 1.77282i
\(690\) −9.51892e33 7.47823e33i −0.817332 0.642111i
\(691\) 1.92819e34 1.62710 0.813548 0.581498i \(-0.197533\pi\)
0.813548 + 0.581498i \(0.197533\pi\)
\(692\) −1.64808e33 −0.136680
\(693\) 2.34462e32 0.0191106
\(694\) −1.13872e34 −0.912229
\(695\) 2.03292e34i 1.60067i
\(696\) 7.36638e33 0.570089
\(697\) 7.69801e33i 0.585578i
\(698\) −1.60647e34 −1.20118
\(699\) 4.68030e33 0.343991
\(700\) 4.26297e31i 0.00307989i
\(701\) 9.36458e32i 0.0665077i 0.999447 + 0.0332539i \(0.0105870\pi\)
−0.999447 + 0.0332539i \(0.989413\pi\)
\(702\) 1.57436e34 1.09915
\(703\) 2.00472e34 1.37591
\(704\) 1.14134e34i 0.770093i
\(705\) 2.70489e34i 1.79424i
\(706\) 2.71910e34 1.77325
\(707\) 4.28066e32i 0.0274459i
\(708\) −3.17159e33 −0.199930
\(709\) 1.59340e33i 0.0987573i −0.998780 0.0493786i \(-0.984276\pi\)
0.998780 0.0493786i \(-0.0157241\pi\)
\(710\) 7.80781e33i 0.475805i
\(711\) 5.14735e33i 0.308424i
\(712\) 2.13108e34i 1.25557i
\(713\) −1.43129e34 + 1.82186e34i −0.829186 + 1.05546i
\(714\) −1.99192e33 −0.113473
\(715\) −1.84674e34 −1.03451
\(716\) −3.02423e33 −0.166594
\(717\) 6.76433e33 0.366433
\(718\) 1.14611e34i 0.610565i
\(719\) −6.65329e33 −0.348570 −0.174285 0.984695i \(-0.555761\pi\)
−0.174285 + 0.984695i \(0.555761\pi\)
\(720\) 5.17512e33i 0.266643i
\(721\) 1.04300e33 0.0528521
\(722\) 2.96163e34 1.47599
\(723\) 1.95563e33i 0.0958575i
\(724\) 6.55674e33i 0.316101i
\(725\) −3.16975e33 −0.150303
\(726\) 1.50525e33 0.0702054
\(727\) 1.97357e34i 0.905397i 0.891664 + 0.452699i \(0.149539\pi\)
−0.891664 + 0.452699i \(0.850461\pi\)
\(728\) 1.78967e33i 0.0807602i
\(729\) 1.33925e34 0.594472
\(730\) 1.93193e34i 0.843562i
\(731\) −3.85054e34 −1.65392
\(732\) 4.09305e33i 0.172947i
\(733\) 2.89176e33i 0.120203i 0.998192 + 0.0601014i \(0.0191424\pi\)
−0.998192 + 0.0601014i \(0.980858\pi\)
\(734\) 9.32131e33i 0.381175i
\(735\) 2.38683e34i 0.960224i
\(736\) −4.94062e33 + 6.28883e33i −0.195545 + 0.248906i
\(737\) 4.43979e34 1.72883
\(738\) −3.47272e33 −0.133043
\(739\) −1.71747e34 −0.647374 −0.323687 0.946164i \(-0.604923\pi\)
−0.323687 + 0.946164i \(0.604923\pi\)
\(740\) −3.28958e33 −0.122000
\(741\) 5.94039e34i 2.16769i
\(742\) 3.05262e33 0.109604
\(743\) 2.38671e34i 0.843207i −0.906780 0.421604i \(-0.861467\pi\)
0.906780 0.421604i \(-0.138533\pi\)
\(744\) −3.94512e34 −1.37147
\(745\) −3.30436e34 −1.13035
\(746\) 3.65212e33i 0.122936i
\(747\) 8.61426e33i 0.285345i
\(748\) 6.20051e33 0.202120
\(749\) 3.29565e33 0.105720
\(750\) 4.17938e34i 1.31940i
\(751\) 4.82931e34i 1.50039i −0.661214 0.750197i \(-0.729958\pi\)
0.661214 0.750197i \(-0.270042\pi\)
\(752\) 6.89577e34 2.10848
\(753\) 2.74294e34i 0.825424i
\(754\) −2.52941e34 −0.749139
\(755\) 2.10392e34i 0.613291i
\(756\) 3.26201e32i 0.00935887i
\(757\) 2.20584e33i 0.0622908i −0.999515 0.0311454i \(-0.990085\pi\)
0.999515 0.0311454i \(-0.00991549\pi\)
\(758\) 5.75668e34i 1.60008i
\(759\) −3.15042e34 2.47503e34i −0.861921 0.677140i
\(760\) 4.42216e34 1.19089
\(761\) −4.55885e34 −1.20848 −0.604240 0.796803i \(-0.706523\pi\)
−0.604240 + 0.796803i \(0.706523\pi\)
\(762\) 1.04287e34 0.272127
\(763\) −2.95004e33 −0.0757764
\(764\) 3.58529e33i 0.0906575i
\(765\) −1.23123e34 −0.306480
\(766\) 1.60635e34i 0.393637i
\(767\) −5.72941e34 −1.38218
\(768\) −2.22309e34 −0.527986
\(769\) 2.21352e34i 0.517569i 0.965935 + 0.258784i \(0.0833219\pi\)
−0.965935 + 0.258784i \(0.916678\pi\)
\(770\) 2.77833e33i 0.0639581i
\(771\) −4.82292e34 −1.09309
\(772\) 3.11749e33 0.0695661
\(773\) 4.16692e34i 0.915507i −0.889079 0.457753i \(-0.848654\pi\)
0.889079 0.457753i \(-0.151346\pi\)
\(774\) 1.73705e34i 0.375769i
\(775\) 1.69758e34 0.361585
\(776\) 1.37851e34i 0.289114i
\(777\) 3.49757e33 0.0722294
\(778\) 2.93991e34i 0.597832i
\(779\) 3.45381e34i 0.691590i
\(780\) 9.74768e33i 0.192206i
\(781\) 2.58411e34i 0.501762i
\(782\) 5.77352e34 + 4.53578e34i 1.10398 + 0.867303i
\(783\) −2.42548e34 −0.456726
\(784\) −6.08492e34 −1.12840
\(785\) −2.75277e34 −0.502729
\(786\) 4.06660e34 0.731410
\(787\) 2.48536e34i 0.440243i −0.975472 0.220121i \(-0.929355\pi\)
0.975472 0.220121i \(-0.0706454\pi\)
\(788\) −2.00857e33 −0.0350406
\(789\) 2.03951e34i 0.350430i
\(790\) −6.09952e34 −1.03222
\(791\) −1.16742e32 −0.00194585
\(792\) 1.47159e34i 0.241593i
\(793\) 7.39400e34i 1.19564i
\(794\) 2.46580e34 0.392746
\(795\) 8.74717e34 1.37234
\(796\) 1.94988e34i 0.301336i
\(797\) 4.17727e34i 0.635906i 0.948107 + 0.317953i \(0.102995\pi\)
−0.948107 + 0.317953i \(0.897005\pi\)
\(798\) 8.93701e33 0.134016
\(799\) 1.64060e35i 2.42349i
\(800\) 5.85984e33 0.0852718
\(801\) 2.66211e34i 0.381624i
\(802\) 1.15980e35i 1.63792i
\(803\) 6.39400e34i 0.889582i
\(804\) 2.34346e34i 0.321207i
\(805\) 2.79906e33 3.56288e33i 0.0377974 0.0481117i
\(806\) 1.35464e35 1.80221
\(807\) −6.04577e34 −0.792446
\(808\) −2.68673e34 −0.346967
\(809\) 5.65741e34 0.719839 0.359920 0.932983i \(-0.382804\pi\)
0.359920 + 0.932983i \(0.382804\pi\)
\(810\) 8.80643e34i 1.10403i
\(811\) −1.57646e35 −1.94730 −0.973649 0.228053i \(-0.926764\pi\)
−0.973649 + 0.228053i \(0.926764\pi\)
\(812\) 5.24083e32i 0.00637863i
\(813\) −5.66235e33 −0.0679064
\(814\) −7.90528e34 −0.934167
\(815\) 3.40882e34i 0.396929i
\(816\) 1.45513e35i 1.66963i
\(817\) 1.72760e35 1.95334
\(818\) 1.42454e35 1.58721
\(819\) 2.23563e33i 0.0245467i
\(820\) 5.66742e33i 0.0613224i
\(821\) 2.63899e34 0.281397 0.140699 0.990052i \(-0.455065\pi\)
0.140699 + 0.990052i \(0.455065\pi\)
\(822\) 1.22349e35i 1.28570i
\(823\) 5.96975e34 0.618242 0.309121 0.951023i \(-0.399965\pi\)
0.309121 + 0.951023i \(0.399965\pi\)
\(824\) 6.54634e34i 0.668147i
\(825\) 2.93551e34i 0.295282i
\(826\) 8.61960e33i 0.0854528i
\(827\) 1.86687e34i 0.182410i −0.995832 0.0912051i \(-0.970928\pi\)
0.995832 0.0912051i \(-0.0290719\pi\)
\(828\) −2.81804e33 + 3.58704e33i −0.0271383 + 0.0345439i
\(829\) 1.04755e35 0.994304 0.497152 0.867663i \(-0.334379\pi\)
0.497152 + 0.867663i \(0.334379\pi\)
\(830\) −1.02077e35 −0.954976
\(831\) −7.77072e34 −0.716554
\(832\) −1.08828e35 −0.989151
\(833\) 1.44768e35i 1.29698i
\(834\) 2.57864e35 2.27719
\(835\) 9.83341e34i 0.855986i
\(836\) −2.78194e34 −0.238711
\(837\) 1.29898e35 1.09875
\(838\) 1.79618e35i 1.49769i
\(839\) 1.47806e35i 1.21493i 0.794348 + 0.607463i \(0.207813\pi\)
−0.794348 + 0.607463i \(0.792187\pi\)
\(840\) 7.71519e33 0.0625165
\(841\) −8.62165e34 −0.688714
\(842\) 1.20887e35i 0.951997i
\(843\) 6.69152e34i 0.519510i
\(844\) −2.53898e34 −0.194334
\(845\) 6.28178e34i 0.474026i
\(846\) 7.40104e34 0.550615
\(847\) 5.63409e32i 0.00413259i
\(848\) 2.22998e35i 1.61269i
\(849\) 4.49601e34i 0.320579i
\(850\) 5.37968e34i 0.378207i
\(851\) −1.01376e35 7.96427e34i −0.702717 0.552067i
\(852\) 1.36397e34 0.0932244
\(853\) −1.34913e35 −0.909212 −0.454606 0.890693i \(-0.650220\pi\)
−0.454606 + 0.890693i \(0.650220\pi\)
\(854\) 1.11239e34 0.0739200
\(855\) 5.52407e34 0.361965
\(856\) 2.06849e35i 1.33650i
\(857\) −5.21216e34 −0.332084 −0.166042 0.986119i \(-0.553099\pi\)
−0.166042 + 0.986119i \(0.553099\pi\)
\(858\) 2.34249e35i 1.47174i
\(859\) −1.43968e35 −0.891965 −0.445982 0.895042i \(-0.647146\pi\)
−0.445982 + 0.895042i \(0.647146\pi\)
\(860\) −2.83484e34 −0.173200
\(861\) 6.02575e33i 0.0363055i
\(862\) 6.15519e34i 0.365725i
\(863\) 2.66313e35 1.56050 0.780249 0.625469i \(-0.215092\pi\)
0.780249 + 0.625469i \(0.215092\pi\)
\(864\) 4.48392e34 0.259115
\(865\) 1.28346e35i 0.731457i
\(866\) 1.73404e34i 0.0974642i
\(867\) 1.42495e35 0.789895
\(868\) 2.80677e33i 0.0153451i
\(869\) −2.01872e35 −1.08853
\(870\) 1.09041e35i 0.579909i
\(871\) 4.23341e35i 2.22061i
\(872\) 1.85158e35i 0.957953i
\(873\) 1.72201e34i 0.0878747i
\(874\) −2.59036e35 2.03504e35i −1.30384 1.02432i
\(875\) −1.56432e34 −0.0776656
\(876\) 3.37495e34 0.165279
\(877\) 1.98741e35 0.960047 0.480024 0.877256i \(-0.340628\pi\)
0.480024 + 0.877256i \(0.340628\pi\)
\(878\) −2.57018e35 −1.22470
\(879\) 1.00707e35i 0.473360i
\(880\) −2.02961e35 −0.941069
\(881\) 3.75023e35i 1.71533i −0.514211 0.857664i \(-0.671915\pi\)
0.514211 0.857664i \(-0.328085\pi\)
\(882\) −6.53077e34 −0.294674
\(883\) −2.65749e35 −1.18289 −0.591443 0.806347i \(-0.701441\pi\)
−0.591443 + 0.806347i \(0.701441\pi\)
\(884\) 5.91227e34i 0.259614i
\(885\) 2.46992e35i 1.06995i
\(886\) 9.26721e34 0.396045
\(887\) 4.00688e35 1.68936 0.844681 0.535270i \(-0.179790\pi\)
0.844681 + 0.535270i \(0.179790\pi\)
\(888\) 2.19523e35i 0.913112i
\(889\) 3.90341e33i 0.0160186i
\(890\) 3.15455e35 1.27720
\(891\) 2.91461e35i 1.16426i
\(892\) −6.57720e34 −0.259217
\(893\) 7.36075e35i 2.86223i
\(894\) 4.19141e35i 1.60809i
\(895\) 2.35516e35i 0.891545i
\(896\) 2.24387e34i 0.0838111i
\(897\) −2.35997e35 + 3.00397e35i −0.869757 + 1.10710i
\(898\) 4.03048e35 1.46568
\(899\) −2.08698e35 −0.748863
\(900\) 3.34234e33 0.0118343
\(901\) −5.30543e35 −1.85363
\(902\) 1.36195e35i 0.469552i
\(903\) 3.01408e34 0.102542
\(904\) 7.32724e33i 0.0245991i
\(905\) 5.10614e35 1.69165
\(906\) −2.66871e35 −0.872496
\(907\) 1.71582e35i 0.553585i 0.960930 + 0.276792i \(0.0892714\pi\)
−0.960930 + 0.276792i \(0.910729\pi\)
\(908\) 4.96097e34i 0.157956i
\(909\) −3.35621e34 −0.105459
\(910\) −2.64918e34 −0.0821513
\(911\) 1.09030e35i 0.333675i 0.985984 + 0.166838i \(0.0533556\pi\)
−0.985984 + 0.166838i \(0.946644\pi\)
\(912\) 6.52862e35i 1.97189i
\(913\) −3.37840e35 −1.00707
\(914\) 2.05074e35i 0.603333i
\(915\) 3.18751e35 0.925547
\(916\) 6.72604e34i 0.192759i
\(917\) 1.52211e34i 0.0430540i
\(918\) 4.11651e35i 1.14926i
\(919\) 2.45751e35i 0.677188i −0.940933 0.338594i \(-0.890049\pi\)
0.940933 0.338594i \(-0.109951\pi\)
\(920\) −2.23622e35 1.75682e35i −0.608221 0.477829i
\(921\) 6.90820e35 1.85460
\(922\) −4.25674e35 −1.12799
\(923\) 2.46398e35 0.644491
\(924\) −4.85355e33 −0.0125313
\(925\) 9.44605e34i 0.240741i
\(926\) 3.42705e35 0.862161
\(927\) 8.17757e34i 0.203080i
\(928\) −7.20399e34 −0.176603
\(929\) 3.00096e35 0.726227 0.363113 0.931745i \(-0.381714\pi\)
0.363113 + 0.931745i \(0.381714\pi\)
\(930\) 5.83979e35i 1.39509i
\(931\) 6.49522e35i 1.53178i
\(932\) −2.08994e34 −0.0486567
\(933\) −3.52003e35 −0.809034
\(934\) 5.69754e35i 1.29278i
\(935\) 4.82872e35i 1.08167i
\(936\) −1.40318e35 −0.310315
\(937\) 4.35312e35i 0.950443i −0.879866 0.475221i \(-0.842368\pi\)
0.879866 0.475221i \(-0.157632\pi\)
\(938\) 6.36894e34 0.137288
\(939\) 2.10274e35i 0.447506i
\(940\) 1.20784e35i 0.253790i
\(941\) 8.81005e35i 1.82769i 0.406061 + 0.913846i \(0.366902\pi\)
−0.406061 + 0.913846i \(0.633098\pi\)
\(942\) 3.49174e35i 0.715205i
\(943\) −1.37212e35 + 1.74654e35i −0.277492 + 0.353215i
\(944\) −6.29675e35 −1.25734
\(945\) −2.54033e34 −0.0500850
\(946\) −6.81249e35 −1.32621
\(947\) −2.35216e35 −0.452133 −0.226067 0.974112i \(-0.572587\pi\)
−0.226067 + 0.974112i \(0.572587\pi\)
\(948\) 1.06554e35i 0.202242i
\(949\) 6.09677e35 1.14263
\(950\) 2.41366e35i 0.446676i
\(951\) 4.04324e35 0.738862
\(952\) −4.67950e34 −0.0844415
\(953\) 3.94863e35i 0.703609i −0.936074 0.351804i \(-0.885568\pi\)
0.936074 0.351804i \(-0.114432\pi\)
\(954\) 2.39338e35i 0.421144i
\(955\) −2.79209e35 −0.485164
\(956\) −3.02054e34 −0.0518310
\(957\) 3.60888e35i 0.611546i
\(958\) 1.09051e36i 1.82492i
\(959\) −4.57946e34 −0.0756818
\(960\) 4.69153e35i 0.765703i
\(961\) 4.97286e35 0.801541
\(962\) 7.53780e35i 1.19990i
\(963\) 2.58392e35i 0.406223i
\(964\) 8.73264e33i 0.0135588i
\(965\) 2.42778e35i 0.372291i
\(966\) −4.51932e34 3.55046e34i −0.0684459 0.0537723i
\(967\) −8.15090e35 −1.21924 −0.609618 0.792696i \(-0.708677\pi\)
−0.609618 + 0.792696i \(0.708677\pi\)
\(968\) 3.53620e34 0.0522436
\(969\) −1.55325e36 −2.26650
\(970\) 2.04055e35 0.294094
\(971\) 1.09725e35i 0.156198i 0.996946 + 0.0780992i \(0.0248851\pi\)
−0.996946 + 0.0780992i \(0.975115\pi\)
\(972\) 6.08540e34 0.0855645
\(973\) 9.65172e34i 0.134045i
\(974\) 4.78043e35 0.655782
\(975\) 2.79905e35 0.379277
\(976\) 8.12617e35i 1.08765i
\(977\) 4.17329e35i 0.551752i 0.961193 + 0.275876i \(0.0889679\pi\)
−0.961193 + 0.275876i \(0.911032\pi\)
\(978\) 4.32390e35 0.564690
\(979\) 1.04404e36 1.34687
\(980\) 1.06581e35i 0.135821i
\(981\) 2.31296e35i 0.291165i
\(982\) 6.81145e35 0.847036
\(983\) 6.42724e35i 0.789554i 0.918777 + 0.394777i \(0.129178\pi\)
−0.918777 + 0.394777i \(0.870822\pi\)
\(984\) −3.78203e35 −0.458969
\(985\) 1.56420e35i 0.187524i
\(986\) 6.61369e35i 0.783287i
\(987\) 1.28420e35i 0.150255i
\(988\) 2.65262e35i 0.306613i
\(989\) −8.73622e35 6.86332e35i −0.997626 0.783753i
\(990\) −2.17833e35 −0.245754
\(991\) −6.75133e35 −0.752498 −0.376249 0.926519i \(-0.622786\pi\)
−0.376249 + 0.926519i \(0.622786\pi\)
\(992\) 3.85815e35 0.424854
\(993\) −7.37666e35 −0.802544
\(994\) 3.70693e34i 0.0398454i
\(995\) 1.51849e36 1.61263
\(996\) 1.78322e35i 0.187108i
\(997\) −2.66318e34 −0.0276095 −0.0138047 0.999905i \(-0.504394\pi\)
−0.0138047 + 0.999905i \(0.504394\pi\)
\(998\) 4.22913e35 0.433196
\(999\) 7.22808e35i 0.731539i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.14 yes 44
23.22 odd 2 inner 23.25.b.c.22.13 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.13 44 23.22 odd 2 inner
23.25.b.c.22.14 yes 44 1.1 even 1 trivial