Properties

Label 23.25.b.c.22.12
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.12
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4488.28 q^{2} +914024. q^{3} +3.36747e6 q^{4} +5.44878e7i q^{5} -4.10240e9 q^{6} +2.39870e10i q^{7} +6.01867e10 q^{8} +5.53011e11 q^{9} -2.44557e11i q^{10} +4.51091e10i q^{11} +3.07795e12 q^{12} +2.35222e13 q^{13} -1.07660e14i q^{14} +4.98032e13i q^{15} -3.26632e14 q^{16} -8.76299e14i q^{17} -2.48207e15 q^{18} -3.58837e15i q^{19} +1.83486e14i q^{20} +2.19247e16i q^{21} -2.02462e14i q^{22} +(2.07992e16 - 6.90252e15i) q^{23} +5.50121e16 q^{24} +5.66357e16 q^{25} -1.05574e17 q^{26} +2.47318e17 q^{27} +8.07754e16i q^{28} -1.57372e17 q^{29} -2.23531e17i q^{30} +1.17659e18 q^{31} +4.56250e17 q^{32} +4.12308e16i q^{33} +3.93308e18i q^{34} -1.30700e18 q^{35} +1.86225e18 q^{36} -8.68571e18i q^{37} +1.61056e19i q^{38} +2.14998e19 q^{39} +3.27944e18i q^{40} -4.27655e18 q^{41} -9.84042e19i q^{42} +4.84430e19i q^{43} +1.51903e17i q^{44} +3.01323e19i q^{45} +(-9.33526e19 + 3.09804e19i) q^{46} +7.36926e18 q^{47} -2.98549e20 q^{48} -3.83795e20 q^{49} -2.54197e20 q^{50} -8.00959e20i q^{51} +7.92101e19 q^{52} +5.63544e20i q^{53} -1.11003e21 q^{54} -2.45789e18 q^{55} +1.44370e21i q^{56} -3.27985e21i q^{57} +7.06329e20 q^{58} +1.95703e21 q^{59} +1.67711e20i q^{60} -4.34389e21i q^{61} -5.28085e21 q^{62} +1.32651e22i q^{63} +3.43219e21 q^{64} +1.28167e21i q^{65} -1.85055e20i q^{66} -4.19854e20i q^{67} -2.95091e21i q^{68} +(1.90110e22 - 6.30907e21i) q^{69} +5.86618e21 q^{70} -1.46861e20 q^{71} +3.32839e22 q^{72} +9.12685e21 q^{73} +3.89839e22i q^{74} +5.17664e22 q^{75} -1.20837e22i q^{76} -1.08203e21 q^{77} -9.64973e22 q^{78} -9.80031e21i q^{79} -1.77974e22i q^{80} +6.98678e22 q^{81} +1.91944e22 q^{82} +1.41915e23i q^{83} +7.38307e22i q^{84} +4.77476e22 q^{85} -2.17426e23i q^{86} -1.43842e23 q^{87} +2.71497e21i q^{88} -2.15040e23i q^{89} -1.35242e23i q^{90} +5.64226e23i q^{91} +(7.00406e22 - 2.32440e22i) q^{92} +1.07543e24 q^{93} -3.30753e22 q^{94} +1.95522e23 q^{95} +4.17024e23 q^{96} +6.51340e23i q^{97} +1.72258e24 q^{98} +2.49458e22i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4488.28 −1.09577 −0.547886 0.836553i \(-0.684567\pi\)
−0.547886 + 0.836553i \(0.684567\pi\)
\(3\) 914024. 1.71990 0.859949 0.510380i \(-0.170495\pi\)
0.859949 + 0.510380i \(0.170495\pi\)
\(4\) 3.36747e6 0.200717
\(5\) 5.44878e7i 0.223182i 0.993754 + 0.111591i \(0.0355947\pi\)
−0.993754 + 0.111591i \(0.964405\pi\)
\(6\) −4.10240e9 −1.88462
\(7\) 2.39870e10i 1.73300i 0.499174 + 0.866502i \(0.333637\pi\)
−0.499174 + 0.866502i \(0.666363\pi\)
\(8\) 6.01867e10 0.875832
\(9\) 5.53011e11 1.95805
\(10\) 2.44557e11i 0.244557i
\(11\) 4.51091e10i 0.0143731i 0.999974 + 0.00718657i \(0.00228758\pi\)
−0.999974 + 0.00718657i \(0.997712\pi\)
\(12\) 3.07795e12 0.345212
\(13\) 2.35222e13 1.00962 0.504809 0.863231i \(-0.331563\pi\)
0.504809 + 0.863231i \(0.331563\pi\)
\(14\) 1.07660e14i 1.89898i
\(15\) 4.98032e13i 0.383850i
\(16\) −3.26632e14 −1.16043
\(17\) 8.76299e14i 1.50406i −0.659129 0.752030i \(-0.729075\pi\)
0.659129 0.752030i \(-0.270925\pi\)
\(18\) −2.48207e15 −2.14557
\(19\) 3.58837e15i 1.62126i −0.585556 0.810632i \(-0.699124\pi\)
0.585556 0.810632i \(-0.300876\pi\)
\(20\) 1.83486e14i 0.0447964i
\(21\) 2.19247e16i 2.98059i
\(22\) 2.02462e14i 0.0157497i
\(23\) 2.07992e16 6.90252e15i 0.949101 0.314973i
\(24\) 5.50121e16 1.50634
\(25\) 5.66357e16 0.950190
\(26\) −1.05574e17 −1.10631
\(27\) 2.47318e17 1.64775
\(28\) 8.07754e16i 0.347843i
\(29\) −1.57372e17 −0.444786 −0.222393 0.974957i \(-0.571387\pi\)
−0.222393 + 0.974957i \(0.571387\pi\)
\(30\) 2.23531e17i 0.420612i
\(31\) 1.17659e18 1.49377 0.746884 0.664954i \(-0.231549\pi\)
0.746884 + 0.664954i \(0.231549\pi\)
\(32\) 4.56250e17 0.395734
\(33\) 4.12308e16i 0.0247203i
\(34\) 3.93308e18i 1.64811i
\(35\) −1.30700e18 −0.386775
\(36\) 1.86225e18 0.393013
\(37\) 8.68571e18i 1.31943i −0.751518 0.659713i \(-0.770678\pi\)
0.751518 0.659713i \(-0.229322\pi\)
\(38\) 1.61056e19i 1.77654i
\(39\) 2.14998e19 1.73644
\(40\) 3.27944e18i 0.195470i
\(41\) −4.27655e18 −0.189534 −0.0947671 0.995499i \(-0.530211\pi\)
−0.0947671 + 0.995499i \(0.530211\pi\)
\(42\) 9.84042e19i 3.26605i
\(43\) 4.84430e19i 1.21230i 0.795351 + 0.606149i \(0.207286\pi\)
−0.795351 + 0.606149i \(0.792714\pi\)
\(44\) 1.51903e17i 0.00288493i
\(45\) 3.01323e19i 0.437001i
\(46\) −9.33526e19 + 3.09804e19i −1.04000 + 0.345139i
\(47\) 7.36926e18 0.0634234 0.0317117 0.999497i \(-0.489904\pi\)
0.0317117 + 0.999497i \(0.489904\pi\)
\(48\) −2.98549e20 −1.99582
\(49\) −3.83795e20 −2.00330
\(50\) −2.54197e20 −1.04119
\(51\) 8.00959e20i 2.58683i
\(52\) 7.92101e19 0.202647
\(53\) 5.63544e20i 1.14714i 0.819155 + 0.573572i \(0.194443\pi\)
−0.819155 + 0.573572i \(0.805557\pi\)
\(54\) −1.11003e21 −1.80555
\(55\) −2.45789e18 −0.00320783
\(56\) 1.44370e21i 1.51782i
\(57\) 3.27985e21i 2.78841i
\(58\) 7.06329e20 0.487384
\(59\) 1.95703e21 1.09995 0.549976 0.835181i \(-0.314637\pi\)
0.549976 + 0.835181i \(0.314637\pi\)
\(60\) 1.67711e20i 0.0770451i
\(61\) 4.34389e21i 1.63652i −0.574849 0.818259i \(-0.694939\pi\)
0.574849 0.818259i \(-0.305061\pi\)
\(62\) −5.28085e21 −1.63683
\(63\) 1.32651e22i 3.39330i
\(64\) 3.43219e21 0.726795
\(65\) 1.28167e21i 0.225329i
\(66\) 1.85055e20i 0.0270879i
\(67\) 4.19854e20i 0.0513098i −0.999671 0.0256549i \(-0.991833\pi\)
0.999671 0.0256549i \(-0.00816711\pi\)
\(68\) 2.95091e21i 0.301890i
\(69\) 1.90110e22 6.30907e21i 1.63236 0.541722i
\(70\) 5.86618e21 0.423818
\(71\) −1.46861e20 −0.00894964 −0.00447482 0.999990i \(-0.501424\pi\)
−0.00447482 + 0.999990i \(0.501424\pi\)
\(72\) 3.32839e22 1.71492
\(73\) 9.12685e21 0.398517 0.199258 0.979947i \(-0.436147\pi\)
0.199258 + 0.979947i \(0.436147\pi\)
\(74\) 3.89839e22i 1.44579i
\(75\) 5.17664e22 1.63423
\(76\) 1.20837e22i 0.325415i
\(77\) −1.08203e21 −0.0249087
\(78\) −9.64973e22 −1.90274
\(79\) 9.80031e21i 0.165850i −0.996556 0.0829248i \(-0.973574\pi\)
0.996556 0.0829248i \(-0.0264261\pi\)
\(80\) 1.77974e22i 0.258987i
\(81\) 6.98678e22 0.875905
\(82\) 1.91944e22 0.207686
\(83\) 1.41915e23i 1.32767i 0.747877 + 0.663837i \(0.231073\pi\)
−0.747877 + 0.663837i \(0.768927\pi\)
\(84\) 7.38307e22i 0.598254i
\(85\) 4.77476e22 0.335679
\(86\) 2.17426e23i 1.32840i
\(87\) −1.43842e23 −0.764986
\(88\) 2.71497e21i 0.0125885i
\(89\) 2.15040e23i 0.870640i −0.900276 0.435320i \(-0.856635\pi\)
0.900276 0.435320i \(-0.143365\pi\)
\(90\) 1.35242e23i 0.478854i
\(91\) 5.64226e23i 1.74967i
\(92\) 7.00406e22 2.32440e22i 0.190500 0.0632204i
\(93\) 1.07543e24 2.56913
\(94\) −3.30753e22 −0.0694976
\(95\) 1.95522e23 0.361837
\(96\) 4.17024e23 0.680622
\(97\) 6.51340e23i 0.938743i 0.883001 + 0.469371i \(0.155519\pi\)
−0.883001 + 0.469371i \(0.844481\pi\)
\(98\) 1.72258e24 2.19516
\(99\) 2.49458e22i 0.0281433i
\(100\) 1.90719e23 0.190719
\(101\) −1.56949e24 −1.39284 −0.696422 0.717633i \(-0.745226\pi\)
−0.696422 + 0.717633i \(0.745226\pi\)
\(102\) 3.59493e24i 2.83458i
\(103\) 2.63581e24i 1.84870i −0.381542 0.924352i \(-0.624607\pi\)
0.381542 0.924352i \(-0.375393\pi\)
\(104\) 1.41572e24 0.884256
\(105\) −1.19463e24 −0.665214
\(106\) 2.52935e24i 1.25701i
\(107\) 9.06131e23i 0.402333i 0.979557 + 0.201166i \(0.0644732\pi\)
−0.979557 + 0.201166i \(0.935527\pi\)
\(108\) 8.32834e23 0.330730
\(109\) 2.61146e24i 0.928466i 0.885713 + 0.464233i \(0.153670\pi\)
−0.885713 + 0.464233i \(0.846330\pi\)
\(110\) 1.10317e22 0.00351505
\(111\) 7.93895e24i 2.26928i
\(112\) 7.83492e24i 2.01103i
\(113\) 4.43787e24i 1.02384i 0.859032 + 0.511922i \(0.171066\pi\)
−0.859032 + 0.511922i \(0.828934\pi\)
\(114\) 1.47209e25i 3.05546i
\(115\) 3.76103e23 + 1.13330e24i 0.0702963 + 0.211822i
\(116\) −5.29945e23 −0.0892760
\(117\) 1.30080e25 1.97688
\(118\) −8.78371e24 −1.20530
\(119\) 2.10198e25 2.60654
\(120\) 2.99749e24i 0.336188i
\(121\) 9.84770e24 0.999793
\(122\) 1.94966e25i 1.79325i
\(123\) −3.90887e24 −0.325979
\(124\) 3.96211e24 0.299824
\(125\) 6.33368e24i 0.435247i
\(126\) 5.95374e25i 3.71829i
\(127\) −4.61032e24 −0.261870 −0.130935 0.991391i \(-0.541798\pi\)
−0.130935 + 0.991391i \(0.541798\pi\)
\(128\) −2.30593e25 −1.19214
\(129\) 4.42780e25i 2.08503i
\(130\) 5.75250e24i 0.246909i
\(131\) 2.23033e25 0.873200 0.436600 0.899656i \(-0.356183\pi\)
0.436600 + 0.899656i \(0.356183\pi\)
\(132\) 1.38843e23i 0.00496179i
\(133\) 8.60742e25 2.80966
\(134\) 1.88442e24i 0.0562239i
\(135\) 1.34758e25i 0.367747i
\(136\) 5.27416e25i 1.31730i
\(137\) 2.08478e25i 0.476885i 0.971157 + 0.238443i \(0.0766369\pi\)
−0.971157 + 0.238443i \(0.923363\pi\)
\(138\) −8.53266e25 + 2.83169e25i −1.78869 + 0.593603i
\(139\) 2.74955e25 0.528547 0.264273 0.964448i \(-0.414868\pi\)
0.264273 + 0.964448i \(0.414868\pi\)
\(140\) −4.40128e24 −0.0776322
\(141\) 6.73568e24 0.109082
\(142\) 6.59153e23 0.00980677
\(143\) 1.06106e24i 0.0145114i
\(144\) −1.80631e26 −2.27218
\(145\) 8.57484e24i 0.0992682i
\(146\) −4.09639e25 −0.436684
\(147\) −3.50798e26 −3.44547
\(148\) 2.92489e25i 0.264831i
\(149\) 4.40689e25i 0.368042i −0.982922 0.184021i \(-0.941089\pi\)
0.982922 0.184021i \(-0.0589114\pi\)
\(150\) −2.32342e26 −1.79074
\(151\) −1.05459e26 −0.750514 −0.375257 0.926921i \(-0.622446\pi\)
−0.375257 + 0.926921i \(0.622446\pi\)
\(152\) 2.15972e26i 1.41996i
\(153\) 4.84603e26i 2.94502i
\(154\) 4.85646e24 0.0272943
\(155\) 6.41096e25i 0.333382i
\(156\) 7.24000e25 0.348533
\(157\) 1.02101e26i 0.455231i −0.973751 0.227616i \(-0.926907\pi\)
0.973751 0.227616i \(-0.0730930\pi\)
\(158\) 4.39866e25i 0.181733i
\(159\) 5.15093e26i 1.97297i
\(160\) 2.48601e25i 0.0883207i
\(161\) 1.65571e26 + 4.98910e26i 0.545849 + 1.64479i
\(162\) −3.13587e26 −0.959792
\(163\) 3.54318e26 1.00726 0.503630 0.863919i \(-0.331997\pi\)
0.503630 + 0.863919i \(0.331997\pi\)
\(164\) −1.44011e25 −0.0380427
\(165\) −2.24658e24 −0.00551714
\(166\) 6.36955e26i 1.45483i
\(167\) 6.43948e26 1.36853 0.684263 0.729236i \(-0.260124\pi\)
0.684263 + 0.729236i \(0.260124\pi\)
\(168\) 1.31958e27i 2.61050i
\(169\) 1.04918e25 0.0193289
\(170\) −2.14305e26 −0.367828
\(171\) 1.98441e27i 3.17451i
\(172\) 1.63130e26i 0.243328i
\(173\) 4.64342e26 0.646078 0.323039 0.946386i \(-0.395295\pi\)
0.323039 + 0.946386i \(0.395295\pi\)
\(174\) 6.45602e26 0.838251
\(175\) 1.35852e27i 1.64668i
\(176\) 1.47341e25i 0.0166790i
\(177\) 1.78877e27 1.89180
\(178\) 9.65159e26i 0.954023i
\(179\) −1.61443e27 −1.49205 −0.746025 0.665917i \(-0.768040\pi\)
−0.746025 + 0.665917i \(0.768040\pi\)
\(180\) 1.01470e26i 0.0877134i
\(181\) 1.96430e27i 1.58878i 0.607405 + 0.794392i \(0.292210\pi\)
−0.607405 + 0.794392i \(0.707790\pi\)
\(182\) 2.53241e27i 1.91724i
\(183\) 3.97042e27i 2.81464i
\(184\) 1.25184e27 4.15440e26i 0.831253 0.275864i
\(185\) 4.73265e26 0.294472
\(186\) −4.82682e27 −2.81518
\(187\) 3.95291e25 0.0216181
\(188\) 2.48157e25 0.0127301
\(189\) 5.93241e27i 2.85555i
\(190\) −8.77559e26 −0.396491
\(191\) 1.23002e27i 0.521808i 0.965365 + 0.260904i \(0.0840206\pi\)
−0.965365 + 0.260904i \(0.915979\pi\)
\(192\) 3.13711e27 1.25001
\(193\) 4.30534e26 0.161183 0.0805916 0.996747i \(-0.474319\pi\)
0.0805916 + 0.996747i \(0.474319\pi\)
\(194\) 2.92340e27i 1.02865i
\(195\) 1.17148e27i 0.387542i
\(196\) −1.29242e27 −0.402096
\(197\) −2.24684e27 −0.657623 −0.328811 0.944396i \(-0.606648\pi\)
−0.328811 + 0.944396i \(0.606648\pi\)
\(198\) 1.11964e26i 0.0308387i
\(199\) 1.07864e27i 0.279667i −0.990175 0.139833i \(-0.955343\pi\)
0.990175 0.139833i \(-0.0446567\pi\)
\(200\) 3.40872e27 0.832207
\(201\) 3.83757e26i 0.0882477i
\(202\) 7.04432e27 1.52624
\(203\) 3.77488e27i 0.770816i
\(204\) 2.69720e27i 0.519220i
\(205\) 2.33020e26i 0.0423006i
\(206\) 1.18303e28i 2.02576i
\(207\) 1.15022e28 3.81717e27i 1.85838 0.616733i
\(208\) −7.68309e27 −1.17159
\(209\) 1.61868e26 0.0233027
\(210\) 5.36183e27 0.728923
\(211\) −6.87732e27 −0.883140 −0.441570 0.897227i \(-0.645578\pi\)
−0.441570 + 0.897227i \(0.645578\pi\)
\(212\) 1.89772e27i 0.230251i
\(213\) −1.34234e26 −0.0153925
\(214\) 4.06697e27i 0.440865i
\(215\) −2.63955e27 −0.270563
\(216\) 1.48852e28 1.44315
\(217\) 2.82228e28i 2.58871i
\(218\) 1.17210e28i 1.01739i
\(219\) 8.34216e27 0.685408
\(220\) −8.27688e24 −0.000643865
\(221\) 2.06125e28i 1.51853i
\(222\) 3.56323e28i 2.48661i
\(223\) −7.68909e26 −0.0508413 −0.0254206 0.999677i \(-0.508093\pi\)
−0.0254206 + 0.999677i \(0.508093\pi\)
\(224\) 1.09441e28i 0.685808i
\(225\) 3.13202e28 1.86052
\(226\) 1.99184e28i 1.12190i
\(227\) 6.33723e27i 0.338524i −0.985571 0.169262i \(-0.945862\pi\)
0.985571 0.169262i \(-0.0541384\pi\)
\(228\) 1.10448e28i 0.559680i
\(229\) 1.11306e28i 0.535173i −0.963534 0.267587i \(-0.913774\pi\)
0.963534 0.267587i \(-0.0862262\pi\)
\(230\) −1.68806e27 5.08658e27i −0.0770288 0.232109i
\(231\) −9.89003e26 −0.0428404
\(232\) −9.47170e27 −0.389558
\(233\) −1.01191e28 −0.395250 −0.197625 0.980278i \(-0.563323\pi\)
−0.197625 + 0.980278i \(0.563323\pi\)
\(234\) −5.83836e28 −2.16621
\(235\) 4.01535e26i 0.0141550i
\(236\) 6.59024e27 0.220779
\(237\) 8.95772e27i 0.285245i
\(238\) −9.43427e28 −2.85618
\(239\) −5.05563e28 −1.45546 −0.727730 0.685864i \(-0.759425\pi\)
−0.727730 + 0.685864i \(0.759425\pi\)
\(240\) 1.62673e28i 0.445431i
\(241\) 1.20702e27i 0.0314421i −0.999876 0.0157211i \(-0.994996\pi\)
0.999876 0.0157211i \(-0.00500437\pi\)
\(242\) −4.41993e28 −1.09555
\(243\) −5.98895e27 −0.141278
\(244\) 1.46279e28i 0.328477i
\(245\) 2.09121e28i 0.447101i
\(246\) 1.75441e28 0.357199
\(247\) 8.44062e28i 1.63686i
\(248\) 7.08149e28 1.30829
\(249\) 1.29714e29i 2.28346i
\(250\) 2.84274e28i 0.476932i
\(251\) 9.73478e28i 1.55683i 0.627749 + 0.778416i \(0.283976\pi\)
−0.627749 + 0.778416i \(0.716024\pi\)
\(252\) 4.46697e28i 0.681093i
\(253\) 3.11366e26 + 9.38232e26i 0.00452715 + 0.0136416i
\(254\) 2.06924e28 0.286950
\(255\) 4.36425e28 0.577334
\(256\) 4.59138e28 0.579514
\(257\) −8.86594e28 −1.06789 −0.533946 0.845519i \(-0.679291\pi\)
−0.533946 + 0.845519i \(0.679291\pi\)
\(258\) 1.98732e29i 2.28471i
\(259\) 2.08344e29 2.28657
\(260\) 4.31599e27i 0.0452272i
\(261\) −8.70283e28 −0.870912
\(262\) −1.00104e29 −0.956828
\(263\) 4.26633e28i 0.389570i −0.980846 0.194785i \(-0.937599\pi\)
0.980846 0.194785i \(-0.0624010\pi\)
\(264\) 2.48155e27i 0.0216509i
\(265\) −3.07063e28 −0.256022
\(266\) −3.86325e29 −3.07874
\(267\) 1.96551e29i 1.49741i
\(268\) 1.41384e27i 0.0102987i
\(269\) 5.54492e28 0.386249 0.193125 0.981174i \(-0.438138\pi\)
0.193125 + 0.981174i \(0.438138\pi\)
\(270\) 6.04832e28i 0.402967i
\(271\) 3.33534e28 0.212573 0.106287 0.994336i \(-0.466104\pi\)
0.106287 + 0.994336i \(0.466104\pi\)
\(272\) 2.86227e29i 1.74536i
\(273\) 5.15716e29i 3.00926i
\(274\) 9.35709e28i 0.522557i
\(275\) 2.55479e27i 0.0136572i
\(276\) 6.40188e28 2.12456e28i 0.327641 0.108733i
\(277\) 2.25531e29 1.10522 0.552611 0.833439i \(-0.313632\pi\)
0.552611 + 0.833439i \(0.313632\pi\)
\(278\) −1.23407e29 −0.579167
\(279\) 6.50665e29 2.92487
\(280\) −7.86640e28 −0.338750
\(281\) 2.34400e29i 0.967122i −0.875311 0.483561i \(-0.839343\pi\)
0.875311 0.483561i \(-0.160657\pi\)
\(282\) −3.02316e28 −0.119529
\(283\) 2.44527e28i 0.0926595i −0.998926 0.0463297i \(-0.985248\pi\)
0.998926 0.0463297i \(-0.0147525\pi\)
\(284\) −4.94549e26 −0.00179634
\(285\) 1.78712e29 0.622322
\(286\) 4.76235e27i 0.0159012i
\(287\) 1.02582e29i 0.328463i
\(288\) 2.52311e29 0.774866
\(289\) −4.28451e29 −1.26220
\(290\) 3.84863e28i 0.108775i
\(291\) 5.95340e29i 1.61454i
\(292\) 3.07344e28 0.0799890
\(293\) 3.45639e29i 0.863399i −0.902018 0.431699i \(-0.857914\pi\)
0.902018 0.431699i \(-0.142086\pi\)
\(294\) 1.57448e30 3.77545
\(295\) 1.06634e29i 0.245489i
\(296\) 5.22765e29i 1.15560i
\(297\) 1.11563e28i 0.0236833i
\(298\) 1.97794e29i 0.403290i
\(299\) 4.89242e29 1.62362e29i 0.958229 0.318003i
\(300\) 1.74322e29 0.328017
\(301\) −1.16200e30 −2.10092
\(302\) 4.73328e29 0.822392
\(303\) −1.43455e30 −2.39555
\(304\) 1.17208e30i 1.88136i
\(305\) 2.36689e29 0.365242
\(306\) 2.17503e30i 3.22707i
\(307\) 1.01644e30 1.45018 0.725092 0.688652i \(-0.241797\pi\)
0.725092 + 0.688652i \(0.241797\pi\)
\(308\) −3.64371e27 −0.00499959
\(309\) 2.40919e30i 3.17958i
\(310\) 2.87742e29i 0.365311i
\(311\) 2.26309e29 0.276425 0.138212 0.990403i \(-0.455864\pi\)
0.138212 + 0.990403i \(0.455864\pi\)
\(312\) 1.29400e30 1.52083
\(313\) 6.74907e29i 0.763329i 0.924301 + 0.381665i \(0.124649\pi\)
−0.924301 + 0.381665i \(0.875351\pi\)
\(314\) 4.58256e29i 0.498830i
\(315\) −7.22784e29 −0.757325
\(316\) 3.30022e28i 0.0332888i
\(317\) −7.54917e29 −0.733142 −0.366571 0.930390i \(-0.619468\pi\)
−0.366571 + 0.930390i \(0.619468\pi\)
\(318\) 2.31188e30i 2.16192i
\(319\) 7.09890e27i 0.00639297i
\(320\) 1.87013e29i 0.162208i
\(321\) 8.28225e29i 0.691971i
\(322\) −7.43128e29 2.23925e30i −0.598127 1.80232i
\(323\) −3.14448e30 −2.43848
\(324\) 2.35278e29 0.175809
\(325\) 1.33220e30 0.959329
\(326\) −1.59028e30 −1.10373
\(327\) 2.38694e30i 1.59687i
\(328\) −2.57392e29 −0.166000
\(329\) 1.76766e29i 0.109913i
\(330\) 1.00833e28 0.00604552
\(331\) −2.17616e30 −1.25821 −0.629107 0.777318i \(-0.716579\pi\)
−0.629107 + 0.777318i \(0.716579\pi\)
\(332\) 4.77894e29i 0.266486i
\(333\) 4.80329e30i 2.58350i
\(334\) −2.89022e30 −1.49959
\(335\) 2.28769e28 0.0114514
\(336\) 7.16130e30i 3.45876i
\(337\) 2.84839e30i 1.32752i 0.747947 + 0.663758i \(0.231040\pi\)
−0.747947 + 0.663758i \(0.768960\pi\)
\(338\) −4.70900e28 −0.0211801
\(339\) 4.05632e30i 1.76091i
\(340\) 1.60788e29 0.0673764
\(341\) 5.30747e28i 0.0214702i
\(342\) 8.90657e30i 3.47854i
\(343\) 4.61063e30i 1.73872i
\(344\) 2.91562e30i 1.06177i
\(345\) 3.43767e29 + 1.03587e30i 0.120902 + 0.364312i
\(346\) −2.08410e30 −0.707954
\(347\) −1.50747e30 −0.494646 −0.247323 0.968933i \(-0.579551\pi\)
−0.247323 + 0.968933i \(0.579551\pi\)
\(348\) −4.84382e29 −0.153546
\(349\) 6.54957e29 0.200589 0.100295 0.994958i \(-0.468021\pi\)
0.100295 + 0.994958i \(0.468021\pi\)
\(350\) 6.09743e30i 1.80439i
\(351\) 5.81745e30 1.66359
\(352\) 2.05810e28i 0.00568794i
\(353\) 2.09776e30 0.560349 0.280175 0.959949i \(-0.409608\pi\)
0.280175 + 0.959949i \(0.409608\pi\)
\(354\) −8.02852e30 −2.07299
\(355\) 8.00212e27i 0.00199740i
\(356\) 7.24139e29i 0.174752i
\(357\) 1.92126e31 4.48299
\(358\) 7.24603e30 1.63495
\(359\) 2.44473e30i 0.533454i −0.963772 0.266727i \(-0.914058\pi\)
0.963772 0.266727i \(-0.0859422\pi\)
\(360\) 1.81357e30i 0.382740i
\(361\) −7.97762e30 −1.62850
\(362\) 8.81633e30i 1.74095i
\(363\) 9.00103e30 1.71954
\(364\) 1.90001e30i 0.351188i
\(365\) 4.97302e29i 0.0889418i
\(366\) 1.78204e31i 3.08421i
\(367\) 1.04037e30i 0.174259i 0.996197 + 0.0871293i \(0.0277693\pi\)
−0.996197 + 0.0871293i \(0.972231\pi\)
\(368\) −6.79368e30 + 2.25458e30i −1.10136 + 0.365504i
\(369\) −2.36498e30 −0.371117
\(370\) −2.12415e30 −0.322674
\(371\) −1.35177e31 −1.98800
\(372\) 3.62147e30 0.515667
\(373\) 7.10267e30i 0.979300i −0.871919 0.489650i \(-0.837125\pi\)
0.871919 0.489650i \(-0.162875\pi\)
\(374\) −1.77418e29 −0.0236885
\(375\) 5.78914e30i 0.748581i
\(376\) 4.43532e29 0.0555483
\(377\) −3.70173e30 −0.449064
\(378\) 2.66263e31i 3.12903i
\(379\) 7.01346e30i 0.798476i 0.916847 + 0.399238i \(0.130725\pi\)
−0.916847 + 0.399238i \(0.869275\pi\)
\(380\) 6.58415e29 0.0726267
\(381\) −4.21394e30 −0.450390
\(382\) 5.52066e30i 0.571782i
\(383\) 1.08152e30i 0.108555i 0.998526 + 0.0542775i \(0.0172856\pi\)
−0.998526 + 0.0542775i \(0.982714\pi\)
\(384\) −2.10767e31 −2.05035
\(385\) 5.89575e28i 0.00555918i
\(386\) −1.93236e30 −0.176620
\(387\) 2.67895e31i 2.37374i
\(388\) 2.19336e30i 0.188421i
\(389\) 7.24407e30i 0.603375i −0.953407 0.301688i \(-0.902450\pi\)
0.953407 0.301688i \(-0.0975500\pi\)
\(390\) 5.25793e30i 0.424658i
\(391\) −6.04867e30 1.82263e31i −0.473739 1.42750i
\(392\) −2.30994e31 −1.75456
\(393\) 2.03858e31 1.50181
\(394\) 1.00844e31 0.720605
\(395\) 5.33997e29 0.0370147
\(396\) 8.40042e28i 0.00564883i
\(397\) 2.46774e31 1.60996 0.804978 0.593305i \(-0.202177\pi\)
0.804978 + 0.593305i \(0.202177\pi\)
\(398\) 4.84126e30i 0.306451i
\(399\) 7.86739e31 4.83232
\(400\) −1.84990e31 −1.10263
\(401\) 2.43418e31i 1.40806i 0.710172 + 0.704028i \(0.248617\pi\)
−0.710172 + 0.704028i \(0.751383\pi\)
\(402\) 1.72241e30i 0.0966993i
\(403\) 2.76759e31 1.50814
\(404\) −5.28521e30 −0.279567
\(405\) 3.80694e30i 0.195486i
\(406\) 1.69427e31i 0.844638i
\(407\) 3.91805e29 0.0189643
\(408\) 4.82071e31i 2.26563i
\(409\) 4.65554e30 0.212466 0.106233 0.994341i \(-0.466121\pi\)
0.106233 + 0.994341i \(0.466121\pi\)
\(410\) 1.04586e30i 0.0463518i
\(411\) 1.90554e31i 0.820194i
\(412\) 8.87600e30i 0.371066i
\(413\) 4.69433e31i 1.90622i
\(414\) −5.16250e31 + 1.71325e31i −2.03637 + 0.675798i
\(415\) −7.73264e30 −0.296313
\(416\) 1.07320e31 0.399540
\(417\) 2.51315e31 0.909047
\(418\) −7.26509e29 −0.0255344
\(419\) 5.03570e30i 0.171986i −0.996296 0.0859928i \(-0.972594\pi\)
0.996296 0.0859928i \(-0.0274062\pi\)
\(420\) −4.02287e30 −0.133520
\(421\) 1.91386e31i 0.617341i −0.951169 0.308670i \(-0.900116\pi\)
0.951169 0.308670i \(-0.0998840\pi\)
\(422\) 3.08673e31 0.967720
\(423\) 4.07528e30 0.124186
\(424\) 3.39179e31i 1.00471i
\(425\) 4.96298e31i 1.42914i
\(426\) 6.02481e29 0.0168666
\(427\) 1.04197e32 2.83609
\(428\) 3.05137e30i 0.0807549i
\(429\) 9.69838e29i 0.0249581i
\(430\) 1.18470e31 0.296475
\(431\) 4.84913e31i 1.18015i 0.807349 + 0.590074i \(0.200902\pi\)
−0.807349 + 0.590074i \(0.799098\pi\)
\(432\) −8.07818e31 −1.91209
\(433\) 3.20456e31i 0.737758i 0.929477 + 0.368879i \(0.120258\pi\)
−0.929477 + 0.368879i \(0.879742\pi\)
\(434\) 1.26672e32i 2.83663i
\(435\) 7.83762e30i 0.170731i
\(436\) 8.79402e30i 0.186359i
\(437\) −2.47688e31 7.46351e31i −0.510654 1.53874i
\(438\) −3.74420e31 −0.751051
\(439\) −3.48481e31 −0.680151 −0.340076 0.940398i \(-0.610453\pi\)
−0.340076 + 0.940398i \(0.610453\pi\)
\(440\) −1.47933e29 −0.00280952
\(441\) −2.12243e32 −3.92256
\(442\) 9.25145e31i 1.66396i
\(443\) 8.18777e31 1.43325 0.716624 0.697460i \(-0.245687\pi\)
0.716624 + 0.697460i \(0.245687\pi\)
\(444\) 2.67342e31i 0.455482i
\(445\) 1.17170e31 0.194311
\(446\) 3.45108e30 0.0557105
\(447\) 4.02801e31i 0.632994i
\(448\) 8.23280e31i 1.25954i
\(449\) −4.50242e31 −0.670641 −0.335320 0.942104i \(-0.608845\pi\)
−0.335320 + 0.942104i \(0.608845\pi\)
\(450\) −1.40574e32 −2.03870
\(451\) 1.92911e29i 0.00272420i
\(452\) 1.49444e31i 0.205502i
\(453\) −9.63917e31 −1.29081
\(454\) 2.84433e31i 0.370945i
\(455\) −3.07434e31 −0.390495
\(456\) 1.97404e32i 2.44218i
\(457\) 5.52507e31i 0.665799i 0.942962 + 0.332900i \(0.108027\pi\)
−0.942962 + 0.332900i \(0.891973\pi\)
\(458\) 4.99575e31i 0.586428i
\(459\) 2.16724e32i 2.47831i
\(460\) 1.26651e30 + 3.81636e30i 0.0141096 + 0.0425162i
\(461\) −1.77661e32 −1.92833 −0.964166 0.265301i \(-0.914529\pi\)
−0.964166 + 0.265301i \(0.914529\pi\)
\(462\) 4.43893e30 0.0469434
\(463\) 3.27152e31 0.337114 0.168557 0.985692i \(-0.446089\pi\)
0.168557 + 0.985692i \(0.446089\pi\)
\(464\) 5.14027e31 0.516143
\(465\) 5.85977e31i 0.573383i
\(466\) 4.54174e31 0.433104
\(467\) 6.90477e31i 0.641722i 0.947126 + 0.320861i \(0.103972\pi\)
−0.947126 + 0.320861i \(0.896028\pi\)
\(468\) 4.38041e31 0.396793
\(469\) 1.00710e31 0.0889201
\(470\) 1.80220e30i 0.0155106i
\(471\) 9.33223e31i 0.782951i
\(472\) 1.17787e32 0.963373
\(473\) −2.18522e30 −0.0174245
\(474\) 4.02048e31i 0.312563i
\(475\) 2.03230e32i 1.54051i
\(476\) 7.07834e31 0.523177
\(477\) 3.11646e32i 2.24616i
\(478\) 2.26911e32 1.59485
\(479\) 7.34179e31i 0.503241i 0.967826 + 0.251620i \(0.0809635\pi\)
−0.967826 + 0.251620i \(0.919037\pi\)
\(480\) 2.27227e31i 0.151903i
\(481\) 2.04307e32i 1.33212i
\(482\) 5.41747e30i 0.0344534i
\(483\) 1.51336e32 + 4.56016e32i 0.938805 + 2.82888i
\(484\) 3.31618e31 0.200675
\(485\) −3.54901e31 −0.209511
\(486\) 2.68801e31 0.154809
\(487\) 1.62681e32 0.914091 0.457046 0.889443i \(-0.348908\pi\)
0.457046 + 0.889443i \(0.348908\pi\)
\(488\) 2.61445e32i 1.43332i
\(489\) 3.23855e32 1.73239
\(490\) 9.38596e31i 0.489921i
\(491\) −3.34438e32 −1.70348 −0.851742 0.523961i \(-0.824454\pi\)
−0.851742 + 0.523961i \(0.824454\pi\)
\(492\) −1.31630e31 −0.0654295
\(493\) 1.37905e32i 0.668985i
\(494\) 3.78839e32i 1.79362i
\(495\) −1.35924e30 −0.00628108
\(496\) −3.84310e32 −1.73341
\(497\) 3.52275e30i 0.0155098i
\(498\) 5.82192e32i 2.50216i
\(499\) 1.45075e32 0.608674 0.304337 0.952564i \(-0.401565\pi\)
0.304337 + 0.952564i \(0.401565\pi\)
\(500\) 2.13285e31i 0.0873614i
\(501\) 5.88584e32 2.35372
\(502\) 4.36925e32i 1.70593i
\(503\) 1.57906e32i 0.601980i −0.953627 0.300990i \(-0.902683\pi\)
0.953627 0.300990i \(-0.0973170\pi\)
\(504\) 7.98381e32i 2.97197i
\(505\) 8.55181e31i 0.310858i
\(506\) −1.39750e30 4.21105e30i −0.00496073 0.0149480i
\(507\) 9.58972e30 0.0332438
\(508\) −1.55251e31 −0.0525618
\(509\) −4.25625e32 −1.40739 −0.703694 0.710503i \(-0.748467\pi\)
−0.703694 + 0.710503i \(0.748467\pi\)
\(510\) −1.95880e32 −0.632627
\(511\) 2.18926e32i 0.690631i
\(512\) 1.80796e32 0.557120
\(513\) 8.87467e32i 2.67143i
\(514\) 3.97929e32 1.17017
\(515\) 1.43619e32 0.412597
\(516\) 1.49105e32i 0.418500i
\(517\) 3.32420e29i 0.000911594i
\(518\) −9.35108e32 −2.50556
\(519\) 4.24420e32 1.11119
\(520\) 7.71396e31i 0.197350i
\(521\) 5.38048e31i 0.134514i 0.997736 + 0.0672571i \(0.0214248\pi\)
−0.997736 + 0.0672571i \(0.978575\pi\)
\(522\) 3.90608e32 0.954322
\(523\) 3.16648e32i 0.756061i 0.925793 + 0.378030i \(0.123399\pi\)
−0.925793 + 0.378030i \(0.876601\pi\)
\(524\) 7.51057e31 0.175266
\(525\) 1.24172e33i 2.83213i
\(526\) 1.91485e32i 0.426880i
\(527\) 1.03104e33i 2.24672i
\(528\) 1.34673e31i 0.0286862i
\(529\) 3.84961e32 2.87133e32i 0.801584 0.597882i
\(530\) 1.37818e32 0.280541
\(531\) 1.08226e33 2.15376
\(532\) 2.89852e32 0.563945
\(533\) −1.00594e32 −0.191357
\(534\) 8.82178e32i 1.64082i
\(535\) −4.93731e31 −0.0897935
\(536\) 2.52696e31i 0.0449388i
\(537\) −1.47563e33 −2.56618
\(538\) −2.48872e32 −0.423241
\(539\) 1.73126e31i 0.0287937i
\(540\) 4.53793e31i 0.0738130i
\(541\) −7.34223e32 −1.16805 −0.584024 0.811736i \(-0.698523\pi\)
−0.584024 + 0.811736i \(0.698523\pi\)
\(542\) −1.49700e32 −0.232932
\(543\) 1.79542e33i 2.73255i
\(544\) 3.99812e32i 0.595208i
\(545\) −1.42293e32 −0.207217
\(546\) 2.31468e33i 3.29746i
\(547\) −3.98638e32 −0.555560 −0.277780 0.960645i \(-0.589599\pi\)
−0.277780 + 0.960645i \(0.589599\pi\)
\(548\) 7.02043e31i 0.0957188i
\(549\) 2.40222e33i 3.20438i
\(550\) 1.14666e31i 0.0149652i
\(551\) 5.64708e32i 0.721115i
\(552\) 1.14421e33 3.79722e32i 1.42967 0.474457i
\(553\) 2.35080e32 0.287418
\(554\) −1.01225e33 −1.21107
\(555\) 4.32576e32 0.506462
\(556\) 9.25901e31 0.106088
\(557\) 1.10999e33i 1.24468i −0.782748 0.622339i \(-0.786183\pi\)
0.782748 0.622339i \(-0.213817\pi\)
\(558\) −2.92037e33 −3.20499
\(559\) 1.13948e33i 1.22396i
\(560\) 4.26907e32 0.448825
\(561\) 3.61305e31 0.0371809
\(562\) 1.05205e33i 1.05975i
\(563\) 9.96240e30i 0.00982343i 0.999988 + 0.00491172i \(0.00156345\pi\)
−0.999988 + 0.00491172i \(0.998437\pi\)
\(564\) 2.26822e31 0.0218945
\(565\) −2.41810e32 −0.228503
\(566\) 1.09751e32i 0.101534i
\(567\) 1.67592e33i 1.51795i
\(568\) −8.83907e30 −0.00783838
\(569\) 7.96816e32i 0.691848i 0.938263 + 0.345924i \(0.112434\pi\)
−0.938263 + 0.345924i \(0.887566\pi\)
\(570\) −8.02110e32 −0.681924
\(571\) 2.09995e33i 1.74814i −0.485799 0.874071i \(-0.661471\pi\)
0.485799 0.874071i \(-0.338529\pi\)
\(572\) 3.57310e30i 0.00291268i
\(573\) 1.12426e33i 0.897456i
\(574\) 4.60415e32i 0.359921i
\(575\) 1.17798e33 3.90929e32i 0.901826 0.299284i
\(576\) 1.89804e33 1.42310
\(577\) −6.71130e32 −0.492829 −0.246415 0.969164i \(-0.579253\pi\)
−0.246415 + 0.969164i \(0.579253\pi\)
\(578\) 1.92301e33 1.38308
\(579\) 3.93518e32 0.277219
\(580\) 2.88755e31i 0.0199248i
\(581\) −3.40412e33 −2.30086
\(582\) 2.67206e33i 1.76917i
\(583\) −2.54210e31 −0.0164881
\(584\) 5.49315e32 0.349034
\(585\) 7.08778e32i 0.441204i
\(586\) 1.55133e33i 0.946088i
\(587\) −1.72724e33 −1.03204 −0.516018 0.856578i \(-0.672586\pi\)
−0.516018 + 0.856578i \(0.672586\pi\)
\(588\) −1.18130e33 −0.691564
\(589\) 4.22202e33i 2.42179i
\(590\) 4.78605e32i 0.269000i
\(591\) −2.05366e33 −1.13104
\(592\) 2.83703e33i 1.53110i
\(593\) −2.04322e33 −1.08058 −0.540292 0.841478i \(-0.681686\pi\)
−0.540292 + 0.841478i \(0.681686\pi\)
\(594\) 5.00725e31i 0.0259515i
\(595\) 1.14532e33i 0.581733i
\(596\) 1.48401e32i 0.0738721i
\(597\) 9.85906e32i 0.480998i
\(598\) −2.19586e33 + 7.28727e32i −1.05000 + 0.348458i
\(599\) 2.52015e33 1.18115 0.590574 0.806983i \(-0.298901\pi\)
0.590574 + 0.806983i \(0.298901\pi\)
\(600\) 3.11565e33 1.43131
\(601\) −2.12713e33 −0.957854 −0.478927 0.877855i \(-0.658974\pi\)
−0.478927 + 0.877855i \(0.658974\pi\)
\(602\) 5.21539e33 2.30212
\(603\) 2.32184e32i 0.100467i
\(604\) −3.55129e32 −0.150641
\(605\) 5.36579e32i 0.223136i
\(606\) 6.43868e33 2.62498
\(607\) 4.49525e33 1.79676 0.898378 0.439222i \(-0.144746\pi\)
0.898378 + 0.439222i \(0.144746\pi\)
\(608\) 1.63719e33i 0.641589i
\(609\) 3.45033e33i 1.32572i
\(610\) −1.06233e33 −0.400222
\(611\) 1.73341e32 0.0640334
\(612\) 1.63188e33i 0.591115i
\(613\) 1.24189e33i 0.441121i 0.975373 + 0.220560i \(0.0707886\pi\)
−0.975373 + 0.220560i \(0.929211\pi\)
\(614\) −4.56209e33 −1.58907
\(615\) 2.12986e32i 0.0727527i
\(616\) −6.51240e31 −0.0218159
\(617\) 5.73254e33i 1.88332i 0.336560 + 0.941662i \(0.390737\pi\)
−0.336560 + 0.941662i \(0.609263\pi\)
\(618\) 1.08131e34i 3.48410i
\(619\) 1.86040e33i 0.587919i 0.955818 + 0.293960i \(0.0949731\pi\)
−0.955818 + 0.293960i \(0.905027\pi\)
\(620\) 2.15887e32i 0.0669154i
\(621\) 5.14401e33 1.70711e33i 1.56388 0.518995i
\(622\) −1.01574e33 −0.302899
\(623\) 5.15816e33 1.50882
\(624\) −7.02253e33 −2.01502
\(625\) 3.03064e33 0.853050
\(626\) 3.02917e33i 0.836435i
\(627\) 1.47951e32 0.0400782
\(628\) 3.43820e32i 0.0913725i
\(629\) −7.61128e33 −1.98450
\(630\) 3.24406e33 0.829855
\(631\) 5.99707e33i 1.50517i −0.658492 0.752587i \(-0.728805\pi\)
0.658492 0.752587i \(-0.271195\pi\)
\(632\) 5.89849e32i 0.145257i
\(633\) −6.28604e33 −1.51891
\(634\) 3.38828e33 0.803357
\(635\) 2.51206e32i 0.0584448i
\(636\) 1.73456e33i 0.396008i
\(637\) −9.02769e33 −2.02257
\(638\) 3.18619e31i 0.00700524i
\(639\) −8.12156e31 −0.0175238
\(640\) 1.25645e33i 0.266063i
\(641\) 4.57985e33i 0.951820i −0.879494 0.475910i \(-0.842119\pi\)
0.879494 0.475910i \(-0.157881\pi\)
\(642\) 3.71731e33i 0.758243i
\(643\) 9.19096e33i 1.84005i −0.391862 0.920024i \(-0.628169\pi\)
0.391862 0.920024i \(-0.371831\pi\)
\(644\) 5.57554e32 + 1.68006e33i 0.109561 + 0.330138i
\(645\) −2.41261e33 −0.465341
\(646\) 1.41133e34 2.67202
\(647\) −4.09734e32 −0.0761467 −0.0380733 0.999275i \(-0.512122\pi\)
−0.0380733 + 0.999275i \(0.512122\pi\)
\(648\) 4.20512e33 0.767146
\(649\) 8.82799e31i 0.0158098i
\(650\) −5.97927e33 −1.05121
\(651\) 2.57963e34i 4.45231i
\(652\) 1.19315e33 0.202174
\(653\) −2.44646e33 −0.406986 −0.203493 0.979076i \(-0.565229\pi\)
−0.203493 + 0.979076i \(0.565229\pi\)
\(654\) 1.07133e34i 1.74980i
\(655\) 1.21526e33i 0.194883i
\(656\) 1.39686e33 0.219941
\(657\) 5.04725e33 0.780315
\(658\) 7.93377e32i 0.120440i
\(659\) 4.00906e33i 0.597610i 0.954314 + 0.298805i \(0.0965881\pi\)
−0.954314 + 0.298805i \(0.903412\pi\)
\(660\) −7.56527e30 −0.00110738
\(661\) 1.14497e33i 0.164580i −0.996608 0.0822899i \(-0.973777\pi\)
0.996608 0.0822899i \(-0.0262233\pi\)
\(662\) 9.76722e33 1.37872
\(663\) 1.88403e34i 2.61171i
\(664\) 8.54141e33i 1.16282i
\(665\) 4.68999e33i 0.627065i
\(666\) 2.15585e34i 2.83093i
\(667\) −3.27321e33 + 1.08626e33i −0.422147 + 0.140096i
\(668\) 2.16847e33 0.274686
\(669\) −7.02801e32 −0.0874418
\(670\) −1.02678e32 −0.0125482
\(671\) 1.95949e32 0.0235219
\(672\) 1.00031e34i 1.17952i
\(673\) 9.63959e33 1.11655 0.558275 0.829656i \(-0.311464\pi\)
0.558275 + 0.829656i \(0.311464\pi\)
\(674\) 1.27844e34i 1.45466i
\(675\) 1.40070e34 1.56567
\(676\) 3.53307e31 0.00387964
\(677\) 7.19769e33i 0.776477i 0.921559 + 0.388239i \(0.126916\pi\)
−0.921559 + 0.388239i \(0.873084\pi\)
\(678\) 1.82059e34i 1.92955i
\(679\) −1.56237e34 −1.62684
\(680\) 2.87377e33 0.293999
\(681\) 5.79238e33i 0.582226i
\(682\) 2.38214e32i 0.0235264i
\(683\) 5.56249e33 0.539785 0.269893 0.962890i \(-0.413012\pi\)
0.269893 + 0.962890i \(0.413012\pi\)
\(684\) 6.68242e33i 0.637178i
\(685\) −1.13595e33 −0.106432
\(686\) 2.06938e34i 1.90525i
\(687\) 1.01737e34i 0.920443i
\(688\) 1.58230e34i 1.40679i
\(689\) 1.32558e34i 1.15818i
\(690\) −1.54292e33 4.64926e33i −0.132482 0.399203i
\(691\) −1.35580e34 −1.14409 −0.572043 0.820223i \(-0.693849\pi\)
−0.572043 + 0.820223i \(0.693849\pi\)
\(692\) 1.56366e33 0.129679
\(693\) −5.98375e32 −0.0487725
\(694\) 6.76595e33 0.542020
\(695\) 1.49817e33i 0.117962i
\(696\) −8.65736e33 −0.670000
\(697\) 3.74754e33i 0.285071i
\(698\) −2.93963e33 −0.219800
\(699\) −9.24911e33 −0.679789
\(700\) 4.57478e33i 0.330517i
\(701\) 6.13799e33i 0.435923i −0.975957 0.217962i \(-0.930059\pi\)
0.975957 0.217962i \(-0.0699408\pi\)
\(702\) −2.61104e34 −1.82292
\(703\) −3.11675e34 −2.13914
\(704\) 1.54823e32i 0.0104463i
\(705\) 3.67012e32i 0.0243451i
\(706\) −9.41533e33 −0.614015
\(707\) 3.76474e34i 2.41380i
\(708\) 6.02364e33 0.379717
\(709\) 1.56670e34i 0.971028i 0.874229 + 0.485514i \(0.161368\pi\)
−0.874229 + 0.485514i \(0.838632\pi\)
\(710\) 3.59158e31i 0.00218869i
\(711\) 5.41968e33i 0.324742i
\(712\) 1.29425e34i 0.762534i
\(713\) 2.44720e34 8.12140e33i 1.41774 0.470497i
\(714\) −8.62316e34 −4.91233
\(715\) −5.78150e31 −0.00323868
\(716\) −5.43655e33 −0.299480
\(717\) −4.62096e34 −2.50324
\(718\) 1.09726e34i 0.584544i
\(719\) 1.75708e33 0.0920545 0.0460273 0.998940i \(-0.485344\pi\)
0.0460273 + 0.998940i \(0.485344\pi\)
\(720\) 9.84218e33i 0.507109i
\(721\) 6.32251e34 3.20381
\(722\) 3.58058e34 1.78446
\(723\) 1.10325e33i 0.0540772i
\(724\) 6.61472e33i 0.318895i
\(725\) −8.91287e33 −0.422631
\(726\) −4.03992e34 −1.88423
\(727\) 3.74282e34i 1.71706i 0.512763 + 0.858530i \(0.328622\pi\)
−0.512763 + 0.858530i \(0.671378\pi\)
\(728\) 3.39589e34i 1.53242i
\(729\) −2.52068e34 −1.11889
\(730\) 2.23203e33i 0.0974599i
\(731\) 4.24505e34 1.82337
\(732\) 1.33703e34i 0.564946i
\(733\) 9.35848e33i 0.389007i −0.980902 0.194504i \(-0.937690\pi\)
0.980902 0.194504i \(-0.0623096\pi\)
\(734\) 4.66947e33i 0.190948i
\(735\) 1.91142e34i 0.768968i
\(736\) 9.48963e33 3.14927e33i 0.375591 0.124646i
\(737\) 1.89392e31 0.000737484
\(738\) 1.06147e34 0.406660
\(739\) 2.21957e34 0.836634 0.418317 0.908301i \(-0.362620\pi\)
0.418317 + 0.908301i \(0.362620\pi\)
\(740\) 1.59371e33 0.0591055
\(741\) 7.71493e34i 2.81523i
\(742\) 6.06714e34 2.17840
\(743\) 3.04555e34i 1.07597i −0.842954 0.537985i \(-0.819186\pi\)
0.842954 0.537985i \(-0.180814\pi\)
\(744\) 6.47265e34 2.25013
\(745\) 2.40122e33 0.0821403
\(746\) 3.18788e34i 1.07309i
\(747\) 7.84806e34i 2.59965i
\(748\) 1.33113e32 0.00433911
\(749\) −2.17354e34 −0.697244
\(750\) 2.59833e34i 0.820274i
\(751\) 1.47879e33i 0.0459440i 0.999736 + 0.0229720i \(0.00731285\pi\)
−0.999736 + 0.0229720i \(0.992687\pi\)
\(752\) −2.40703e33 −0.0735984
\(753\) 8.89783e34i 2.67759i
\(754\) 1.66144e34 0.492072
\(755\) 5.74621e33i 0.167501i
\(756\) 1.99772e34i 0.573156i
\(757\) 6.99037e34i 1.97401i 0.160683 + 0.987006i \(0.448630\pi\)
−0.160683 + 0.987006i \(0.551370\pi\)
\(758\) 3.14784e34i 0.874948i
\(759\) 2.84596e32 + 8.57567e32i 0.00778624 + 0.0234621i
\(760\) 1.17678e34 0.316908
\(761\) 3.55196e34 0.941570 0.470785 0.882248i \(-0.343971\pi\)
0.470785 + 0.882248i \(0.343971\pi\)
\(762\) 1.89134e34 0.493525
\(763\) −6.26412e34 −1.60903
\(764\) 4.14204e33i 0.104736i
\(765\) 2.64049e34 0.657276
\(766\) 4.85417e33i 0.118952i
\(767\) 4.60336e34 1.11053
\(768\) 4.19664e34 0.996705
\(769\) 2.03369e34i 0.475520i 0.971324 + 0.237760i \(0.0764131\pi\)
−0.971324 + 0.237760i \(0.923587\pi\)
\(770\) 2.64618e32i 0.00609159i
\(771\) −8.10368e34 −1.83667
\(772\) 1.44981e33 0.0323521
\(773\) 4.49080e34i 0.986665i −0.869841 0.493332i \(-0.835779\pi\)
0.869841 0.493332i \(-0.164221\pi\)
\(774\) 1.20239e35i 2.60107i
\(775\) 6.66368e34 1.41936
\(776\) 3.92020e34i 0.822182i
\(777\) 1.90432e35 3.93266
\(778\) 3.25134e34i 0.661162i
\(779\) 1.53458e34i 0.307285i
\(780\) 3.94492e33i 0.0777862i
\(781\) 6.62475e30i 0.000128634i
\(782\) 2.71481e34 + 8.18048e34i 0.519110 + 1.56422i
\(783\) −3.89208e34 −0.732894
\(784\) 1.25360e35 2.32469
\(785\) 5.56323e33 0.101599
\(786\) −9.14971e34 −1.64565
\(787\) 1.28190e34i 0.227069i 0.993534 + 0.113534i \(0.0362172\pi\)
−0.993534 + 0.113534i \(0.963783\pi\)
\(788\) −7.56615e33 −0.131996
\(789\) 3.89953e34i 0.670021i
\(790\) −2.39673e33 −0.0405596
\(791\) −1.06451e35 −1.77432
\(792\) 1.50141e33i 0.0246488i
\(793\) 1.02178e35i 1.65226i
\(794\) −1.10759e35 −1.76414
\(795\) −2.80663e34 −0.440331
\(796\) 3.63230e33i 0.0561338i
\(797\) 4.79997e34i 0.730699i 0.930870 + 0.365349i \(0.119050\pi\)
−0.930870 + 0.365349i \(0.880950\pi\)
\(798\) −3.53111e35 −5.29512
\(799\) 6.45767e33i 0.0953926i
\(800\) 2.58401e34 0.376022
\(801\) 1.18919e35i 1.70475i
\(802\) 1.09253e35i 1.54291i
\(803\) 4.11704e32i 0.00572794i
\(804\) 1.29229e33i 0.0177128i
\(805\) −2.71845e34 + 9.02158e33i −0.367089 + 0.121824i
\(806\) −1.24217e35 −1.65257
\(807\) 5.06819e34 0.664310
\(808\) −9.44626e34 −1.21990
\(809\) 8.17358e34 1.03999 0.519996 0.854169i \(-0.325933\pi\)
0.519996 + 0.854169i \(0.325933\pi\)
\(810\) 1.70866e34i 0.214208i
\(811\) −6.11715e34 −0.755613 −0.377806 0.925885i \(-0.623321\pi\)
−0.377806 + 0.925885i \(0.623321\pi\)
\(812\) 1.27118e34i 0.154716i
\(813\) 3.04858e34 0.365605
\(814\) −1.75853e33 −0.0207805
\(815\) 1.93060e34i 0.224803i
\(816\) 2.61619e35i 3.00183i
\(817\) 1.73831e35 1.96545
\(818\) −2.08954e34 −0.232815
\(819\) 3.12023e35i 3.42594i
\(820\) 7.84687e32i 0.00849044i
\(821\) −1.26105e35 −1.34467 −0.672335 0.740247i \(-0.734708\pi\)
−0.672335 + 0.740247i \(0.734708\pi\)
\(822\) 8.55261e34i 0.898745i
\(823\) 1.64389e35 1.70246 0.851228 0.524796i \(-0.175858\pi\)
0.851228 + 0.524796i \(0.175858\pi\)
\(824\) 1.58641e35i 1.61915i
\(825\) 2.33514e33i 0.0234890i
\(826\) 2.10695e35i 2.08878i
\(827\) 1.52246e35i 1.48758i −0.668413 0.743790i \(-0.733026\pi\)
0.668413 0.743790i \(-0.266974\pi\)
\(828\) 3.87332e34 1.28542e34i 0.373009 0.123789i
\(829\) −7.20474e34 −0.683855 −0.341927 0.939726i \(-0.611080\pi\)
−0.341927 + 0.939726i \(0.611080\pi\)
\(830\) 3.47063e34 0.324692
\(831\) 2.06141e35 1.90087
\(832\) 8.07326e34 0.733786
\(833\) 3.36319e35i 3.01309i
\(834\) −1.12797e35 −0.996108
\(835\) 3.50873e34i 0.305430i
\(836\) 5.45085e32 0.00467723
\(837\) 2.90991e35 2.46135
\(838\) 2.26017e34i 0.188457i
\(839\) 2.04809e35i 1.68347i −0.539888 0.841737i \(-0.681533\pi\)
0.539888 0.841737i \(-0.318467\pi\)
\(840\) −7.19008e34 −0.582616
\(841\) −1.00419e35 −0.802165
\(842\) 8.58994e34i 0.676465i
\(843\) 2.14247e35i 1.66335i
\(844\) −2.31591e34 −0.177261
\(845\) 5.71673e32i 0.00431387i
\(846\) −1.82910e34 −0.136080
\(847\) 2.36217e35i 1.73265i
\(848\) 1.84072e35i 1.33118i
\(849\) 2.23504e34i 0.159365i
\(850\) 2.22753e35i 1.56602i
\(851\) −5.99533e34 1.80656e35i −0.415584 1.25227i
\(852\) −4.52029e32 −0.00308952
\(853\) 8.80667e34 0.593504 0.296752 0.954955i \(-0.404097\pi\)
0.296752 + 0.954955i \(0.404097\pi\)
\(854\) −4.67665e35 −3.10771
\(855\) 1.08126e35 0.708494
\(856\) 5.45371e34i 0.352376i
\(857\) −1.97178e35 −1.25629 −0.628143 0.778098i \(-0.716185\pi\)
−0.628143 + 0.778098i \(0.716185\pi\)
\(858\) 4.35291e33i 0.0273484i
\(859\) 2.19132e35 1.35765 0.678826 0.734299i \(-0.262489\pi\)
0.678826 + 0.734299i \(0.262489\pi\)
\(860\) −8.88860e33 −0.0543065
\(861\) 9.37621e34i 0.564923i
\(862\) 2.17643e35i 1.29317i
\(863\) −2.91101e35 −1.70574 −0.852872 0.522120i \(-0.825141\pi\)
−0.852872 + 0.522120i \(0.825141\pi\)
\(864\) 1.12839e35 0.652069
\(865\) 2.53010e34i 0.144193i
\(866\) 1.43830e35i 0.808415i
\(867\) −3.91615e35 −2.17085
\(868\) 9.50392e34i 0.519597i
\(869\) 4.42083e32 0.00238378
\(870\) 3.51774e34i 0.187082i
\(871\) 9.87588e33i 0.0518033i
\(872\) 1.57175e35i 0.813180i
\(873\) 3.60198e35i 1.83810i
\(874\) 1.11169e35 + 3.34983e35i 0.559561 + 1.68611i
\(875\) −1.51926e35 −0.754285
\(876\) 2.80920e34 0.137573
\(877\) −3.16698e34 −0.152985 −0.0764927 0.997070i \(-0.524372\pi\)
−0.0764927 + 0.997070i \(0.524372\pi\)
\(878\) 1.56408e35 0.745291
\(879\) 3.15922e35i 1.48496i
\(880\) 8.02827e32 0.00372246
\(881\) 2.28390e35i 1.04464i 0.852750 + 0.522320i \(0.174933\pi\)
−0.852750 + 0.522320i \(0.825067\pi\)
\(882\) 9.52605e35 4.29823
\(883\) 6.48209e34 0.288527 0.144264 0.989539i \(-0.453919\pi\)
0.144264 + 0.989539i \(0.453919\pi\)
\(884\) 6.94118e34i 0.304794i
\(885\) 9.74663e34i 0.422217i
\(886\) −3.67490e35 −1.57051
\(887\) 3.25439e34 0.137210 0.0686050 0.997644i \(-0.478145\pi\)
0.0686050 + 0.997644i \(0.478145\pi\)
\(888\) 4.77820e35i 1.98751i
\(889\) 1.10588e35i 0.453822i
\(890\) −5.25894e34 −0.212921
\(891\) 3.15167e33i 0.0125895i
\(892\) −2.58928e33 −0.0102047
\(893\) 2.64436e34i 0.102826i
\(894\) 1.80788e35i 0.693617i
\(895\) 8.79669e34i 0.332999i
\(896\) 5.53123e35i 2.06598i
\(897\) 4.47179e35 1.48403e35i 1.64806 0.546932i
\(898\) 2.02081e35 0.734869
\(899\) −1.85161e35 −0.664407
\(900\) 1.05470e35 0.373437
\(901\) 4.93833e35 1.72537
\(902\) 8.65841e32i 0.00298510i
\(903\) −1.06210e36 −3.61336
\(904\) 2.67101e35i 0.896715i
\(905\) −1.07030e35 −0.354588
\(906\) 4.32633e35 1.41443
\(907\) 1.97071e35i 0.635822i 0.948120 + 0.317911i \(0.102981\pi\)
−0.948120 + 0.317911i \(0.897019\pi\)
\(908\) 2.13404e34i 0.0679474i
\(909\) −8.67945e35 −2.72726
\(910\) 1.37985e35 0.427894
\(911\) 4.14938e35i 1.26988i −0.772561 0.634940i \(-0.781025\pi\)
0.772561 0.634940i \(-0.218975\pi\)
\(912\) 1.07130e36i 3.23575i
\(913\) −6.40166e33 −0.0190829
\(914\) 2.47981e35i 0.729564i
\(915\) 2.16340e35 0.628178
\(916\) 3.74821e34i 0.107418i
\(917\) 5.34989e35i 1.51326i
\(918\) 9.72720e35i 2.71566i
\(919\) 1.59871e35i 0.440539i −0.975439 0.220269i \(-0.929306\pi\)
0.975439 0.220269i \(-0.0706936\pi\)
\(920\) 2.26364e34 + 6.82097e34i 0.0615678 + 0.185521i
\(921\) 9.29054e35 2.49417
\(922\) 7.97394e35 2.11301
\(923\) −3.45448e33 −0.00903572
\(924\) −3.33044e33 −0.00859879
\(925\) 4.91922e35i 1.25370i
\(926\) −1.46835e35 −0.369400
\(927\) 1.45763e36i 3.61985i
\(928\) −7.18009e34 −0.176017
\(929\) −4.84522e35 −1.17253 −0.586267 0.810118i \(-0.699403\pi\)
−0.586267 + 0.810118i \(0.699403\pi\)
\(930\) 2.63003e35i 0.628298i
\(931\) 1.37720e36i 3.24788i
\(932\) −3.40758e34 −0.0793332
\(933\) 2.06852e35 0.475422
\(934\) 3.09906e35i 0.703181i
\(935\) 2.15385e33i 0.00482477i
\(936\) 7.82910e35 1.73142
\(937\) 5.02566e34i 0.109728i −0.998494 0.0548640i \(-0.982527\pi\)
0.998494 0.0548640i \(-0.0174725\pi\)
\(938\) −4.52017e34 −0.0974362
\(939\) 6.16881e35i 1.31285i
\(940\) 1.35215e33i 0.00284114i
\(941\) 7.86938e35i 1.63254i −0.577667 0.816272i \(-0.696037\pi\)
0.577667 0.816272i \(-0.303963\pi\)
\(942\) 4.18857e35i 0.857936i
\(943\) −8.89488e34 + 2.95190e34i −0.179887 + 0.0596981i
\(944\) −6.39228e35 −1.27642
\(945\) −3.23244e35 −0.637307
\(946\) 9.80787e33 0.0190933
\(947\) 3.40488e34 0.0654488 0.0327244 0.999464i \(-0.489582\pi\)
0.0327244 + 0.999464i \(0.489582\pi\)
\(948\) 3.01648e34i 0.0572533i
\(949\) 2.14683e35 0.402350
\(950\) 9.12153e35i 1.68805i
\(951\) −6.90012e35 −1.26093
\(952\) 1.26511e36 2.28289
\(953\) 4.11597e35i 0.733428i −0.930334 0.366714i \(-0.880483\pi\)
0.930334 0.366714i \(-0.119517\pi\)
\(954\) 1.39876e36i 2.46128i
\(955\) −6.70209e34 −0.116458
\(956\) −1.70247e35 −0.292135
\(957\) 6.48857e33i 0.0109953i
\(958\) 3.29520e35i 0.551437i
\(959\) −5.00077e35 −0.826444
\(960\) 1.70934e35i 0.278981i
\(961\) 7.63942e35 1.23134
\(962\) 9.16987e35i 1.45970i
\(963\) 5.01100e35i 0.787787i
\(964\) 4.06462e33i 0.00631096i
\(965\) 2.34588e34i 0.0359732i
\(966\) −6.79237e35 2.04673e36i −1.02872 3.09981i
\(967\) 5.85891e35 0.876393 0.438197 0.898879i \(-0.355617\pi\)
0.438197 + 0.898879i \(0.355617\pi\)
\(968\) 5.92701e35 0.875651
\(969\) −2.87413e36 −4.19393
\(970\) 1.59289e35 0.229576
\(971\) 2.39384e34i 0.0340773i −0.999855 0.0170386i \(-0.994576\pi\)
0.999855 0.0170386i \(-0.00542383\pi\)
\(972\) −2.01676e34 −0.0283569
\(973\) 6.59534e35i 0.915974i
\(974\) −7.30159e35 −1.00164
\(975\) 1.21766e36 1.64995
\(976\) 1.41885e36i 1.89906i
\(977\) 1.38440e36i 1.83032i −0.403093 0.915159i \(-0.632065\pi\)
0.403093 0.915159i \(-0.367935\pi\)
\(978\) −1.45355e36 −1.89830
\(979\) 9.70024e33 0.0125138
\(980\) 7.04209e34i 0.0897406i
\(981\) 1.44417e36i 1.81798i
\(982\) 1.50105e36 1.86663
\(983\) 2.87478e35i 0.353152i 0.984287 + 0.176576i \(0.0565022\pi\)
−0.984287 + 0.176576i \(0.943498\pi\)
\(984\) −2.35262e35 −0.285503
\(985\) 1.22425e35i 0.146770i
\(986\) 6.18956e35i 0.733055i
\(987\) 1.61569e35i 0.189039i
\(988\) 2.84235e35i 0.328545i
\(989\) 3.34378e35 + 1.00757e36i 0.381841 + 1.15059i
\(990\) 6.10066e33 0.00688263
\(991\) 5.22824e35 0.582736 0.291368 0.956611i \(-0.405890\pi\)
0.291368 + 0.956611i \(0.405890\pi\)
\(992\) 5.36818e35 0.591135
\(993\) −1.98906e36 −2.16400
\(994\) 1.58111e34i 0.0169952i
\(995\) 5.87729e34 0.0624166
\(996\) 4.36807e35i 0.458329i
\(997\) −4.89819e35 −0.507801 −0.253901 0.967230i \(-0.581714\pi\)
−0.253901 + 0.967230i \(0.581714\pi\)
\(998\) −6.51136e35 −0.666968
\(999\) 2.14813e36i 2.17408i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.12 yes 44
23.22 odd 2 inner 23.25.b.c.22.11 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.11 44 23.22 odd 2 inner
23.25.b.c.22.12 yes 44 1.1 even 1 trivial