Properties

Label 23.25.b.c.22.10
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.10
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4898.68 q^{2} -558886. q^{3} +7.21988e6 q^{4} +3.44673e8i q^{5} +2.73780e9 q^{6} +1.10267e10i q^{7} +4.68184e10 q^{8} +2.99237e10 q^{9} -1.68844e12i q^{10} +3.20119e12i q^{11} -4.03509e12 q^{12} +2.99647e13 q^{13} -5.40165e13i q^{14} -1.92633e14i q^{15} -3.50478e14 q^{16} -8.68847e14i q^{17} -1.46587e14 q^{18} +4.61494e14i q^{19} +2.48850e15i q^{20} -6.16269e15i q^{21} -1.56816e16i q^{22} +(1.41046e16 + 1.67723e16i) q^{23} -2.61661e16 q^{24} -5.91949e16 q^{25} -1.46788e17 q^{26} +1.41122e17 q^{27} +7.96117e16i q^{28} +4.83522e17 q^{29} +9.43647e17i q^{30} -1.01314e18 q^{31} +9.31398e17 q^{32} -1.78910e18i q^{33} +4.25620e18i q^{34} -3.80062e18 q^{35} +2.16046e17 q^{36} +4.31926e18i q^{37} -2.26071e18i q^{38} -1.67469e19 q^{39} +1.61370e19i q^{40} -4.06252e19 q^{41} +3.01891e19i q^{42} +1.34334e18i q^{43} +2.31122e19i q^{44} +1.03139e19i q^{45} +(-6.90940e19 - 8.21623e19i) q^{46} -3.48139e19 q^{47} +1.95877e20 q^{48} +6.99922e19 q^{49} +2.89977e20 q^{50} +4.85586e20i q^{51} +2.16342e20 q^{52} -1.18991e20i q^{53} -6.91311e20 q^{54} -1.10336e21 q^{55} +5.16254e20i q^{56} -2.57923e20i q^{57} -2.36862e21 q^{58} -1.83985e21 q^{59} -1.39079e21i q^{60} +2.94336e21i q^{61} +4.96307e21 q^{62} +3.29961e20i q^{63} +1.31742e21 q^{64} +1.03280e22i q^{65} +8.76422e21i q^{66} -1.48528e22i q^{67} -6.27297e21i q^{68} +(-7.88287e21 - 9.37381e21i) q^{69} +1.86180e22 q^{70} -6.39534e21 q^{71} +1.40098e21 q^{72} +4.93273e21 q^{73} -2.11587e22i q^{74} +3.30832e22 q^{75} +3.33193e21i q^{76} -3.52986e22 q^{77} +8.20376e22 q^{78} -7.06115e22i q^{79} -1.20800e23i q^{80} -8.73224e22 q^{81} +1.99010e23 q^{82} -1.88596e23i q^{83} -4.44939e22i q^{84} +2.99468e23 q^{85} -6.58060e21i q^{86} -2.70234e23 q^{87} +1.49874e23i q^{88} -5.32504e22i q^{89} -5.05245e22i q^{90} +3.30413e23i q^{91} +(1.01834e23 + 1.21094e23i) q^{92} +5.66232e23 q^{93} +1.70542e23 q^{94} -1.59065e23 q^{95} -5.20545e23 q^{96} -6.10526e23i q^{97} -3.42870e23 q^{98} +9.57914e22i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4898.68 −1.19597 −0.597984 0.801508i \(-0.704031\pi\)
−0.597984 + 0.801508i \(0.704031\pi\)
\(3\) −558886. −1.05164 −0.525821 0.850595i \(-0.676242\pi\)
−0.525821 + 0.850595i \(0.676242\pi\)
\(4\) 7.21988e6 0.430338
\(5\) 3.44673e8i 1.41178i 0.708321 + 0.705890i \(0.249453\pi\)
−0.708321 + 0.705890i \(0.750547\pi\)
\(6\) 2.73780e9 1.25773
\(7\) 1.10267e10i 0.796656i 0.917243 + 0.398328i \(0.130409\pi\)
−0.917243 + 0.398328i \(0.869591\pi\)
\(8\) 4.68184e10 0.681297
\(9\) 2.99237e10 0.105951
\(10\) 1.68844e12i 1.68844i
\(11\) 3.20119e12i 1.02000i 0.860175 + 0.509998i \(0.170354\pi\)
−0.860175 + 0.509998i \(0.829646\pi\)
\(12\) −4.03509e12 −0.452562
\(13\) 2.99647e13 1.28615 0.643073 0.765805i \(-0.277659\pi\)
0.643073 + 0.765805i \(0.277659\pi\)
\(14\) 5.40165e13i 0.952774i
\(15\) 1.92633e14i 1.48469i
\(16\) −3.50478e14 −1.24515
\(17\) 8.68847e14i 1.49127i −0.666355 0.745635i \(-0.732146\pi\)
0.666355 0.745635i \(-0.267854\pi\)
\(18\) −1.46587e14 −0.126714
\(19\) 4.61494e14i 0.208508i 0.994551 + 0.104254i \(0.0332455\pi\)
−0.994551 + 0.104254i \(0.966754\pi\)
\(20\) 2.48850e15i 0.607543i
\(21\) 6.16269e15i 0.837797i
\(22\) 1.56816e16i 1.21988i
\(23\) 1.41046e16 + 1.67723e16i 0.643617 + 0.765348i
\(24\) −2.61661e16 −0.716480
\(25\) −5.91949e16 −0.993125
\(26\) −1.46788e17 −1.53819
\(27\) 1.41122e17 0.940219
\(28\) 7.96117e16i 0.342831i
\(29\) 4.83522e17 1.36660 0.683299 0.730139i \(-0.260545\pi\)
0.683299 + 0.730139i \(0.260545\pi\)
\(30\) 9.43647e17i 1.77564i
\(31\) −1.01314e18 −1.28627 −0.643133 0.765755i \(-0.722366\pi\)
−0.643133 + 0.765755i \(0.722366\pi\)
\(32\) 9.31398e17 0.807859
\(33\) 1.78910e18i 1.07267i
\(34\) 4.25620e18i 1.78351i
\(35\) −3.80062e18 −1.12470
\(36\) 2.16046e17 0.0455948
\(37\) 4.31926e18i 0.656129i 0.944655 + 0.328064i \(0.106396\pi\)
−0.944655 + 0.328064i \(0.893604\pi\)
\(38\) 2.26071e18i 0.249369i
\(39\) −1.67469e19 −1.35257
\(40\) 1.61370e19i 0.961842i
\(41\) −4.06252e19 −1.80048 −0.900242 0.435389i \(-0.856611\pi\)
−0.900242 + 0.435389i \(0.856611\pi\)
\(42\) 3.01891e19i 1.00198i
\(43\) 1.34334e18i 0.0336174i 0.999859 + 0.0168087i \(0.00535063\pi\)
−0.999859 + 0.0168087i \(0.994649\pi\)
\(44\) 2.31122e19i 0.438944i
\(45\) 1.03139e19i 0.149580i
\(46\) −6.90940e19 8.21623e19i −0.769745 0.915331i
\(47\) −3.48139e19 −0.299625 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(48\) 1.95877e20 1.30945
\(49\) 6.99922e19 0.365340
\(50\) 2.89977e20 1.18775
\(51\) 4.85586e20i 1.56828i
\(52\) 2.16342e20 0.553478
\(53\) 1.18991e20i 0.242217i −0.992639 0.121108i \(-0.961355\pi\)
0.992639 0.121108i \(-0.0386449\pi\)
\(54\) −6.91311e20 −1.12447
\(55\) −1.10336e21 −1.44001
\(56\) 5.16254e20i 0.542759i
\(57\) 2.57923e20i 0.219276i
\(58\) −2.36862e21 −1.63441
\(59\) −1.83985e21 −1.03409 −0.517046 0.855958i \(-0.672968\pi\)
−0.517046 + 0.855958i \(0.672968\pi\)
\(60\) 1.39079e21i 0.638918i
\(61\) 2.94336e21i 1.10888i 0.832223 + 0.554441i \(0.187068\pi\)
−0.832223 + 0.554441i \(0.812932\pi\)
\(62\) 4.96307e21 1.53833
\(63\) 3.29961e20i 0.0844066i
\(64\) 1.31742e21 0.278974
\(65\) 1.03280e22i 1.81576i
\(66\) 8.76422e21i 1.28288i
\(67\) 1.48528e22i 1.81514i −0.419903 0.907569i \(-0.637936\pi\)
0.419903 0.907569i \(-0.362064\pi\)
\(68\) 6.27297e21i 0.641750i
\(69\) −7.88287e21 9.37381e21i −0.676854 0.804872i
\(70\) 1.86180e22 1.34511
\(71\) −6.39534e21 −0.389730 −0.194865 0.980830i \(-0.562427\pi\)
−0.194865 + 0.980830i \(0.562427\pi\)
\(72\) 1.40098e21 0.0721842
\(73\) 4.93273e21 0.215384 0.107692 0.994184i \(-0.465654\pi\)
0.107692 + 0.994184i \(0.465654\pi\)
\(74\) 2.11587e22i 0.784708i
\(75\) 3.30832e22 1.04441
\(76\) 3.33193e21i 0.0897291i
\(77\) −3.52986e22 −0.812586
\(78\) 8.20376e22 1.61762
\(79\) 7.06115e22i 1.19495i −0.801887 0.597476i \(-0.796170\pi\)
0.801887 0.597476i \(-0.203830\pi\)
\(80\) 1.20800e23i 1.75787i
\(81\) −8.73224e22 −1.09473
\(82\) 1.99010e23 2.15332
\(83\) 1.88596e23i 1.76439i −0.470881 0.882197i \(-0.656064\pi\)
0.470881 0.882197i \(-0.343936\pi\)
\(84\) 4.44939e22i 0.360536i
\(85\) 2.99468e23 2.10535
\(86\) 6.58060e21i 0.0402054i
\(87\) −2.70234e23 −1.43717
\(88\) 1.49874e23i 0.694920i
\(89\) 5.32504e22i 0.215597i −0.994173 0.107799i \(-0.965620\pi\)
0.994173 0.107799i \(-0.0343801\pi\)
\(90\) 5.05245e22i 0.178893i
\(91\) 3.30413e23i 1.02462i
\(92\) 1.01834e23 + 1.21094e23i 0.276973 + 0.329359i
\(93\) 5.66232e23 1.35269
\(94\) 1.70542e23 0.358342
\(95\) −1.59065e23 −0.294368
\(96\) −5.20545e23 −0.849578
\(97\) 6.10526e23i 0.879921i −0.898017 0.439960i \(-0.854993\pi\)
0.898017 0.439960i \(-0.145007\pi\)
\(98\) −3.42870e23 −0.436934
\(99\) 9.57914e22i 0.108070i
\(100\) −4.27380e23 −0.427380
\(101\) −1.20912e24 −1.07304 −0.536518 0.843889i \(-0.680260\pi\)
−0.536518 + 0.843889i \(0.680260\pi\)
\(102\) 2.37873e24i 1.87561i
\(103\) 2.03061e24i 1.42423i 0.702063 + 0.712115i \(0.252262\pi\)
−0.702063 + 0.712115i \(0.747738\pi\)
\(104\) 1.40290e24 0.876247
\(105\) 2.12411e24 1.18279
\(106\) 5.82900e23i 0.289684i
\(107\) 2.20342e24i 0.978345i −0.872187 0.489172i \(-0.837299\pi\)
0.872187 0.489172i \(-0.162701\pi\)
\(108\) 1.01888e24 0.404612
\(109\) 1.39261e24i 0.495122i −0.968872 0.247561i \(-0.920371\pi\)
0.968872 0.247561i \(-0.0796291\pi\)
\(110\) 5.40502e24 1.72221
\(111\) 2.41397e24i 0.690012i
\(112\) 3.86463e24i 0.991954i
\(113\) 5.84039e24i 1.34741i −0.738999 0.673707i \(-0.764701\pi\)
0.738999 0.673707i \(-0.235299\pi\)
\(114\) 1.26348e24i 0.262247i
\(115\) −5.78096e24 + 4.86148e24i −1.08050 + 0.908646i
\(116\) 3.49097e24 0.588099
\(117\) 8.96657e23 0.136269
\(118\) 9.01285e24 1.23674
\(119\) 9.58055e24 1.18803
\(120\) 9.01875e24i 1.01151i
\(121\) −3.97861e23 −0.0403930
\(122\) 1.44186e25i 1.32619i
\(123\) 2.27049e25 1.89347
\(124\) −7.31477e24 −0.553529
\(125\) 1.41241e23i 0.00970603i
\(126\) 1.61638e24i 0.100948i
\(127\) −1.10569e25 −0.628045 −0.314022 0.949416i \(-0.601677\pi\)
−0.314022 + 0.949416i \(0.601677\pi\)
\(128\) −2.20799e25 −1.14150
\(129\) 7.50774e23i 0.0353535i
\(130\) 5.05938e25i 2.17159i
\(131\) 1.57347e24 0.0616033 0.0308017 0.999526i \(-0.490194\pi\)
0.0308017 + 0.999526i \(0.490194\pi\)
\(132\) 1.29171e25i 0.461612i
\(133\) −5.08878e24 −0.166109
\(134\) 7.27590e25i 2.17085i
\(135\) 4.86409e25i 1.32738i
\(136\) 4.06780e25i 1.01600i
\(137\) 5.74668e25i 1.31453i 0.753660 + 0.657264i \(0.228286\pi\)
−0.753660 + 0.657264i \(0.771714\pi\)
\(138\) 3.86157e25 + 4.59193e25i 0.809496 + 0.962601i
\(139\) −1.00297e26 −1.92802 −0.964008 0.265872i \(-0.914340\pi\)
−0.964008 + 0.265872i \(0.914340\pi\)
\(140\) −2.74400e25 −0.484003
\(141\) 1.94570e25 0.315098
\(142\) 3.13287e25 0.466104
\(143\) 9.59227e25i 1.31186i
\(144\) −1.04876e25 −0.131925
\(145\) 1.66657e26i 1.92934i
\(146\) −2.41639e25 −0.257592
\(147\) −3.91177e25 −0.384207
\(148\) 3.11846e25i 0.282357i
\(149\) 1.64753e26i 1.37594i −0.725741 0.687968i \(-0.758503\pi\)
0.725741 0.687968i \(-0.241497\pi\)
\(150\) −1.62064e26 −1.24908
\(151\) −1.91291e26 −1.36136 −0.680678 0.732583i \(-0.738315\pi\)
−0.680678 + 0.732583i \(0.738315\pi\)
\(152\) 2.16064e25i 0.142056i
\(153\) 2.59991e25i 0.158002i
\(154\) 1.72917e26 0.971827
\(155\) 3.49203e26i 1.81593i
\(156\) −1.20910e26 −0.582061
\(157\) 1.42229e26i 0.634149i −0.948401 0.317074i \(-0.897300\pi\)
0.948401 0.317074i \(-0.102700\pi\)
\(158\) 3.45903e26i 1.42912i
\(159\) 6.65025e25i 0.254726i
\(160\) 3.21028e26i 1.14052i
\(161\) −1.84944e26 + 1.55528e26i −0.609719 + 0.512741i
\(162\) 4.27765e26 1.30926
\(163\) −1.41885e26 −0.403353 −0.201676 0.979452i \(-0.564639\pi\)
−0.201676 + 0.979452i \(0.564639\pi\)
\(164\) −2.93309e26 −0.774818
\(165\) 6.16654e26 1.51438
\(166\) 9.23872e26i 2.11016i
\(167\) −2.34417e26 −0.498185 −0.249093 0.968480i \(-0.580132\pi\)
−0.249093 + 0.968480i \(0.580132\pi\)
\(168\) 2.88527e26i 0.570788i
\(169\) 3.55085e26 0.654172
\(170\) −1.46700e27 −2.51792
\(171\) 1.38096e25i 0.0220917i
\(172\) 9.69876e24i 0.0144669i
\(173\) −4.43019e26 −0.616409 −0.308205 0.951320i \(-0.599728\pi\)
−0.308205 + 0.951320i \(0.599728\pi\)
\(174\) 1.32379e27 1.71881
\(175\) 6.52726e26i 0.791179i
\(176\) 1.12194e27i 1.27005i
\(177\) 1.02827e27 1.08749
\(178\) 2.60857e26i 0.257847i
\(179\) 6.31877e26 0.583978 0.291989 0.956422i \(-0.405683\pi\)
0.291989 + 0.956422i \(0.405683\pi\)
\(180\) 7.44651e25i 0.0643699i
\(181\) 5.84915e25i 0.0473097i −0.999720 0.0236548i \(-0.992470\pi\)
0.999720 0.0236548i \(-0.00753027\pi\)
\(182\) 1.61859e27i 1.22541i
\(183\) 1.64500e27i 1.16615i
\(184\) 6.60355e26 + 7.85252e26i 0.438494 + 0.521429i
\(185\) −1.48873e27 −0.926310
\(186\) −2.77379e27 −1.61777
\(187\) 2.78134e27 1.52109
\(188\) −2.51352e26 −0.128940
\(189\) 1.55611e27i 0.749031i
\(190\) 7.79207e26 0.352054
\(191\) 1.74910e27i 0.742018i −0.928629 0.371009i \(-0.879012\pi\)
0.928629 0.371009i \(-0.120988\pi\)
\(192\) −7.36287e26 −0.293381
\(193\) 2.08176e27 0.779368 0.389684 0.920949i \(-0.372584\pi\)
0.389684 + 0.920949i \(0.372584\pi\)
\(194\) 2.99077e27i 1.05236i
\(195\) 5.77219e27i 1.90953i
\(196\) 5.05335e26 0.157220
\(197\) 3.59501e27 1.05222 0.526108 0.850418i \(-0.323651\pi\)
0.526108 + 0.850418i \(0.323651\pi\)
\(198\) 4.69252e26i 0.129248i
\(199\) 1.71314e27i 0.444177i 0.975027 + 0.222088i \(0.0712874\pi\)
−0.975027 + 0.222088i \(0.928713\pi\)
\(200\) −2.77141e27 −0.676613
\(201\) 8.30100e27i 1.90888i
\(202\) 5.92311e27 1.28332
\(203\) 5.33167e27i 1.08871i
\(204\) 3.50587e27i 0.674892i
\(205\) 1.40024e28i 2.54189i
\(206\) 9.94732e27i 1.70333i
\(207\) 4.22063e26 + 5.01890e26i 0.0681919 + 0.0810895i
\(208\) −1.05020e28 −1.60144
\(209\) −1.47733e27 −0.212678
\(210\) −1.04054e28 −1.41457
\(211\) 1.02156e28 1.31182 0.655909 0.754840i \(-0.272285\pi\)
0.655909 + 0.754840i \(0.272285\pi\)
\(212\) 8.59102e26i 0.104235i
\(213\) 3.57426e27 0.409856
\(214\) 1.07939e28i 1.17007i
\(215\) −4.63013e26 −0.0474605
\(216\) 6.60710e27 0.640569
\(217\) 1.11717e28i 1.02471i
\(218\) 6.82197e27i 0.592150i
\(219\) −2.75683e27 −0.226507
\(220\) −7.96614e27 −0.619692
\(221\) 2.60348e28i 1.91799i
\(222\) 1.18253e28i 0.825232i
\(223\) 9.26098e27 0.612349 0.306174 0.951975i \(-0.400951\pi\)
0.306174 + 0.951975i \(0.400951\pi\)
\(224\) 1.02703e28i 0.643585i
\(225\) −1.77133e27 −0.105223
\(226\) 2.86102e28i 1.61146i
\(227\) 1.29950e28i 0.694168i −0.937834 0.347084i \(-0.887172\pi\)
0.937834 0.347084i \(-0.112828\pi\)
\(228\) 1.86217e27i 0.0943629i
\(229\) 3.07988e28i 1.48084i −0.672145 0.740420i \(-0.734627\pi\)
0.672145 0.740420i \(-0.265373\pi\)
\(230\) 2.83191e28 2.38149e28i 1.29225 1.08671i
\(231\) 1.97279e28 0.854550
\(232\) 2.26377e28 0.931058
\(233\) 5.14940e27 0.201134 0.100567 0.994930i \(-0.467934\pi\)
0.100567 + 0.994930i \(0.467934\pi\)
\(234\) −4.39244e27 −0.162973
\(235\) 1.19994e28i 0.423005i
\(236\) −1.32835e28 −0.445009
\(237\) 3.94637e28i 1.25666i
\(238\) −4.69321e28 −1.42084
\(239\) −1.52770e28 −0.439807 −0.219904 0.975522i \(-0.570574\pi\)
−0.219904 + 0.975522i \(0.570574\pi\)
\(240\) 6.75135e28i 1.84866i
\(241\) 4.55873e28i 1.18752i −0.804644 0.593758i \(-0.797644\pi\)
0.804644 0.593758i \(-0.202356\pi\)
\(242\) 1.94899e27 0.0483088
\(243\) 8.94623e27 0.211040
\(244\) 2.12507e28i 0.477195i
\(245\) 2.41244e28i 0.515780i
\(246\) −1.11224e29 −2.26452
\(247\) 1.38286e28i 0.268172i
\(248\) −4.74337e28 −0.876329
\(249\) 1.05404e29i 1.85551i
\(250\) 6.91896e26i 0.0116081i
\(251\) 2.40649e28i 0.384856i 0.981311 + 0.192428i \(0.0616362\pi\)
−0.981311 + 0.192428i \(0.938364\pi\)
\(252\) 2.38228e27i 0.0363234i
\(253\) −5.36913e28 + 4.51515e28i −0.780652 + 0.656487i
\(254\) 5.41645e28 0.751121
\(255\) −1.67368e29 −2.21407
\(256\) 8.60597e28 1.08623
\(257\) −7.13777e28 −0.859736 −0.429868 0.902892i \(-0.641440\pi\)
−0.429868 + 0.902892i \(0.641440\pi\)
\(258\) 3.67780e27i 0.0422817i
\(259\) −4.76274e28 −0.522708
\(260\) 7.45672e28i 0.781390i
\(261\) 1.44688e28 0.144793
\(262\) −7.70795e27 −0.0736756
\(263\) 1.94537e29i 1.77637i 0.459491 + 0.888183i \(0.348032\pi\)
−0.459491 + 0.888183i \(0.651968\pi\)
\(264\) 8.37626e28i 0.730808i
\(265\) 4.10131e28 0.341957
\(266\) 2.49283e28 0.198661
\(267\) 2.97609e28i 0.226731i
\(268\) 1.07235e29i 0.781124i
\(269\) 1.23899e29 0.863056 0.431528 0.902099i \(-0.357975\pi\)
0.431528 + 0.902099i \(0.357975\pi\)
\(270\) 2.38276e29i 1.58751i
\(271\) 1.71744e29 1.09459 0.547293 0.836941i \(-0.315658\pi\)
0.547293 + 0.836941i \(0.315658\pi\)
\(272\) 3.04511e29i 1.85685i
\(273\) 1.84663e29i 1.07753i
\(274\) 2.81512e29i 1.57213i
\(275\) 1.89494e29i 1.01298i
\(276\) −5.69134e28 6.76778e28i −0.291276 0.346367i
\(277\) 3.29395e29 1.61421 0.807104 0.590410i \(-0.201034\pi\)
0.807104 + 0.590410i \(0.201034\pi\)
\(278\) 4.91324e29 2.30585
\(279\) −3.03170e28 −0.136281
\(280\) −1.77939e29 −0.766257
\(281\) 1.88960e29i 0.779638i 0.920891 + 0.389819i \(0.127462\pi\)
−0.920891 + 0.389819i \(0.872538\pi\)
\(282\) −9.53136e28 −0.376847
\(283\) 2.13934e28i 0.0810666i −0.999178 0.0405333i \(-0.987094\pi\)
0.999178 0.0405333i \(-0.0129057\pi\)
\(284\) −4.61736e28 −0.167716
\(285\) 8.88990e28 0.309570
\(286\) 4.69895e29i 1.56895i
\(287\) 4.47964e29i 1.43437i
\(288\) 2.78709e28 0.0855936
\(289\) −4.15446e29 −1.22388
\(290\) 8.16400e29i 2.30742i
\(291\) 3.41214e29i 0.925362i
\(292\) 3.56137e28 0.0926880
\(293\) 1.35561e29i 0.338629i −0.985562 0.169314i \(-0.945845\pi\)
0.985562 0.169314i \(-0.0541553\pi\)
\(294\) 1.91625e29 0.459499
\(295\) 6.34147e29i 1.45991i
\(296\) 2.02221e29i 0.447018i
\(297\) 4.51757e29i 0.959021i
\(298\) 8.07073e29i 1.64557i
\(299\) 4.22641e29 + 5.02578e29i 0.827785 + 0.984350i
\(300\) 2.38856e29 0.449451
\(301\) −1.48127e28 −0.0267815
\(302\) 9.37075e29 1.62814
\(303\) 6.75762e29 1.12845
\(304\) 1.61744e29i 0.259623i
\(305\) −1.01450e30 −1.56550
\(306\) 1.27362e29i 0.188965i
\(307\) 4.25550e29 0.607142 0.303571 0.952809i \(-0.401821\pi\)
0.303571 + 0.952809i \(0.401821\pi\)
\(308\) −2.54852e29 −0.349687
\(309\) 1.13488e30i 1.49778i
\(310\) 1.71064e30i 2.17179i
\(311\) −6.75335e29 −0.824887 −0.412443 0.910983i \(-0.635325\pi\)
−0.412443 + 0.910983i \(0.635325\pi\)
\(312\) −7.84061e29 −0.921499
\(313\) 1.34263e30i 1.51854i −0.650778 0.759268i \(-0.725557\pi\)
0.650778 0.759268i \(-0.274443\pi\)
\(314\) 6.96733e29i 0.758421i
\(315\) −1.13729e29 −0.119164
\(316\) 5.09806e29i 0.514233i
\(317\) −1.40672e30 −1.36614 −0.683070 0.730353i \(-0.739356\pi\)
−0.683070 + 0.730353i \(0.739356\pi\)
\(318\) 3.25775e29i 0.304644i
\(319\) 1.54784e30i 1.39392i
\(320\) 4.54079e29i 0.393851i
\(321\) 1.23146e30i 1.02887i
\(322\) 9.05982e29 7.61882e29i 0.729204 0.613221i
\(323\) 4.00968e29 0.310942
\(324\) −6.30457e29 −0.471102
\(325\) −1.77376e30 −1.27730
\(326\) 6.95050e29 0.482397
\(327\) 7.78312e29i 0.520692i
\(328\) −1.90201e30 −1.22666
\(329\) 3.83884e29i 0.238698i
\(330\) −3.02079e30 −1.81115
\(331\) 8.53886e29 0.493701 0.246850 0.969054i \(-0.420604\pi\)
0.246850 + 0.969054i \(0.420604\pi\)
\(332\) 1.36164e30i 0.759286i
\(333\) 1.29248e29i 0.0695176i
\(334\) 1.14833e30 0.595813
\(335\) 5.11935e30 2.56258
\(336\) 2.15989e30i 1.04318i
\(337\) 1.85086e30i 0.862609i −0.902206 0.431305i \(-0.858053\pi\)
0.902206 0.431305i \(-0.141947\pi\)
\(338\) −1.73945e30 −0.782369
\(339\) 3.26411e30i 1.41700i
\(340\) 2.16212e30 0.906011
\(341\) 3.24326e30i 1.31199i
\(342\) 6.76490e28i 0.0264209i
\(343\) 2.88430e30i 1.08771i
\(344\) 6.28930e28i 0.0229035i
\(345\) 3.23090e30 2.71701e30i 1.13630 0.955570i
\(346\) 2.17021e30 0.737206
\(347\) −4.80947e30 −1.57813 −0.789066 0.614309i \(-0.789435\pi\)
−0.789066 + 0.614309i \(0.789435\pi\)
\(348\) −1.95105e30 −0.618470
\(349\) 1.60875e30 0.492701 0.246350 0.969181i \(-0.420769\pi\)
0.246350 + 0.969181i \(0.420769\pi\)
\(350\) 3.19750e30i 0.946224i
\(351\) 4.22868e30 1.20926
\(352\) 2.98158e30i 0.824013i
\(353\) −4.50147e30 −1.20243 −0.601213 0.799089i \(-0.705316\pi\)
−0.601213 + 0.799089i \(0.705316\pi\)
\(354\) −5.03715e30 −1.30061
\(355\) 2.20430e30i 0.550213i
\(356\) 3.84462e29i 0.0927797i
\(357\) −5.35443e30 −1.24938
\(358\) −3.09537e30 −0.698419
\(359\) 3.08580e30i 0.673340i −0.941623 0.336670i \(-0.890699\pi\)
0.941623 0.336670i \(-0.109301\pi\)
\(360\) 4.82880e29i 0.101908i
\(361\) 4.68579e30 0.956524
\(362\) 2.86531e29i 0.0565808i
\(363\) 2.22359e29 0.0424790
\(364\) 2.38555e30i 0.440931i
\(365\) 1.70018e30i 0.304075i
\(366\) 8.05835e30i 1.39467i
\(367\) 1.97613e30i 0.330995i 0.986210 + 0.165498i \(0.0529231\pi\)
−0.986210 + 0.165498i \(0.947077\pi\)
\(368\) −4.94336e30 5.87832e30i −0.801398 0.952971i
\(369\) −1.21566e30 −0.190763
\(370\) 7.29283e30 1.10784
\(371\) 1.31209e30 0.192964
\(372\) 4.08812e30 0.582115
\(373\) 1.09084e31i 1.50402i −0.659150 0.752012i \(-0.729084\pi\)
0.659150 0.752012i \(-0.270916\pi\)
\(374\) −1.36249e31 −1.81917
\(375\) 7.89378e28i 0.0102073i
\(376\) −1.62993e30 −0.204134
\(377\) 1.44886e31 1.75764
\(378\) 7.62291e30i 0.895817i
\(379\) 3.60912e30i 0.410895i −0.978668 0.205447i \(-0.934135\pi\)
0.978668 0.205447i \(-0.0658649\pi\)
\(380\) −1.14843e30 −0.126678
\(381\) 6.17957e30 0.660478
\(382\) 8.56829e30i 0.887429i
\(383\) 7.38277e30i 0.741027i 0.928827 + 0.370514i \(0.120818\pi\)
−0.928827 + 0.370514i \(0.879182\pi\)
\(384\) 1.23401e31 1.20045
\(385\) 1.21665e31i 1.14719i
\(386\) −1.01979e31 −0.932099
\(387\) 4.01978e28i 0.00356181i
\(388\) 4.40793e30i 0.378664i
\(389\) 1.15521e31i 0.962198i 0.876666 + 0.481099i \(0.159762\pi\)
−0.876666 + 0.481099i \(0.840238\pi\)
\(390\) 2.82761e31i 2.28373i
\(391\) 1.45726e31 1.22547e31i 1.14134 0.959806i
\(392\) 3.27692e30 0.248905
\(393\) −8.79393e29 −0.0647847
\(394\) −1.76108e31 −1.25842
\(395\) 2.43379e31 1.68701
\(396\) 6.91603e29i 0.0465066i
\(397\) −1.45245e31 −0.947575 −0.473788 0.880639i \(-0.657114\pi\)
−0.473788 + 0.880639i \(0.657114\pi\)
\(398\) 8.39213e30i 0.531221i
\(399\) 2.84405e30 0.174687
\(400\) 2.07465e31 1.23659
\(401\) 1.15179e31i 0.666257i −0.942881 0.333129i \(-0.891896\pi\)
0.942881 0.333129i \(-0.108104\pi\)
\(402\) 4.06640e31i 2.28295i
\(403\) −3.03586e31 −1.65433
\(404\) −8.72972e30 −0.461768
\(405\) 3.00977e31i 1.54551i
\(406\) 2.61182e31i 1.30206i
\(407\) −1.38268e31 −0.669249
\(408\) 2.27343e31i 1.06847i
\(409\) −1.67201e31 −0.763062 −0.381531 0.924356i \(-0.624603\pi\)
−0.381531 + 0.924356i \(0.624603\pi\)
\(410\) 6.85934e31i 3.04002i
\(411\) 3.21174e31i 1.38241i
\(412\) 1.46608e31i 0.612900i
\(413\) 2.02876e31i 0.823814i
\(414\) −2.06755e30 2.45860e30i −0.0815553 0.0969804i
\(415\) 6.50040e31 2.49094
\(416\) 2.79091e31 1.03902
\(417\) 5.60546e31 2.02758
\(418\) 7.23697e30 0.254356
\(419\) 1.51229e31i 0.516495i 0.966079 + 0.258248i \(0.0831451\pi\)
−0.966079 + 0.258248i \(0.916855\pi\)
\(420\) 1.53358e31 0.508998
\(421\) 2.92647e31i 0.943972i −0.881606 0.471986i \(-0.843537\pi\)
0.881606 0.471986i \(-0.156463\pi\)
\(422\) −5.00429e31 −1.56889
\(423\) −1.04176e30 −0.0317456
\(424\) 5.57098e30i 0.165022i
\(425\) 5.14313e31i 1.48102i
\(426\) −1.75092e31 −0.490175
\(427\) −3.24557e31 −0.883398
\(428\) 1.59084e31i 0.421019i
\(429\) 5.36098e31i 1.37961i
\(430\) 2.26816e30 0.0567612
\(431\) 3.70986e31i 0.902882i 0.892301 + 0.451441i \(0.149090\pi\)
−0.892301 + 0.451441i \(0.850910\pi\)
\(432\) −4.94601e31 −1.17071
\(433\) 5.48239e31i 1.26216i 0.775717 + 0.631081i \(0.217388\pi\)
−0.775717 + 0.631081i \(0.782612\pi\)
\(434\) 5.47265e31i 1.22552i
\(435\) 9.31423e31i 2.02897i
\(436\) 1.00545e31i 0.213070i
\(437\) −7.74033e30 + 6.50920e30i −0.159581 + 0.134199i
\(438\) 1.35049e31 0.270895
\(439\) 3.64373e31 0.711168 0.355584 0.934644i \(-0.384282\pi\)
0.355584 + 0.934644i \(0.384282\pi\)
\(440\) −5.16576e31 −0.981075
\(441\) 2.09443e30 0.0387082
\(442\) 1.27536e32i 2.29385i
\(443\) −2.21298e31 −0.387376 −0.193688 0.981063i \(-0.562045\pi\)
−0.193688 + 0.981063i \(0.562045\pi\)
\(444\) 1.74286e31i 0.296939i
\(445\) 1.83540e31 0.304376
\(446\) −4.53666e31 −0.732349
\(447\) 9.20781e31i 1.44699i
\(448\) 1.45268e31i 0.222247i
\(449\) 2.29892e31 0.342427 0.171213 0.985234i \(-0.445231\pi\)
0.171213 + 0.985234i \(0.445231\pi\)
\(450\) 8.67719e30 0.125843
\(451\) 1.30049e32i 1.83649i
\(452\) 4.21669e31i 0.579844i
\(453\) 1.06910e32 1.43166
\(454\) 6.36582e31i 0.830202i
\(455\) −1.13885e32 −1.44653
\(456\) 1.20755e31i 0.149392i
\(457\) 8.38802e31i 1.01080i −0.862885 0.505400i \(-0.831345\pi\)
0.862885 0.505400i \(-0.168655\pi\)
\(458\) 1.50874e32i 1.77104i
\(459\) 1.22613e32i 1.40212i
\(460\) −4.17379e31 + 3.50993e31i −0.464982 + 0.391025i
\(461\) 2.07184e31 0.224877 0.112438 0.993659i \(-0.464134\pi\)
0.112438 + 0.993659i \(0.464134\pi\)
\(462\) −9.66408e31 −1.02201
\(463\) −1.35648e32 −1.39779 −0.698894 0.715225i \(-0.746324\pi\)
−0.698894 + 0.715225i \(0.746324\pi\)
\(464\) −1.69464e32 −1.70161
\(465\) 1.95165e32i 1.90970i
\(466\) −2.52253e31 −0.240550
\(467\) 1.71200e32i 1.59112i 0.605876 + 0.795559i \(0.292823\pi\)
−0.605876 + 0.795559i \(0.707177\pi\)
\(468\) 6.47376e30 0.0586416
\(469\) 1.63778e32 1.44604
\(470\) 5.87813e31i 0.505900i
\(471\) 7.94895e31i 0.666897i
\(472\) −8.61389e31 −0.704523
\(473\) −4.30028e30 −0.0342897
\(474\) 1.93320e32i 1.50293i
\(475\) 2.73181e31i 0.207075i
\(476\) 6.91704e31 0.511254
\(477\) 3.56066e30i 0.0256632i
\(478\) 7.48371e31 0.525995
\(479\) 6.81488e31i 0.467124i 0.972342 + 0.233562i \(0.0750381\pi\)
−0.972342 + 0.233562i \(0.924962\pi\)
\(480\) 1.79418e32i 1.19942i
\(481\) 1.29426e32i 0.843877i
\(482\) 2.23318e32i 1.42023i
\(483\) 1.03363e32 8.69224e31i 0.641206 0.539220i
\(484\) −2.87251e30 −0.0173827
\(485\) 2.10432e32 1.24226
\(486\) −4.38247e31 −0.252397
\(487\) 7.76729e31 0.436437 0.218219 0.975900i \(-0.429975\pi\)
0.218219 + 0.975900i \(0.429975\pi\)
\(488\) 1.37803e32i 0.755478i
\(489\) 7.92975e31 0.424183
\(490\) 1.18178e32i 0.616856i
\(491\) −3.07491e32 −1.56623 −0.783114 0.621878i \(-0.786370\pi\)
−0.783114 + 0.621878i \(0.786370\pi\)
\(492\) 1.63926e32 0.814831
\(493\) 4.20107e32i 2.03796i
\(494\) 6.77417e31i 0.320725i
\(495\) −3.30167e31 −0.152571
\(496\) 3.55084e32 1.60159
\(497\) 7.05198e31i 0.310480i
\(498\) 5.16339e32i 2.21913i
\(499\) −1.86709e32 −0.783357 −0.391679 0.920102i \(-0.628105\pi\)
−0.391679 + 0.920102i \(0.628105\pi\)
\(500\) 1.01975e30i 0.00417688i
\(501\) 1.31012e32 0.523912
\(502\) 1.17886e32i 0.460276i
\(503\) 3.74767e32i 1.42871i −0.699782 0.714357i \(-0.746720\pi\)
0.699782 0.714357i \(-0.253280\pi\)
\(504\) 1.54482e31i 0.0575059i
\(505\) 4.16752e32i 1.51489i
\(506\) 2.63017e32 2.21183e32i 0.933635 0.785137i
\(507\) −1.98452e32 −0.687955
\(508\) −7.98298e31 −0.270272
\(509\) 1.69375e32 0.560062 0.280031 0.959991i \(-0.409655\pi\)
0.280031 + 0.959991i \(0.409655\pi\)
\(510\) 8.19885e32 2.64796
\(511\) 5.43920e31i 0.171587i
\(512\) −5.11403e31 −0.157588
\(513\) 6.51270e31i 0.196043i
\(514\) 3.49657e32 1.02822
\(515\) −6.99897e32 −2.01070
\(516\) 5.42050e30i 0.0152140i
\(517\) 1.11446e32i 0.305617i
\(518\) 2.33311e32 0.625142
\(519\) 2.47597e32 0.648242
\(520\) 4.83542e32i 1.23707i
\(521\) 2.24702e31i 0.0561765i 0.999605 + 0.0280882i \(0.00894194\pi\)
−0.999605 + 0.0280882i \(0.991058\pi\)
\(522\) −7.08780e31 −0.173167
\(523\) 5.14923e32i 1.22948i 0.788729 + 0.614741i \(0.210739\pi\)
−0.788729 + 0.614741i \(0.789261\pi\)
\(524\) 1.13603e31 0.0265103
\(525\) 3.64799e32i 0.832037i
\(526\) 9.52973e32i 2.12447i
\(527\) 8.80266e32i 1.91817i
\(528\) 6.27039e32i 1.33563i
\(529\) −8.23703e31 + 4.73134e32i −0.171515 + 0.985181i
\(530\) −2.00910e32 −0.408970
\(531\) −5.50552e31 −0.109563
\(532\) −3.67404e31 −0.0714832
\(533\) −1.21732e33 −2.31569
\(534\) 1.45789e32i 0.271163i
\(535\) 7.59459e32 1.38121
\(536\) 6.95382e32i 1.23665i
\(537\) −3.53147e32 −0.614136
\(538\) −6.06940e32 −1.03219
\(539\) 2.24058e32i 0.372645i
\(540\) 3.51181e32i 0.571224i
\(541\) −2.41100e31 −0.0383556 −0.0191778 0.999816i \(-0.506105\pi\)
−0.0191778 + 0.999816i \(0.506105\pi\)
\(542\) −8.41319e32 −1.30909
\(543\) 3.26901e31i 0.0497528i
\(544\) 8.09242e32i 1.20473i
\(545\) 4.79996e32 0.699004
\(546\) 9.04607e32i 1.28869i
\(547\) −1.82567e32 −0.254433 −0.127216 0.991875i \(-0.540604\pi\)
−0.127216 + 0.991875i \(0.540604\pi\)
\(548\) 4.14903e32i 0.565692i
\(549\) 8.80764e31i 0.117487i
\(550\) 9.28270e32i 1.21150i
\(551\) 2.23143e32i 0.284947i
\(552\) −3.69063e32 4.38866e32i −0.461139 0.548357i
\(553\) 7.78614e32 0.951965
\(554\) −1.61360e33 −1.93054
\(555\) 8.32032e32 0.974146
\(556\) −7.24133e32 −0.829699
\(557\) 8.49114e32i 0.952146i −0.879406 0.476073i \(-0.842060\pi\)
0.879406 0.476073i \(-0.157940\pi\)
\(558\) 1.48514e32 0.162988
\(559\) 4.02529e31i 0.0432369i
\(560\) 1.33203e33 1.40042
\(561\) −1.55445e33 −1.59964
\(562\) 9.25653e32i 0.932422i
\(563\) 1.15356e33i 1.13747i 0.822520 + 0.568737i \(0.192568\pi\)
−0.822520 + 0.568737i \(0.807432\pi\)
\(564\) 1.40477e32 0.135599
\(565\) 2.01303e33 1.90225
\(566\) 1.04799e32i 0.0969531i
\(567\) 9.62881e32i 0.872119i
\(568\) −2.99419e32 −0.265522
\(569\) 1.87491e33i 1.62792i −0.580923 0.813959i \(-0.697308\pi\)
0.580923 0.813959i \(-0.302692\pi\)
\(570\) −4.35488e32 −0.370235
\(571\) 1.61732e32i 0.134636i −0.997732 0.0673181i \(-0.978556\pi\)
0.997732 0.0673181i \(-0.0214442\pi\)
\(572\) 6.92550e32i 0.564546i
\(573\) 9.77548e32i 0.780337i
\(574\) 2.19443e33i 1.71546i
\(575\) −8.34921e32 9.92835e32i −0.639192 0.760086i
\(576\) 3.94221e31 0.0295577
\(577\) 9.50928e31 0.0698294 0.0349147 0.999390i \(-0.488884\pi\)
0.0349147 + 0.999390i \(0.488884\pi\)
\(578\) 2.03514e33 1.46373
\(579\) −1.16346e33 −0.819616
\(580\) 1.20324e33i 0.830267i
\(581\) 2.07960e33 1.40561
\(582\) 1.67150e33i 1.10670i
\(583\) 3.80913e32 0.247060
\(584\) 2.30943e32 0.146740
\(585\) 3.09054e32i 0.192381i
\(586\) 6.64071e32i 0.404989i
\(587\) 3.09527e32 0.184944 0.0924722 0.995715i \(-0.470523\pi\)
0.0924722 + 0.995715i \(0.470523\pi\)
\(588\) −2.82425e32 −0.165339
\(589\) 4.67560e32i 0.268197i
\(590\) 3.10649e33i 1.74600i
\(591\) −2.00920e33 −1.10655
\(592\) 1.51381e33i 0.816977i
\(593\) 1.65481e33 0.875169 0.437584 0.899177i \(-0.355834\pi\)
0.437584 + 0.899177i \(0.355834\pi\)
\(594\) 2.21302e33i 1.14696i
\(595\) 3.30216e33i 1.67724i
\(596\) 1.18950e33i 0.592118i
\(597\) 9.57450e32i 0.467115i
\(598\) −2.07039e33 2.46197e33i −0.990004 1.17725i
\(599\) −5.91810e32 −0.277371 −0.138685 0.990337i \(-0.544288\pi\)
−0.138685 + 0.990337i \(0.544288\pi\)
\(600\) 1.54890e33 0.711555
\(601\) −3.18189e33 −1.43282 −0.716410 0.697680i \(-0.754216\pi\)
−0.716410 + 0.697680i \(0.754216\pi\)
\(602\) 7.25626e31 0.0320298
\(603\) 4.44450e32i 0.192316i
\(604\) −1.38110e33 −0.585844
\(605\) 1.37132e32i 0.0570261i
\(606\) −3.31034e33 −1.34959
\(607\) −9.58330e32 −0.383046 −0.191523 0.981488i \(-0.561343\pi\)
−0.191523 + 0.981488i \(0.561343\pi\)
\(608\) 4.29835e32i 0.168445i
\(609\) 2.97980e33i 1.14493i
\(610\) 4.96970e33 1.87229
\(611\) −1.04319e33 −0.385362
\(612\) 1.87711e32i 0.0679942i
\(613\) 1.96209e33i 0.696937i −0.937320 0.348469i \(-0.886702\pi\)
0.937320 0.348469i \(-0.113298\pi\)
\(614\) −2.08464e33 −0.726122
\(615\) 7.82575e33i 2.67316i
\(616\) −1.65262e33 −0.553612
\(617\) 3.67411e33i 1.20706i 0.797339 + 0.603531i \(0.206240\pi\)
−0.797339 + 0.603531i \(0.793760\pi\)
\(618\) 5.55941e33i 1.79130i
\(619\) 4.94029e33i 1.56122i −0.625018 0.780610i \(-0.714908\pi\)
0.625018 0.780610i \(-0.285092\pi\)
\(620\) 2.52121e33i 0.781462i
\(621\) 1.99047e33 + 2.36694e33i 0.605141 + 0.719595i
\(622\) 3.30825e33 0.986538
\(623\) 5.87178e32 0.171757
\(624\) 5.86941e33 1.68414
\(625\) −3.57697e33 −1.00683
\(626\) 6.57713e33i 1.81612i
\(627\) 8.25658e32 0.223661
\(628\) 1.02687e33i 0.272898i
\(629\) 3.75278e33 0.978464
\(630\) 5.57121e32 0.142516
\(631\) 1.87085e33i 0.469555i 0.972049 + 0.234777i \(0.0754361\pi\)
−0.972049 + 0.234777i \(0.924564\pi\)
\(632\) 3.30591e33i 0.814117i
\(633\) −5.70934e33 −1.37956
\(634\) 6.89105e33 1.63386
\(635\) 3.81103e33i 0.886661i
\(636\) 4.80140e32i 0.109618i
\(637\) 2.09730e33 0.469880
\(638\) 7.58240e33i 1.66709i
\(639\) −1.91372e32 −0.0412923
\(640\) 7.61034e33i 1.61155i
\(641\) 6.05639e33i 1.25869i −0.777127 0.629343i \(-0.783324\pi\)
0.777127 0.629343i \(-0.216676\pi\)
\(642\) 6.03253e33i 1.23049i
\(643\) 2.38142e33i 0.476765i −0.971171 0.238382i \(-0.923383\pi\)
0.971171 0.238382i \(-0.0766171\pi\)
\(644\) −1.33527e33 + 1.12289e33i −0.262385 + 0.220652i
\(645\) 2.58772e32 0.0499114
\(646\) −1.96421e33 −0.371876
\(647\) 3.94305e33 0.732792 0.366396 0.930459i \(-0.380592\pi\)
0.366396 + 0.930459i \(0.380592\pi\)
\(648\) −4.08829e33 −0.745833
\(649\) 5.88971e33i 1.05477i
\(650\) 8.68908e33 1.52761
\(651\) 6.24369e33i 1.07763i
\(652\) −1.02439e33 −0.173578
\(653\) −9.53515e33 −1.58624 −0.793121 0.609064i \(-0.791545\pi\)
−0.793121 + 0.609064i \(0.791545\pi\)
\(654\) 3.81270e33i 0.622730i
\(655\) 5.42334e32i 0.0869704i
\(656\) 1.42382e34 2.24187
\(657\) 1.47606e32 0.0228202
\(658\) 1.88052e33i 0.285475i
\(659\) 7.94767e33i 1.18472i 0.805674 + 0.592359i \(0.201803\pi\)
−0.805674 + 0.592359i \(0.798197\pi\)
\(660\) 4.45216e33 0.651694
\(661\) 4.04531e33i 0.581480i −0.956802 0.290740i \(-0.906099\pi\)
0.956802 0.290740i \(-0.0939014\pi\)
\(662\) −4.18292e33 −0.590450
\(663\) 1.45505e34i 2.01704i
\(664\) 8.82976e33i 1.20208i
\(665\) 1.75396e33i 0.234510i
\(666\) 6.33147e32i 0.0831408i
\(667\) 6.81990e33 + 8.10979e33i 0.879565 + 1.04592i
\(668\) −1.69246e33 −0.214388
\(669\) −5.17583e33 −0.643972
\(670\) −2.50781e34 −3.06476
\(671\) −9.42225e33 −1.13106
\(672\) 5.73991e33i 0.676821i
\(673\) 1.57655e34 1.82611 0.913056 0.407834i \(-0.133716\pi\)
0.913056 + 0.407834i \(0.133716\pi\)
\(674\) 9.06676e33i 1.03165i
\(675\) −8.35369e33 −0.933755
\(676\) 2.56367e33 0.281515
\(677\) 1.61422e33i 0.174140i 0.996202 + 0.0870698i \(0.0277503\pi\)
−0.996202 + 0.0870698i \(0.972250\pi\)
\(678\) 1.59899e34i 1.69468i
\(679\) 6.73211e33 0.700994
\(680\) 1.40206e34 1.43437
\(681\) 7.26270e33i 0.730016i
\(682\) 1.58877e34i 1.56909i
\(683\) 1.25325e34 1.21616 0.608079 0.793876i \(-0.291940\pi\)
0.608079 + 0.793876i \(0.291940\pi\)
\(684\) 9.97039e31i 0.00950690i
\(685\) −1.98073e34 −1.85583
\(686\) 1.41293e34i 1.30086i
\(687\) 1.72130e34i 1.55731i
\(688\) 4.70811e32i 0.0418587i
\(689\) 3.56554e33i 0.311526i
\(690\) −1.58271e34 + 1.33098e34i −1.35898 + 1.14283i
\(691\) −2.54129e33 −0.214446 −0.107223 0.994235i \(-0.534196\pi\)
−0.107223 + 0.994235i \(0.534196\pi\)
\(692\) −3.19854e33 −0.265265
\(693\) −1.05627e33 −0.0860944
\(694\) 2.35601e34 1.88739
\(695\) 3.45697e34i 2.72194i
\(696\) −1.26519e34 −0.979140
\(697\) 3.52971e34i 2.68501i
\(698\) −7.88075e33 −0.589254
\(699\) −2.87793e33 −0.211521
\(700\) 4.71261e33i 0.340474i
\(701\) 1.95400e34i 1.38774i 0.720099 + 0.693872i \(0.244096\pi\)
−0.720099 + 0.693872i \(0.755904\pi\)
\(702\) −2.07150e34 −1.44624
\(703\) −1.99332e33 −0.136808
\(704\) 4.21730e33i 0.284553i
\(705\) 6.70630e33i 0.444850i
\(706\) 2.20513e34 1.43806
\(707\) 1.33327e34i 0.854840i
\(708\) 7.42396e33 0.467990
\(709\) 1.00172e34i 0.620859i 0.950596 + 0.310429i \(0.100473\pi\)
−0.950596 + 0.310429i \(0.899527\pi\)
\(710\) 1.07982e34i 0.658037i
\(711\) 2.11296e33i 0.126606i
\(712\) 2.49310e33i 0.146886i
\(713\) −1.42900e34 1.69928e34i −0.827862 0.984441i
\(714\) 2.62297e34 1.49422
\(715\) −3.30620e34 −1.85207
\(716\) 4.56208e33 0.251308
\(717\) 8.53808e33 0.462520
\(718\) 1.51164e34i 0.805292i
\(719\) −2.44640e34 −1.28168 −0.640841 0.767674i \(-0.721414\pi\)
−0.640841 + 0.767674i \(0.721414\pi\)
\(720\) 3.61479e33i 0.186249i
\(721\) −2.23910e34 −1.13462
\(722\) −2.29542e34 −1.14397
\(723\) 2.54781e34i 1.24884i
\(724\) 4.22302e32i 0.0203592i
\(725\) −2.86220e34 −1.35720
\(726\) −1.08926e33 −0.0508035
\(727\) 1.39350e33i 0.0639282i 0.999489 + 0.0319641i \(0.0101762\pi\)
−0.999489 + 0.0319641i \(0.989824\pi\)
\(728\) 1.54694e34i 0.698067i
\(729\) 1.96625e34 0.872787
\(730\) 8.32864e33i 0.363664i
\(731\) 1.16716e33 0.0501327
\(732\) 1.18767e34i 0.501838i
\(733\) 1.49456e34i 0.621249i −0.950533 0.310625i \(-0.899462\pi\)
0.950533 0.310625i \(-0.100538\pi\)
\(734\) 9.68042e33i 0.395860i
\(735\) 1.34828e34i 0.542416i
\(736\) 1.31370e34 + 1.56217e34i 0.519951 + 0.618293i
\(737\) 4.75465e34 1.85143
\(738\) 5.95512e33 0.228147
\(739\) 2.27194e34 0.856373 0.428187 0.903690i \(-0.359153\pi\)
0.428187 + 0.903690i \(0.359153\pi\)
\(740\) −1.07485e34 −0.398627
\(741\) 7.72859e33i 0.282021i
\(742\) −6.42749e33 −0.230778
\(743\) 4.62470e34i 1.63387i −0.576728 0.816936i \(-0.695671\pi\)
0.576728 0.816936i \(-0.304329\pi\)
\(744\) 2.65100e34 0.921584
\(745\) 5.67859e34 1.94252
\(746\) 5.34367e34i 1.79876i
\(747\) 5.64350e33i 0.186940i
\(748\) 2.00809e34 0.654583
\(749\) 2.42965e34 0.779404
\(750\) 3.86691e32i 0.0122076i
\(751\) 1.16235e34i 0.361126i −0.983563 0.180563i \(-0.942208\pi\)
0.983563 0.180563i \(-0.0577920\pi\)
\(752\) 1.22015e34 0.373077
\(753\) 1.34495e34i 0.404731i
\(754\) −7.09752e34 −2.10209
\(755\) 6.59329e34i 1.92194i
\(756\) 1.12350e34i 0.322337i
\(757\) 8.00591e33i 0.226079i −0.993590 0.113040i \(-0.963941\pi\)
0.993590 0.113040i \(-0.0360587\pi\)
\(758\) 1.76799e34i 0.491417i
\(759\) 3.00073e34 2.52345e34i 0.820967 0.690389i
\(760\) −7.44715e33 −0.200552
\(761\) 1.12708e34 0.298771 0.149385 0.988779i \(-0.452270\pi\)
0.149385 + 0.988779i \(0.452270\pi\)
\(762\) −3.02718e34 −0.789910
\(763\) 1.53560e34 0.394442
\(764\) 1.26283e34i 0.319319i
\(765\) 8.96120e33 0.223064
\(766\) 3.61659e34i 0.886244i
\(767\) −5.51307e34 −1.32999
\(768\) −4.80975e34 −1.14232
\(769\) 6.45411e34i 1.50911i −0.656238 0.754554i \(-0.727853\pi\)
0.656238 0.754554i \(-0.272147\pi\)
\(770\) 5.95998e34i 1.37201i
\(771\) 3.98920e34 0.904134
\(772\) 1.50300e34 0.335392
\(773\) 6.98520e34i 1.53471i 0.641225 + 0.767353i \(0.278427\pi\)
−0.641225 + 0.767353i \(0.721573\pi\)
\(774\) 1.96916e32i 0.00425980i
\(775\) 5.99729e34 1.27742
\(776\) 2.85838e34i 0.599487i
\(777\) 2.66183e34 0.549702
\(778\) 5.65899e34i 1.15076i
\(779\) 1.87483e34i 0.375416i
\(780\) 4.16745e34i 0.821742i
\(781\) 2.04727e34i 0.397523i
\(782\) −7.13864e34 + 6.00321e34i −1.36501 + 1.14790i
\(783\) 6.82356e34 1.28490
\(784\) −2.45307e34 −0.454902
\(785\) 4.90224e34 0.895279
\(786\) 4.30787e33 0.0774803
\(787\) 3.08130e34i 0.545805i −0.962042 0.272903i \(-0.912016\pi\)
0.962042 0.272903i \(-0.0879837\pi\)
\(788\) 2.59555e34 0.452809
\(789\) 1.08724e35i 1.86810i
\(790\) −1.19224e35 −2.01761
\(791\) 6.44005e34 1.07342
\(792\) 4.48480e33i 0.0736276i
\(793\) 8.81971e34i 1.42619i
\(794\) 7.11507e34 1.13327
\(795\) −2.29216e34 −0.359617
\(796\) 1.23687e34i 0.191146i
\(797\) 3.62352e34i 0.551608i 0.961214 + 0.275804i \(0.0889441\pi\)
−0.961214 + 0.275804i \(0.911056\pi\)
\(798\) −1.39321e34 −0.208921
\(799\) 3.02479e34i 0.446822i
\(800\) −5.51340e34 −0.802305
\(801\) 1.59345e33i 0.0228428i
\(802\) 5.64227e34i 0.796822i
\(803\) 1.57906e34i 0.219691i
\(804\) 5.99322e34i 0.821462i
\(805\) −5.36063e34 6.37452e34i −0.723878 0.860789i
\(806\) 1.48717e35 1.97852
\(807\) −6.92452e34 −0.907626
\(808\) −5.66092e34 −0.731055
\(809\) −1.03164e35 −1.31264 −0.656319 0.754483i \(-0.727888\pi\)
−0.656319 + 0.754483i \(0.727888\pi\)
\(810\) 1.47439e35i 1.84838i
\(811\) 1.13149e35 1.39766 0.698831 0.715287i \(-0.253704\pi\)
0.698831 + 0.715287i \(0.253704\pi\)
\(812\) 3.84940e34i 0.468513i
\(813\) −9.59853e34 −1.15111
\(814\) 6.77329e34 0.800400
\(815\) 4.89039e34i 0.569446i
\(816\) 1.70187e35i 1.95274i
\(817\) −6.19944e32 −0.00700951
\(818\) 8.19066e34 0.912597
\(819\) 9.88720e33i 0.108559i
\(820\) 1.01096e35i 1.09387i
\(821\) −3.93906e34 −0.420024 −0.210012 0.977699i \(-0.567350\pi\)
−0.210012 + 0.977699i \(0.567350\pi\)
\(822\) 1.57333e35i 1.65332i
\(823\) 1.69461e34 0.175498 0.0877490 0.996143i \(-0.472033\pi\)
0.0877490 + 0.996143i \(0.472033\pi\)
\(824\) 9.50699e34i 0.970323i
\(825\) 1.05905e35i 1.06530i
\(826\) 9.93824e34i 0.985255i
\(827\) 1.51125e35i 1.47662i 0.674460 + 0.738312i \(0.264377\pi\)
−0.674460 + 0.738312i \(0.735623\pi\)
\(828\) 3.04724e33 + 3.62359e33i 0.0293456 + 0.0348959i
\(829\) 9.70828e34 0.921485 0.460742 0.887534i \(-0.347583\pi\)
0.460742 + 0.887534i \(0.347583\pi\)
\(830\) −3.18434e35 −2.97908
\(831\) −1.84094e35 −1.69757
\(832\) 3.94761e34 0.358802
\(833\) 6.08125e34i 0.544820i
\(834\) −2.74594e35 −2.42492
\(835\) 8.07971e34i 0.703328i
\(836\) −1.06661e34 −0.0915233
\(837\) −1.42977e35 −1.20937
\(838\) 7.40822e34i 0.617712i
\(839\) 4.32420e34i 0.355437i −0.984081 0.177718i \(-0.943128\pi\)
0.984081 0.177718i \(-0.0568716\pi\)
\(840\) 9.94475e34 0.805828
\(841\) 1.08609e35 0.867588
\(842\) 1.43359e35i 1.12896i
\(843\) 1.05607e35i 0.819900i
\(844\) 7.37553e34 0.564526
\(845\) 1.22388e35i 0.923548i
\(846\) 5.10326e33 0.0379667
\(847\) 4.38711e33i 0.0321793i
\(848\) 4.17038e34i 0.301596i
\(849\) 1.19565e34i 0.0852531i
\(850\) 2.51945e35i 1.77125i
\(851\) −7.24440e34 + 6.09215e34i −0.502167 + 0.422295i
\(852\) 2.58058e34 0.176377
\(853\) 1.01128e35 0.681527 0.340764 0.940149i \(-0.389314\pi\)
0.340764 + 0.940149i \(0.389314\pi\)
\(854\) 1.58990e35 1.05651
\(855\) −4.75981e33 −0.0311886
\(856\) 1.03160e35i 0.666543i
\(857\) −2.87828e35 −1.83385 −0.916924 0.399061i \(-0.869336\pi\)
−0.916924 + 0.399061i \(0.869336\pi\)
\(858\) 2.62618e35i 1.64997i
\(859\) 1.39068e35 0.861608 0.430804 0.902446i \(-0.358230\pi\)
0.430804 + 0.902446i \(0.358230\pi\)
\(860\) −3.34290e33 −0.0204241
\(861\) 2.50361e35i 1.50844i
\(862\) 1.81735e35i 1.07982i
\(863\) 1.46272e35 0.857099 0.428549 0.903518i \(-0.359025\pi\)
0.428549 + 0.903518i \(0.359025\pi\)
\(864\) 1.31441e35 0.759565
\(865\) 1.52697e35i 0.870235i
\(866\) 2.68565e35i 1.50950i
\(867\) 2.32187e35 1.28709
\(868\) 8.06581e34i 0.440972i
\(869\) 2.26040e35 1.21885
\(870\) 4.56275e35i 2.42658i
\(871\) 4.45059e35i 2.33453i
\(872\) 6.51999e34i 0.337325i
\(873\) 1.82692e34i 0.0932286i
\(874\) 3.79174e34 3.18865e34i 0.190854 0.160498i
\(875\) −1.55743e33 −0.00773236
\(876\) −1.99040e34 −0.0974746
\(877\) −7.54154e34 −0.364305 −0.182152 0.983270i \(-0.558306\pi\)
−0.182152 + 0.983270i \(0.558306\pi\)
\(878\) −1.78495e35 −0.850534
\(879\) 7.57632e34i 0.356116i
\(880\) 3.86704e35 1.79303
\(881\) 3.20670e35i 1.46672i 0.679839 + 0.733361i \(0.262050\pi\)
−0.679839 + 0.733361i \(0.737950\pi\)
\(882\) −1.02599e34 −0.0462937
\(883\) 4.25303e34 0.189308 0.0946542 0.995510i \(-0.469825\pi\)
0.0946542 + 0.995510i \(0.469825\pi\)
\(884\) 1.87968e35i 0.825385i
\(885\) 3.54416e35i 1.53530i
\(886\) 1.08407e35 0.463289
\(887\) −3.55528e35 −1.49896 −0.749481 0.662026i \(-0.769697\pi\)
−0.749481 + 0.662026i \(0.769697\pi\)
\(888\) 1.13018e35i 0.470103i
\(889\) 1.21922e35i 0.500335i
\(890\) −8.99103e34 −0.364024
\(891\) 2.79535e35i 1.11662i
\(892\) 6.68632e34 0.263517
\(893\) 1.60664e34i 0.0624743i
\(894\) 4.51062e35i 1.73056i
\(895\) 2.17791e35i 0.824449i
\(896\) 2.43469e35i 0.909385i
\(897\) −2.36208e35 2.80884e35i −0.870534 1.03518i
\(898\) −1.12617e35 −0.409531
\(899\) −4.89878e35 −1.75781
\(900\) −1.27888e34 −0.0452814
\(901\) −1.03385e35 −0.361211
\(902\) 6.37068e35i 2.19638i
\(903\) 8.27859e33 0.0281646
\(904\) 2.73438e35i 0.917989i
\(905\) 2.01604e34 0.0667909
\(906\) −5.23718e35 −1.71222
\(907\) 4.63541e35i 1.49555i 0.663952 + 0.747775i \(0.268878\pi\)
−0.663952 + 0.747775i \(0.731122\pi\)
\(908\) 9.38220e34i 0.298727i
\(909\) −3.61815e34 −0.113689
\(910\) 5.57885e35 1.73001
\(911\) 5.22560e35i 1.59925i −0.600501 0.799624i \(-0.705032\pi\)
0.600501 0.799624i \(-0.294968\pi\)
\(912\) 9.03961e34i 0.273031i
\(913\) 6.03731e35 1.79968
\(914\) 4.10902e35i 1.20888i
\(915\) 5.66988e35 1.64634
\(916\) 2.22364e35i 0.637262i
\(917\) 1.73503e34i 0.0490766i
\(918\) 6.00644e35i 1.67689i
\(919\) 4.54530e35i 1.25250i 0.779623 + 0.626249i \(0.215410\pi\)
−0.779623 + 0.626249i \(0.784590\pi\)
\(920\) −2.70655e35 + 2.27607e35i −0.736144 + 0.619057i
\(921\) −2.37834e35 −0.638496
\(922\) −1.01493e35 −0.268945
\(923\) −1.91635e35 −0.501249
\(924\) 1.42433e35 0.367745
\(925\) 2.55678e35i 0.651618i
\(926\) 6.64496e35 1.67171
\(927\) 6.07635e34i 0.150899i
\(928\) 4.50352e35 1.10402
\(929\) −3.53672e35 −0.855878 −0.427939 0.903808i \(-0.640760\pi\)
−0.427939 + 0.903808i \(0.640760\pi\)
\(930\) 9.56050e35i 2.28394i
\(931\) 3.23010e34i 0.0761763i
\(932\) 3.71781e34 0.0865557
\(933\) 3.77435e35 0.867486
\(934\) 8.38657e35i 1.90293i
\(935\) 9.58653e35i 2.14744i
\(936\) 4.19800e34 0.0928394
\(937\) 7.54184e34i 0.164665i 0.996605 + 0.0823327i \(0.0262370\pi\)
−0.996605 + 0.0823327i \(0.973763\pi\)
\(938\) −8.02295e35 −1.72942
\(939\) 7.50378e35i 1.59696i
\(940\) 8.66343e34i 0.182035i
\(941\) 4.59074e35i 0.952374i −0.879344 0.476187i \(-0.842019\pi\)
0.879344 0.476187i \(-0.157981\pi\)
\(942\) 3.89394e35i 0.797588i
\(943\) −5.73003e35 6.81379e35i −1.15882 1.37800i
\(944\) 6.44827e35 1.28760
\(945\) −5.36351e35 −1.05747
\(946\) 2.10657e34 0.0410093
\(947\) −2.04328e35 −0.392762 −0.196381 0.980528i \(-0.562919\pi\)
−0.196381 + 0.980528i \(0.562919\pi\)
\(948\) 2.84923e35i 0.540789i
\(949\) 1.47808e35 0.277015
\(950\) 1.33823e35i 0.247655i
\(951\) 7.86193e35 1.43669
\(952\) 4.48545e35 0.809400
\(953\) 3.60033e35i 0.641545i 0.947156 + 0.320772i \(0.103942\pi\)
−0.947156 + 0.320772i \(0.896058\pi\)
\(954\) 1.74426e34i 0.0306923i
\(955\) 6.02868e35 1.04757
\(956\) −1.10298e35 −0.189266
\(957\) 8.65068e35i 1.46591i
\(958\) 3.33839e35i 0.558665i
\(959\) −6.33671e35 −1.04723
\(960\) 2.53778e35i 0.414190i
\(961\) 4.06047e35 0.654480
\(962\) 6.34015e35i 1.00925i
\(963\) 6.59345e34i 0.103657i
\(964\) 3.29135e35i 0.511034i
\(965\) 7.17526e35i 1.10030i
\(966\) −5.06340e35 + 4.25805e35i −0.766862 + 0.644889i
\(967\) 2.25322e35 0.337043 0.168521 0.985698i \(-0.446101\pi\)
0.168521 + 0.985698i \(0.446101\pi\)
\(968\) −1.86272e34 −0.0275197
\(969\) −2.24095e35 −0.327000
\(970\) −1.03084e36 −1.48570
\(971\) 5.90223e35i 0.840205i 0.907477 + 0.420103i \(0.138006\pi\)
−0.907477 + 0.420103i \(0.861994\pi\)
\(972\) 6.45907e34 0.0908186
\(973\) 1.10595e36i 1.53597i
\(974\) −3.80495e35 −0.521965
\(975\) 9.91329e35 1.34327
\(976\) 1.03158e36i 1.38072i
\(977\) 5.69697e34i 0.0753198i 0.999291 + 0.0376599i \(0.0119904\pi\)
−0.999291 + 0.0376599i \(0.988010\pi\)
\(978\) −3.88453e35 −0.507309
\(979\) 1.70464e35 0.219908
\(980\) 1.74176e35i 0.221960i
\(981\) 4.16722e34i 0.0524588i
\(982\) 1.50630e36 1.87316
\(983\) 1.00687e36i 1.23689i −0.785826 0.618447i \(-0.787762\pi\)
0.785826 0.618447i \(-0.212238\pi\)
\(984\) 1.06300e36 1.29001
\(985\) 1.23910e36i 1.48550i
\(986\) 2.05797e36i 2.43734i
\(987\) 2.14547e35i 0.251025i
\(988\) 9.98405e34i 0.115405i
\(989\) −2.25309e34 + 1.89473e34i −0.0257290 + 0.0216367i
\(990\) 1.61738e35 0.182470
\(991\) −1.09414e36 −1.21952 −0.609759 0.792587i \(-0.708734\pi\)
−0.609759 + 0.792587i \(0.708734\pi\)
\(992\) −9.43640e35 −1.03912
\(993\) −4.77225e35 −0.519197
\(994\) 3.45454e35i 0.371324i
\(995\) −5.90473e35 −0.627080
\(996\) 7.61002e35i 0.798497i
\(997\) −2.54053e35 −0.263379 −0.131690 0.991291i \(-0.542040\pi\)
−0.131690 + 0.991291i \(0.542040\pi\)
\(998\) 9.14631e35 0.936870
\(999\) 6.09542e35i 0.616905i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.10 yes 44
23.22 odd 2 inner 23.25.b.c.22.9 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.9 44 23.22 odd 2 inner
23.25.b.c.22.10 yes 44 1.1 even 1 trivial