Properties

Label 2299.2.a.p.1.6
Level $2299$
Weight $2$
Character 2299.1
Self dual yes
Analytic conductor $18.358$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-2,-1,6,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 8x^{5} + 14x^{4} + 17x^{3} - 18x^{2} - 16x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.09476\) of defining polynomial
Character \(\chi\) \(=\) 2299.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.09476 q^{2} -0.248246 q^{3} -0.801502 q^{4} +1.63186 q^{5} -0.271770 q^{6} +4.48973 q^{7} -3.06697 q^{8} -2.93837 q^{9} +1.78650 q^{10} +0.198970 q^{12} -5.57331 q^{13} +4.91517 q^{14} -0.405103 q^{15} -1.75459 q^{16} -5.40998 q^{17} -3.21681 q^{18} +1.00000 q^{19} -1.30794 q^{20} -1.11456 q^{21} -5.02103 q^{23} +0.761363 q^{24} -2.33703 q^{25} -6.10144 q^{26} +1.47418 q^{27} -3.59853 q^{28} -0.639772 q^{29} -0.443491 q^{30} -10.9928 q^{31} +4.21309 q^{32} -5.92262 q^{34} +7.32662 q^{35} +2.35511 q^{36} +2.01891 q^{37} +1.09476 q^{38} +1.38355 q^{39} -5.00487 q^{40} +9.64435 q^{41} -1.22017 q^{42} -7.62145 q^{43} -4.79502 q^{45} -5.49681 q^{46} -0.859862 q^{47} +0.435570 q^{48} +13.1577 q^{49} -2.55848 q^{50} +1.34301 q^{51} +4.46702 q^{52} +1.31006 q^{53} +1.61387 q^{54} -13.7699 q^{56} -0.248246 q^{57} -0.700397 q^{58} +5.59646 q^{59} +0.324691 q^{60} +5.11170 q^{61} -12.0344 q^{62} -13.1925 q^{63} +8.12150 q^{64} -9.09488 q^{65} +5.13847 q^{67} +4.33611 q^{68} +1.24645 q^{69} +8.02088 q^{70} +0.467163 q^{71} +9.01191 q^{72} -6.37081 q^{73} +2.21022 q^{74} +0.580158 q^{75} -0.801502 q^{76} +1.51466 q^{78} -12.2372 q^{79} -2.86325 q^{80} +8.44916 q^{81} +10.5582 q^{82} -8.18208 q^{83} +0.893320 q^{84} -8.82833 q^{85} -8.34366 q^{86} +0.158821 q^{87} -13.7128 q^{89} -5.24939 q^{90} -25.0227 q^{91} +4.02436 q^{92} +2.72891 q^{93} -0.941342 q^{94} +1.63186 q^{95} -1.04588 q^{96} +14.6114 q^{97} +14.4045 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - q^{3} + 6 q^{4} - q^{5} - 2 q^{7} - 6 q^{8} + 4 q^{9} + 3 q^{10} - 9 q^{12} - 12 q^{13} + 3 q^{14} + 5 q^{15} - 12 q^{17} + 3 q^{18} + 7 q^{19} - 17 q^{20} - 9 q^{21} - 9 q^{23} - 27 q^{24}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09476 0.774112 0.387056 0.922056i \(-0.373492\pi\)
0.387056 + 0.922056i \(0.373492\pi\)
\(3\) −0.248246 −0.143325 −0.0716625 0.997429i \(-0.522830\pi\)
−0.0716625 + 0.997429i \(0.522830\pi\)
\(4\) −0.801502 −0.400751
\(5\) 1.63186 0.729791 0.364895 0.931049i \(-0.381105\pi\)
0.364895 + 0.931049i \(0.381105\pi\)
\(6\) −0.271770 −0.110950
\(7\) 4.48973 1.69696 0.848479 0.529229i \(-0.177519\pi\)
0.848479 + 0.529229i \(0.177519\pi\)
\(8\) −3.06697 −1.08434
\(9\) −2.93837 −0.979458
\(10\) 1.78650 0.564940
\(11\) 0 0
\(12\) 0.198970 0.0574376
\(13\) −5.57331 −1.54576 −0.772880 0.634553i \(-0.781184\pi\)
−0.772880 + 0.634553i \(0.781184\pi\)
\(14\) 4.91517 1.31364
\(15\) −0.405103 −0.104597
\(16\) −1.75459 −0.438648
\(17\) −5.40998 −1.31211 −0.656056 0.754712i \(-0.727776\pi\)
−0.656056 + 0.754712i \(0.727776\pi\)
\(18\) −3.21681 −0.758210
\(19\) 1.00000 0.229416
\(20\) −1.30794 −0.292464
\(21\) −1.11456 −0.243216
\(22\) 0 0
\(23\) −5.02103 −1.04696 −0.523478 0.852039i \(-0.675366\pi\)
−0.523478 + 0.852039i \(0.675366\pi\)
\(24\) 0.761363 0.155413
\(25\) −2.33703 −0.467405
\(26\) −6.10144 −1.19659
\(27\) 1.47418 0.283706
\(28\) −3.59853 −0.680058
\(29\) −0.639772 −0.118803 −0.0594014 0.998234i \(-0.518919\pi\)
−0.0594014 + 0.998234i \(0.518919\pi\)
\(30\) −0.443491 −0.0809699
\(31\) −10.9928 −1.97436 −0.987178 0.159622i \(-0.948972\pi\)
−0.987178 + 0.159622i \(0.948972\pi\)
\(32\) 4.21309 0.744776
\(33\) 0 0
\(34\) −5.92262 −1.01572
\(35\) 7.32662 1.23842
\(36\) 2.35511 0.392519
\(37\) 2.01891 0.331907 0.165953 0.986134i \(-0.446930\pi\)
0.165953 + 0.986134i \(0.446930\pi\)
\(38\) 1.09476 0.177593
\(39\) 1.38355 0.221546
\(40\) −5.00487 −0.791340
\(41\) 9.64435 1.50619 0.753097 0.657909i \(-0.228559\pi\)
0.753097 + 0.657909i \(0.228559\pi\)
\(42\) −1.22017 −0.188277
\(43\) −7.62145 −1.16226 −0.581130 0.813810i \(-0.697389\pi\)
−0.581130 + 0.813810i \(0.697389\pi\)
\(44\) 0 0
\(45\) −4.79502 −0.714799
\(46\) −5.49681 −0.810461
\(47\) −0.859862 −0.125424 −0.0627119 0.998032i \(-0.519975\pi\)
−0.0627119 + 0.998032i \(0.519975\pi\)
\(48\) 0.435570 0.0628691
\(49\) 13.1577 1.87967
\(50\) −2.55848 −0.361824
\(51\) 1.34301 0.188058
\(52\) 4.46702 0.619465
\(53\) 1.31006 0.179951 0.0899755 0.995944i \(-0.471321\pi\)
0.0899755 + 0.995944i \(0.471321\pi\)
\(54\) 1.61387 0.219620
\(55\) 0 0
\(56\) −13.7699 −1.84008
\(57\) −0.248246 −0.0328810
\(58\) −0.700397 −0.0919666
\(59\) 5.59646 0.728597 0.364299 0.931282i \(-0.381309\pi\)
0.364299 + 0.931282i \(0.381309\pi\)
\(60\) 0.324691 0.0419175
\(61\) 5.11170 0.654486 0.327243 0.944940i \(-0.393880\pi\)
0.327243 + 0.944940i \(0.393880\pi\)
\(62\) −12.0344 −1.52837
\(63\) −13.1925 −1.66210
\(64\) 8.12150 1.01519
\(65\) −9.09488 −1.12808
\(66\) 0 0
\(67\) 5.13847 0.627764 0.313882 0.949462i \(-0.398370\pi\)
0.313882 + 0.949462i \(0.398370\pi\)
\(68\) 4.33611 0.525830
\(69\) 1.24645 0.150055
\(70\) 8.02088 0.958679
\(71\) 0.467163 0.0554420 0.0277210 0.999616i \(-0.491175\pi\)
0.0277210 + 0.999616i \(0.491175\pi\)
\(72\) 9.01191 1.06206
\(73\) −6.37081 −0.745647 −0.372824 0.927902i \(-0.621610\pi\)
−0.372824 + 0.927902i \(0.621610\pi\)
\(74\) 2.21022 0.256933
\(75\) 0.580158 0.0669908
\(76\) −0.801502 −0.0919386
\(77\) 0 0
\(78\) 1.51466 0.171501
\(79\) −12.2372 −1.37679 −0.688394 0.725337i \(-0.741684\pi\)
−0.688394 + 0.725337i \(0.741684\pi\)
\(80\) −2.86325 −0.320121
\(81\) 8.44916 0.938796
\(82\) 10.5582 1.16596
\(83\) −8.18208 −0.898100 −0.449050 0.893507i \(-0.648237\pi\)
−0.449050 + 0.893507i \(0.648237\pi\)
\(84\) 0.893320 0.0974692
\(85\) −8.82833 −0.957567
\(86\) −8.34366 −0.899720
\(87\) 0.158821 0.0170274
\(88\) 0 0
\(89\) −13.7128 −1.45355 −0.726776 0.686875i \(-0.758982\pi\)
−0.726776 + 0.686875i \(0.758982\pi\)
\(90\) −5.24939 −0.553335
\(91\) −25.0227 −2.62309
\(92\) 4.02436 0.419569
\(93\) 2.72891 0.282975
\(94\) −0.941342 −0.0970921
\(95\) 1.63186 0.167426
\(96\) −1.04588 −0.106745
\(97\) 14.6114 1.48357 0.741783 0.670640i \(-0.233980\pi\)
0.741783 + 0.670640i \(0.233980\pi\)
\(98\) 14.4045 1.45507
\(99\) 0 0
\(100\) 1.87313 0.187313
\(101\) −17.5938 −1.75065 −0.875325 0.483535i \(-0.839353\pi\)
−0.875325 + 0.483535i \(0.839353\pi\)
\(102\) 1.47027 0.145578
\(103\) −6.21422 −0.612305 −0.306153 0.951982i \(-0.599042\pi\)
−0.306153 + 0.951982i \(0.599042\pi\)
\(104\) 17.0932 1.67613
\(105\) −1.81880 −0.177497
\(106\) 1.43420 0.139302
\(107\) 4.60291 0.444980 0.222490 0.974935i \(-0.428582\pi\)
0.222490 + 0.974935i \(0.428582\pi\)
\(108\) −1.18156 −0.113695
\(109\) −10.3589 −0.992205 −0.496103 0.868264i \(-0.665236\pi\)
−0.496103 + 0.868264i \(0.665236\pi\)
\(110\) 0 0
\(111\) −0.501187 −0.0475706
\(112\) −7.87763 −0.744367
\(113\) 7.36127 0.692490 0.346245 0.938144i \(-0.387457\pi\)
0.346245 + 0.938144i \(0.387457\pi\)
\(114\) −0.271770 −0.0254536
\(115\) −8.19362 −0.764059
\(116\) 0.512779 0.0476103
\(117\) 16.3765 1.51401
\(118\) 6.12678 0.564016
\(119\) −24.2893 −2.22660
\(120\) 1.24244 0.113419
\(121\) 0 0
\(122\) 5.59608 0.506645
\(123\) −2.39417 −0.215875
\(124\) 8.81071 0.791225
\(125\) −11.9730 −1.07090
\(126\) −14.4426 −1.28665
\(127\) −3.13201 −0.277921 −0.138961 0.990298i \(-0.544376\pi\)
−0.138961 + 0.990298i \(0.544376\pi\)
\(128\) 0.464910 0.0410926
\(129\) 1.89200 0.166581
\(130\) −9.95670 −0.873261
\(131\) 20.8979 1.82586 0.912931 0.408114i \(-0.133813\pi\)
0.912931 + 0.408114i \(0.133813\pi\)
\(132\) 0 0
\(133\) 4.48973 0.389309
\(134\) 5.62538 0.485959
\(135\) 2.40566 0.207046
\(136\) 16.5922 1.42277
\(137\) 7.52119 0.642578 0.321289 0.946981i \(-0.395884\pi\)
0.321289 + 0.946981i \(0.395884\pi\)
\(138\) 1.36456 0.116159
\(139\) 6.82918 0.579244 0.289622 0.957141i \(-0.406470\pi\)
0.289622 + 0.957141i \(0.406470\pi\)
\(140\) −5.87230 −0.496300
\(141\) 0.213457 0.0179764
\(142\) 0.511431 0.0429183
\(143\) 0 0
\(144\) 5.15564 0.429637
\(145\) −1.04402 −0.0867012
\(146\) −6.97451 −0.577214
\(147\) −3.26634 −0.269403
\(148\) −1.61816 −0.133012
\(149\) −21.5299 −1.76380 −0.881900 0.471436i \(-0.843736\pi\)
−0.881900 + 0.471436i \(0.843736\pi\)
\(150\) 0.635133 0.0518584
\(151\) −15.9754 −1.30006 −0.650032 0.759907i \(-0.725244\pi\)
−0.650032 + 0.759907i \(0.725244\pi\)
\(152\) −3.06697 −0.248764
\(153\) 15.8965 1.28516
\(154\) 0 0
\(155\) −17.9387 −1.44087
\(156\) −1.10892 −0.0887847
\(157\) 20.4576 1.63269 0.816347 0.577562i \(-0.195996\pi\)
0.816347 + 0.577562i \(0.195996\pi\)
\(158\) −13.3967 −1.06579
\(159\) −0.325218 −0.0257915
\(160\) 6.87518 0.543530
\(161\) −22.5430 −1.77664
\(162\) 9.24980 0.726733
\(163\) 4.91421 0.384910 0.192455 0.981306i \(-0.438355\pi\)
0.192455 + 0.981306i \(0.438355\pi\)
\(164\) −7.72997 −0.603609
\(165\) 0 0
\(166\) −8.95741 −0.695230
\(167\) −3.07085 −0.237629 −0.118815 0.992916i \(-0.537909\pi\)
−0.118815 + 0.992916i \(0.537909\pi\)
\(168\) 3.41832 0.263729
\(169\) 18.0618 1.38937
\(170\) −9.66490 −0.741264
\(171\) −2.93837 −0.224703
\(172\) 6.10861 0.465777
\(173\) −4.27240 −0.324824 −0.162412 0.986723i \(-0.551927\pi\)
−0.162412 + 0.986723i \(0.551927\pi\)
\(174\) 0.173871 0.0131811
\(175\) −10.4926 −0.793167
\(176\) 0 0
\(177\) −1.38930 −0.104426
\(178\) −15.0122 −1.12521
\(179\) −9.67103 −0.722847 −0.361424 0.932402i \(-0.617709\pi\)
−0.361424 + 0.932402i \(0.617709\pi\)
\(180\) 3.84322 0.286457
\(181\) 6.56442 0.487929 0.243965 0.969784i \(-0.421552\pi\)
0.243965 + 0.969784i \(0.421552\pi\)
\(182\) −27.3938 −2.03056
\(183\) −1.26896 −0.0938042
\(184\) 15.3993 1.13525
\(185\) 3.29458 0.242223
\(186\) 2.98750 0.219054
\(187\) 0 0
\(188\) 0.689182 0.0502637
\(189\) 6.61866 0.481437
\(190\) 1.78650 0.129606
\(191\) 8.85771 0.640921 0.320461 0.947262i \(-0.396162\pi\)
0.320461 + 0.947262i \(0.396162\pi\)
\(192\) −2.01613 −0.145502
\(193\) 20.5836 1.48164 0.740818 0.671705i \(-0.234438\pi\)
0.740818 + 0.671705i \(0.234438\pi\)
\(194\) 15.9960 1.14845
\(195\) 2.25777 0.161682
\(196\) −10.5459 −0.753278
\(197\) −11.2619 −0.802374 −0.401187 0.915996i \(-0.631402\pi\)
−0.401187 + 0.915996i \(0.631402\pi\)
\(198\) 0 0
\(199\) 9.75531 0.691536 0.345768 0.938320i \(-0.387618\pi\)
0.345768 + 0.938320i \(0.387618\pi\)
\(200\) 7.16759 0.506825
\(201\) −1.27560 −0.0899742
\(202\) −19.2610 −1.35520
\(203\) −2.87240 −0.201603
\(204\) −1.07642 −0.0753646
\(205\) 15.7382 1.09921
\(206\) −6.80308 −0.473993
\(207\) 14.7537 1.02545
\(208\) 9.77888 0.678044
\(209\) 0 0
\(210\) −1.99115 −0.137403
\(211\) 5.77759 0.397745 0.198873 0.980025i \(-0.436272\pi\)
0.198873 + 0.980025i \(0.436272\pi\)
\(212\) −1.05002 −0.0721155
\(213\) −0.115971 −0.00794622
\(214\) 5.03908 0.344464
\(215\) −12.4372 −0.848207
\(216\) −4.52126 −0.307633
\(217\) −49.3545 −3.35040
\(218\) −11.3405 −0.768078
\(219\) 1.58153 0.106870
\(220\) 0 0
\(221\) 30.1515 2.02821
\(222\) −0.548679 −0.0368249
\(223\) −8.83978 −0.591956 −0.295978 0.955195i \(-0.595645\pi\)
−0.295978 + 0.955195i \(0.595645\pi\)
\(224\) 18.9156 1.26385
\(225\) 6.86706 0.457804
\(226\) 8.05882 0.536065
\(227\) −10.7967 −0.716601 −0.358300 0.933606i \(-0.616644\pi\)
−0.358300 + 0.933606i \(0.616644\pi\)
\(228\) 0.198970 0.0131771
\(229\) −12.0337 −0.795206 −0.397603 0.917557i \(-0.630158\pi\)
−0.397603 + 0.917557i \(0.630158\pi\)
\(230\) −8.97004 −0.591467
\(231\) 0 0
\(232\) 1.96216 0.128822
\(233\) −13.4819 −0.883226 −0.441613 0.897206i \(-0.645594\pi\)
−0.441613 + 0.897206i \(0.645594\pi\)
\(234\) 17.9283 1.17201
\(235\) −1.40318 −0.0915332
\(236\) −4.48557 −0.291986
\(237\) 3.03783 0.197328
\(238\) −26.5910 −1.72364
\(239\) −18.1842 −1.17624 −0.588119 0.808774i \(-0.700131\pi\)
−0.588119 + 0.808774i \(0.700131\pi\)
\(240\) 0.710790 0.0458813
\(241\) 1.48941 0.0959415 0.0479708 0.998849i \(-0.484725\pi\)
0.0479708 + 0.998849i \(0.484725\pi\)
\(242\) 0 0
\(243\) −6.52001 −0.418259
\(244\) −4.09704 −0.262286
\(245\) 21.4715 1.37176
\(246\) −2.62104 −0.167112
\(247\) −5.57331 −0.354622
\(248\) 33.7144 2.14087
\(249\) 2.03117 0.128720
\(250\) −13.1076 −0.828995
\(251\) 18.6760 1.17882 0.589409 0.807835i \(-0.299361\pi\)
0.589409 + 0.807835i \(0.299361\pi\)
\(252\) 10.5738 0.666088
\(253\) 0 0
\(254\) −3.42880 −0.215142
\(255\) 2.19160 0.137243
\(256\) −15.7340 −0.983377
\(257\) −12.4889 −0.779034 −0.389517 0.921019i \(-0.627358\pi\)
−0.389517 + 0.921019i \(0.627358\pi\)
\(258\) 2.07128 0.128952
\(259\) 9.06436 0.563232
\(260\) 7.28957 0.452080
\(261\) 1.87989 0.116362
\(262\) 22.8782 1.41342
\(263\) 6.20578 0.382665 0.191332 0.981525i \(-0.438719\pi\)
0.191332 + 0.981525i \(0.438719\pi\)
\(264\) 0 0
\(265\) 2.13784 0.131327
\(266\) 4.91517 0.301369
\(267\) 3.40414 0.208330
\(268\) −4.11849 −0.251577
\(269\) 20.4957 1.24964 0.624822 0.780768i \(-0.285172\pi\)
0.624822 + 0.780768i \(0.285172\pi\)
\(270\) 2.63361 0.160277
\(271\) −28.2020 −1.71315 −0.856574 0.516024i \(-0.827412\pi\)
−0.856574 + 0.516024i \(0.827412\pi\)
\(272\) 9.49229 0.575555
\(273\) 6.21178 0.375954
\(274\) 8.23389 0.497427
\(275\) 0 0
\(276\) −0.999032 −0.0601347
\(277\) 12.8309 0.770937 0.385468 0.922721i \(-0.374040\pi\)
0.385468 + 0.922721i \(0.374040\pi\)
\(278\) 7.47631 0.448399
\(279\) 32.3008 1.93380
\(280\) −22.4705 −1.34287
\(281\) 6.08165 0.362801 0.181400 0.983409i \(-0.441937\pi\)
0.181400 + 0.983409i \(0.441937\pi\)
\(282\) 0.233685 0.0139157
\(283\) 0.387478 0.0230332 0.0115166 0.999934i \(-0.496334\pi\)
0.0115166 + 0.999934i \(0.496334\pi\)
\(284\) −0.374432 −0.0222184
\(285\) −0.405103 −0.0239963
\(286\) 0 0
\(287\) 43.3005 2.55595
\(288\) −12.3796 −0.729476
\(289\) 12.2678 0.721638
\(290\) −1.14295 −0.0671164
\(291\) −3.62723 −0.212632
\(292\) 5.10622 0.298819
\(293\) −12.4415 −0.726839 −0.363419 0.931626i \(-0.618391\pi\)
−0.363419 + 0.931626i \(0.618391\pi\)
\(294\) −3.57586 −0.208548
\(295\) 9.13265 0.531723
\(296\) −6.19194 −0.359899
\(297\) 0 0
\(298\) −23.5701 −1.36538
\(299\) 27.9838 1.61834
\(300\) −0.464998 −0.0268466
\(301\) −34.2183 −1.97231
\(302\) −17.4893 −1.00639
\(303\) 4.36760 0.250912
\(304\) −1.75459 −0.100633
\(305\) 8.34159 0.477638
\(306\) 17.4029 0.994856
\(307\) −13.8906 −0.792779 −0.396389 0.918082i \(-0.629737\pi\)
−0.396389 + 0.918082i \(0.629737\pi\)
\(308\) 0 0
\(309\) 1.54266 0.0877586
\(310\) −19.6385 −1.11539
\(311\) −34.7334 −1.96955 −0.984775 0.173834i \(-0.944384\pi\)
−0.984775 + 0.173834i \(0.944384\pi\)
\(312\) −4.24332 −0.240231
\(313\) 2.06279 0.116596 0.0582980 0.998299i \(-0.481433\pi\)
0.0582980 + 0.998299i \(0.481433\pi\)
\(314\) 22.3961 1.26389
\(315\) −21.5283 −1.21298
\(316\) 9.80811 0.551749
\(317\) −0.891517 −0.0500726 −0.0250363 0.999687i \(-0.507970\pi\)
−0.0250363 + 0.999687i \(0.507970\pi\)
\(318\) −0.356035 −0.0199655
\(319\) 0 0
\(320\) 13.2532 0.740874
\(321\) −1.14265 −0.0637767
\(322\) −24.6792 −1.37532
\(323\) −5.40998 −0.301019
\(324\) −6.77202 −0.376223
\(325\) 13.0250 0.722496
\(326\) 5.37987 0.297964
\(327\) 2.57156 0.142208
\(328\) −29.5789 −1.63322
\(329\) −3.86055 −0.212839
\(330\) 0 0
\(331\) 8.08006 0.444120 0.222060 0.975033i \(-0.428722\pi\)
0.222060 + 0.975033i \(0.428722\pi\)
\(332\) 6.55795 0.359914
\(333\) −5.93232 −0.325089
\(334\) −3.36184 −0.183952
\(335\) 8.38527 0.458136
\(336\) 1.95559 0.106686
\(337\) 21.4963 1.17098 0.585490 0.810680i \(-0.300902\pi\)
0.585490 + 0.810680i \(0.300902\pi\)
\(338\) 19.7734 1.07553
\(339\) −1.82741 −0.0992511
\(340\) 7.07593 0.383746
\(341\) 0 0
\(342\) −3.21681 −0.173945
\(343\) 27.6463 1.49276
\(344\) 23.3748 1.26028
\(345\) 2.03403 0.109509
\(346\) −4.67725 −0.251450
\(347\) −8.94541 −0.480215 −0.240107 0.970746i \(-0.577183\pi\)
−0.240107 + 0.970746i \(0.577183\pi\)
\(348\) −0.127295 −0.00682375
\(349\) 28.4646 1.52368 0.761838 0.647768i \(-0.224297\pi\)
0.761838 + 0.647768i \(0.224297\pi\)
\(350\) −11.4869 −0.614000
\(351\) −8.21606 −0.438541
\(352\) 0 0
\(353\) −1.90094 −0.101177 −0.0505884 0.998720i \(-0.516110\pi\)
−0.0505884 + 0.998720i \(0.516110\pi\)
\(354\) −1.52095 −0.0808375
\(355\) 0.762345 0.0404611
\(356\) 10.9908 0.582512
\(357\) 6.02973 0.319127
\(358\) −10.5875 −0.559564
\(359\) 28.0108 1.47835 0.739176 0.673512i \(-0.235215\pi\)
0.739176 + 0.673512i \(0.235215\pi\)
\(360\) 14.7062 0.775084
\(361\) 1.00000 0.0526316
\(362\) 7.18646 0.377712
\(363\) 0 0
\(364\) 20.0557 1.05121
\(365\) −10.3963 −0.544166
\(366\) −1.38921 −0.0726149
\(367\) 10.6227 0.554502 0.277251 0.960798i \(-0.410577\pi\)
0.277251 + 0.960798i \(0.410577\pi\)
\(368\) 8.80984 0.459245
\(369\) −28.3387 −1.47525
\(370\) 3.60678 0.187507
\(371\) 5.88183 0.305369
\(372\) −2.18722 −0.113402
\(373\) 21.0351 1.08916 0.544578 0.838710i \(-0.316690\pi\)
0.544578 + 0.838710i \(0.316690\pi\)
\(374\) 0 0
\(375\) 2.97225 0.153487
\(376\) 2.63717 0.136002
\(377\) 3.56565 0.183640
\(378\) 7.24584 0.372686
\(379\) 21.0358 1.08053 0.540267 0.841493i \(-0.318323\pi\)
0.540267 + 0.841493i \(0.318323\pi\)
\(380\) −1.30794 −0.0670959
\(381\) 0.777510 0.0398330
\(382\) 9.69706 0.496145
\(383\) 30.8255 1.57511 0.787554 0.616245i \(-0.211347\pi\)
0.787554 + 0.616245i \(0.211347\pi\)
\(384\) −0.115412 −0.00588960
\(385\) 0 0
\(386\) 22.5340 1.14695
\(387\) 22.3947 1.13839
\(388\) −11.7111 −0.594541
\(389\) −9.92456 −0.503195 −0.251598 0.967832i \(-0.580956\pi\)
−0.251598 + 0.967832i \(0.580956\pi\)
\(390\) 2.47171 0.125160
\(391\) 27.1636 1.37372
\(392\) −40.3542 −2.03819
\(393\) −5.18783 −0.261692
\(394\) −12.3290 −0.621127
\(395\) −19.9694 −1.00477
\(396\) 0 0
\(397\) −17.7195 −0.889314 −0.444657 0.895701i \(-0.646674\pi\)
−0.444657 + 0.895701i \(0.646674\pi\)
\(398\) 10.6797 0.535326
\(399\) −1.11456 −0.0557977
\(400\) 4.10052 0.205026
\(401\) 5.07648 0.253508 0.126754 0.991934i \(-0.459544\pi\)
0.126754 + 0.991934i \(0.459544\pi\)
\(402\) −1.39648 −0.0696501
\(403\) 61.2661 3.05188
\(404\) 14.1015 0.701575
\(405\) 13.7879 0.685125
\(406\) −3.14459 −0.156063
\(407\) 0 0
\(408\) −4.11896 −0.203919
\(409\) −17.3841 −0.859587 −0.429793 0.902927i \(-0.641414\pi\)
−0.429793 + 0.902927i \(0.641414\pi\)
\(410\) 17.2296 0.850909
\(411\) −1.86711 −0.0920975
\(412\) 4.98071 0.245382
\(413\) 25.1266 1.23640
\(414\) 16.1517 0.793813
\(415\) −13.3520 −0.655425
\(416\) −23.4809 −1.15124
\(417\) −1.69532 −0.0830201
\(418\) 0 0
\(419\) 12.5295 0.612106 0.306053 0.952015i \(-0.400992\pi\)
0.306053 + 0.952015i \(0.400992\pi\)
\(420\) 1.45778 0.0711322
\(421\) −1.93325 −0.0942210 −0.0471105 0.998890i \(-0.515001\pi\)
−0.0471105 + 0.998890i \(0.515001\pi\)
\(422\) 6.32507 0.307899
\(423\) 2.52660 0.122847
\(424\) −4.01792 −0.195128
\(425\) 12.6433 0.613288
\(426\) −0.126961 −0.00615126
\(427\) 22.9501 1.11064
\(428\) −3.68924 −0.178326
\(429\) 0 0
\(430\) −13.6157 −0.656607
\(431\) 8.24025 0.396919 0.198460 0.980109i \(-0.436406\pi\)
0.198460 + 0.980109i \(0.436406\pi\)
\(432\) −2.58658 −0.124447
\(433\) 11.0612 0.531568 0.265784 0.964033i \(-0.414369\pi\)
0.265784 + 0.964033i \(0.414369\pi\)
\(434\) −54.0313 −2.59358
\(435\) 0.259174 0.0124264
\(436\) 8.30270 0.397627
\(437\) −5.02103 −0.240188
\(438\) 1.73139 0.0827292
\(439\) 6.85793 0.327311 0.163656 0.986518i \(-0.447671\pi\)
0.163656 + 0.986518i \(0.447671\pi\)
\(440\) 0 0
\(441\) −38.6621 −1.84105
\(442\) 33.0086 1.57006
\(443\) −0.201359 −0.00956684 −0.00478342 0.999989i \(-0.501523\pi\)
−0.00478342 + 0.999989i \(0.501523\pi\)
\(444\) 0.401702 0.0190639
\(445\) −22.3774 −1.06079
\(446\) −9.67743 −0.458240
\(447\) 5.34472 0.252797
\(448\) 36.4633 1.72273
\(449\) 17.3565 0.819104 0.409552 0.912287i \(-0.365685\pi\)
0.409552 + 0.912287i \(0.365685\pi\)
\(450\) 7.51778 0.354391
\(451\) 0 0
\(452\) −5.90007 −0.277516
\(453\) 3.96584 0.186332
\(454\) −11.8198 −0.554729
\(455\) −40.8335 −1.91431
\(456\) 0.761363 0.0356541
\(457\) −25.9186 −1.21242 −0.606209 0.795305i \(-0.707311\pi\)
−0.606209 + 0.795305i \(0.707311\pi\)
\(458\) −13.1740 −0.615579
\(459\) −7.97527 −0.372254
\(460\) 6.56720 0.306197
\(461\) −17.2823 −0.804916 −0.402458 0.915438i \(-0.631844\pi\)
−0.402458 + 0.915438i \(0.631844\pi\)
\(462\) 0 0
\(463\) −6.95313 −0.323140 −0.161570 0.986861i \(-0.551656\pi\)
−0.161570 + 0.986861i \(0.551656\pi\)
\(464\) 1.12254 0.0521125
\(465\) 4.45320 0.206512
\(466\) −14.7594 −0.683716
\(467\) −14.9411 −0.691390 −0.345695 0.938347i \(-0.612357\pi\)
−0.345695 + 0.938347i \(0.612357\pi\)
\(468\) −13.1258 −0.606740
\(469\) 23.0703 1.06529
\(470\) −1.53614 −0.0708569
\(471\) −5.07852 −0.234006
\(472\) −17.1642 −0.790045
\(473\) 0 0
\(474\) 3.32569 0.152754
\(475\) −2.33703 −0.107230
\(476\) 19.4679 0.892312
\(477\) −3.84945 −0.176254
\(478\) −19.9073 −0.910540
\(479\) −34.8266 −1.59127 −0.795633 0.605778i \(-0.792862\pi\)
−0.795633 + 0.605778i \(0.792862\pi\)
\(480\) −1.70674 −0.0779015
\(481\) −11.2520 −0.513048
\(482\) 1.63055 0.0742694
\(483\) 5.59622 0.254637
\(484\) 0 0
\(485\) 23.8438 1.08269
\(486\) −7.13784 −0.323779
\(487\) 20.0445 0.908303 0.454151 0.890925i \(-0.349943\pi\)
0.454151 + 0.890925i \(0.349943\pi\)
\(488\) −15.6774 −0.709684
\(489\) −1.21993 −0.0551672
\(490\) 23.5061 1.06190
\(491\) 23.1239 1.04357 0.521784 0.853078i \(-0.325267\pi\)
0.521784 + 0.853078i \(0.325267\pi\)
\(492\) 1.91893 0.0865122
\(493\) 3.46115 0.155882
\(494\) −6.10144 −0.274517
\(495\) 0 0
\(496\) 19.2878 0.866047
\(497\) 2.09743 0.0940827
\(498\) 2.22364 0.0996438
\(499\) −18.6912 −0.836735 −0.418367 0.908278i \(-0.637398\pi\)
−0.418367 + 0.908278i \(0.637398\pi\)
\(500\) 9.59640 0.429164
\(501\) 0.762326 0.0340582
\(502\) 20.4457 0.912537
\(503\) −9.49186 −0.423221 −0.211611 0.977354i \(-0.567871\pi\)
−0.211611 + 0.977354i \(0.567871\pi\)
\(504\) 40.4610 1.80228
\(505\) −28.7107 −1.27761
\(506\) 0 0
\(507\) −4.48378 −0.199132
\(508\) 2.51032 0.111377
\(509\) −3.10660 −0.137698 −0.0688488 0.997627i \(-0.521933\pi\)
−0.0688488 + 0.997627i \(0.521933\pi\)
\(510\) 2.39927 0.106242
\(511\) −28.6032 −1.26533
\(512\) −18.1548 −0.802336
\(513\) 1.47418 0.0650866
\(514\) −13.6723 −0.603060
\(515\) −10.1407 −0.446855
\(516\) −1.51644 −0.0667575
\(517\) 0 0
\(518\) 9.92330 0.436005
\(519\) 1.06061 0.0465554
\(520\) 27.8937 1.22322
\(521\) −0.816498 −0.0357714 −0.0178857 0.999840i \(-0.505694\pi\)
−0.0178857 + 0.999840i \(0.505694\pi\)
\(522\) 2.05803 0.0900774
\(523\) −6.80565 −0.297590 −0.148795 0.988868i \(-0.547539\pi\)
−0.148795 + 0.988868i \(0.547539\pi\)
\(524\) −16.7497 −0.731716
\(525\) 2.60475 0.113681
\(526\) 6.79383 0.296225
\(527\) 59.4705 2.59058
\(528\) 0 0
\(529\) 2.21070 0.0961174
\(530\) 2.34042 0.101661
\(531\) −16.4445 −0.713630
\(532\) −3.59853 −0.156016
\(533\) −53.7510 −2.32821
\(534\) 3.72672 0.161271
\(535\) 7.51131 0.324742
\(536\) −15.7595 −0.680708
\(537\) 2.40080 0.103602
\(538\) 22.4378 0.967363
\(539\) 0 0
\(540\) −1.92814 −0.0829738
\(541\) −17.7329 −0.762396 −0.381198 0.924494i \(-0.624488\pi\)
−0.381198 + 0.924494i \(0.624488\pi\)
\(542\) −30.8744 −1.32617
\(543\) −1.62959 −0.0699325
\(544\) −22.7927 −0.977229
\(545\) −16.9043 −0.724102
\(546\) 6.80040 0.291030
\(547\) 38.8630 1.66166 0.830831 0.556526i \(-0.187866\pi\)
0.830831 + 0.556526i \(0.187866\pi\)
\(548\) −6.02825 −0.257514
\(549\) −15.0201 −0.641042
\(550\) 0 0
\(551\) −0.639772 −0.0272552
\(552\) −3.82283 −0.162710
\(553\) −54.9415 −2.33635
\(554\) 14.0468 0.596791
\(555\) −0.817868 −0.0347166
\(556\) −5.47361 −0.232133
\(557\) −34.3279 −1.45452 −0.727259 0.686363i \(-0.759206\pi\)
−0.727259 + 0.686363i \(0.759206\pi\)
\(558\) 35.3616 1.49698
\(559\) 42.4768 1.79658
\(560\) −12.8552 −0.543232
\(561\) 0 0
\(562\) 6.65794 0.280848
\(563\) 25.4704 1.07345 0.536725 0.843757i \(-0.319661\pi\)
0.536725 + 0.843757i \(0.319661\pi\)
\(564\) −0.171087 −0.00720405
\(565\) 12.0126 0.505373
\(566\) 0.424196 0.0178303
\(567\) 37.9345 1.59310
\(568\) −1.43277 −0.0601178
\(569\) −26.1038 −1.09433 −0.547163 0.837026i \(-0.684292\pi\)
−0.547163 + 0.837026i \(0.684292\pi\)
\(570\) −0.443491 −0.0185758
\(571\) −10.8101 −0.452387 −0.226194 0.974082i \(-0.572628\pi\)
−0.226194 + 0.974082i \(0.572628\pi\)
\(572\) 0 0
\(573\) −2.19889 −0.0918600
\(574\) 47.4036 1.97859
\(575\) 11.7343 0.489353
\(576\) −23.8640 −0.994333
\(577\) −6.08671 −0.253393 −0.126697 0.991942i \(-0.540437\pi\)
−0.126697 + 0.991942i \(0.540437\pi\)
\(578\) 13.4303 0.558628
\(579\) −5.10979 −0.212356
\(580\) 0.836784 0.0347456
\(581\) −36.7353 −1.52404
\(582\) −3.97094 −0.164601
\(583\) 0 0
\(584\) 19.5391 0.808533
\(585\) 26.7242 1.10491
\(586\) −13.6204 −0.562655
\(587\) −0.981023 −0.0404911 −0.0202456 0.999795i \(-0.506445\pi\)
−0.0202456 + 0.999795i \(0.506445\pi\)
\(588\) 2.61798 0.107964
\(589\) −10.9928 −0.452948
\(590\) 9.99805 0.411613
\(591\) 2.79571 0.115000
\(592\) −3.54236 −0.145590
\(593\) −13.3473 −0.548108 −0.274054 0.961714i \(-0.588365\pi\)
−0.274054 + 0.961714i \(0.588365\pi\)
\(594\) 0 0
\(595\) −39.6368 −1.62495
\(596\) 17.2563 0.706845
\(597\) −2.42172 −0.0991143
\(598\) 30.6355 1.25278
\(599\) 37.2790 1.52318 0.761589 0.648060i \(-0.224420\pi\)
0.761589 + 0.648060i \(0.224420\pi\)
\(600\) −1.77933 −0.0726407
\(601\) −0.551555 −0.0224984 −0.0112492 0.999937i \(-0.503581\pi\)
−0.0112492 + 0.999937i \(0.503581\pi\)
\(602\) −37.4608 −1.52679
\(603\) −15.0987 −0.614868
\(604\) 12.8044 0.521002
\(605\) 0 0
\(606\) 4.78147 0.194234
\(607\) −27.5738 −1.11919 −0.559594 0.828767i \(-0.689043\pi\)
−0.559594 + 0.828767i \(0.689043\pi\)
\(608\) 4.21309 0.170863
\(609\) 0.713063 0.0288948
\(610\) 9.13203 0.369745
\(611\) 4.79228 0.193875
\(612\) −12.7411 −0.515029
\(613\) 29.9724 1.21057 0.605287 0.796008i \(-0.293059\pi\)
0.605287 + 0.796008i \(0.293059\pi\)
\(614\) −15.2069 −0.613699
\(615\) −3.90696 −0.157544
\(616\) 0 0
\(617\) −7.62612 −0.307016 −0.153508 0.988147i \(-0.549057\pi\)
−0.153508 + 0.988147i \(0.549057\pi\)
\(618\) 1.68884 0.0679350
\(619\) 28.8420 1.15926 0.579628 0.814881i \(-0.303198\pi\)
0.579628 + 0.814881i \(0.303198\pi\)
\(620\) 14.3779 0.577429
\(621\) −7.40189 −0.297027
\(622\) −38.0247 −1.52465
\(623\) −61.5666 −2.46662
\(624\) −2.42757 −0.0971806
\(625\) −7.85317 −0.314127
\(626\) 2.25826 0.0902583
\(627\) 0 0
\(628\) −16.3968 −0.654304
\(629\) −10.9223 −0.435499
\(630\) −23.5684 −0.938986
\(631\) −4.50477 −0.179332 −0.0896660 0.995972i \(-0.528580\pi\)
−0.0896660 + 0.995972i \(0.528580\pi\)
\(632\) 37.5310 1.49290
\(633\) −1.43426 −0.0570068
\(634\) −0.975996 −0.0387618
\(635\) −5.11101 −0.202824
\(636\) 0.260663 0.0103360
\(637\) −73.3318 −2.90551
\(638\) 0 0
\(639\) −1.37270 −0.0543031
\(640\) 0.758669 0.0299890
\(641\) 34.2229 1.35172 0.675861 0.737029i \(-0.263772\pi\)
0.675861 + 0.737029i \(0.263772\pi\)
\(642\) −1.25093 −0.0493703
\(643\) −2.05393 −0.0809993 −0.0404996 0.999180i \(-0.512895\pi\)
−0.0404996 + 0.999180i \(0.512895\pi\)
\(644\) 18.0683 0.711991
\(645\) 3.08748 0.121569
\(646\) −5.92262 −0.233022
\(647\) −18.1609 −0.713979 −0.356990 0.934108i \(-0.616197\pi\)
−0.356990 + 0.934108i \(0.616197\pi\)
\(648\) −25.9133 −1.01797
\(649\) 0 0
\(650\) 14.2592 0.559293
\(651\) 12.2521 0.480196
\(652\) −3.93875 −0.154253
\(653\) −45.5267 −1.78160 −0.890800 0.454396i \(-0.849855\pi\)
−0.890800 + 0.454396i \(0.849855\pi\)
\(654\) 2.81524 0.110085
\(655\) 34.1026 1.33250
\(656\) −16.9219 −0.660688
\(657\) 18.7198 0.730330
\(658\) −4.22637 −0.164761
\(659\) −44.4071 −1.72985 −0.864927 0.501897i \(-0.832636\pi\)
−0.864927 + 0.501897i \(0.832636\pi\)
\(660\) 0 0
\(661\) −6.94517 −0.270136 −0.135068 0.990836i \(-0.543125\pi\)
−0.135068 + 0.990836i \(0.543125\pi\)
\(662\) 8.84572 0.343799
\(663\) −7.48499 −0.290693
\(664\) 25.0942 0.973844
\(665\) 7.32662 0.284114
\(666\) −6.49446 −0.251655
\(667\) 3.21231 0.124381
\(668\) 2.46129 0.0952303
\(669\) 2.19444 0.0848420
\(670\) 9.17985 0.354649
\(671\) 0 0
\(672\) −4.69573 −0.181142
\(673\) 18.8199 0.725454 0.362727 0.931895i \(-0.381846\pi\)
0.362727 + 0.931895i \(0.381846\pi\)
\(674\) 23.5333 0.906469
\(675\) −3.44519 −0.132606
\(676\) −14.4766 −0.556792
\(677\) 2.28065 0.0876523 0.0438262 0.999039i \(-0.486045\pi\)
0.0438262 + 0.999039i \(0.486045\pi\)
\(678\) −2.00057 −0.0768314
\(679\) 65.6014 2.51755
\(680\) 27.0762 1.03833
\(681\) 2.68023 0.102707
\(682\) 0 0
\(683\) 7.91546 0.302877 0.151438 0.988467i \(-0.451610\pi\)
0.151438 + 0.988467i \(0.451610\pi\)
\(684\) 2.35511 0.0900500
\(685\) 12.2735 0.468948
\(686\) 30.2660 1.15556
\(687\) 2.98731 0.113973
\(688\) 13.3725 0.509823
\(689\) −7.30139 −0.278161
\(690\) 2.22678 0.0847720
\(691\) −37.3359 −1.42033 −0.710163 0.704037i \(-0.751379\pi\)
−0.710163 + 0.704037i \(0.751379\pi\)
\(692\) 3.42433 0.130174
\(693\) 0 0
\(694\) −9.79307 −0.371740
\(695\) 11.1443 0.422727
\(696\) −0.487099 −0.0184635
\(697\) −52.1757 −1.97630
\(698\) 31.1619 1.17950
\(699\) 3.34682 0.126588
\(700\) 8.40985 0.317863
\(701\) 28.2380 1.06653 0.533267 0.845947i \(-0.320964\pi\)
0.533267 + 0.845947i \(0.320964\pi\)
\(702\) −8.99461 −0.339480
\(703\) 2.01891 0.0761447
\(704\) 0 0
\(705\) 0.348333 0.0131190
\(706\) −2.08107 −0.0783221
\(707\) −78.9915 −2.97078
\(708\) 1.11353 0.0418489
\(709\) −45.5805 −1.71181 −0.855905 0.517133i \(-0.826999\pi\)
−0.855905 + 0.517133i \(0.826999\pi\)
\(710\) 0.834584 0.0313214
\(711\) 35.9574 1.34851
\(712\) 42.0567 1.57614
\(713\) 55.1949 2.06706
\(714\) 6.60110 0.247040
\(715\) 0 0
\(716\) 7.75135 0.289682
\(717\) 4.51416 0.168584
\(718\) 30.6651 1.14441
\(719\) −18.2212 −0.679536 −0.339768 0.940509i \(-0.610349\pi\)
−0.339768 + 0.940509i \(0.610349\pi\)
\(720\) 8.41330 0.313545
\(721\) −27.9002 −1.03906
\(722\) 1.09476 0.0407427
\(723\) −0.369741 −0.0137508
\(724\) −5.26140 −0.195538
\(725\) 1.49516 0.0555290
\(726\) 0 0
\(727\) 44.7081 1.65813 0.829066 0.559151i \(-0.188873\pi\)
0.829066 + 0.559151i \(0.188873\pi\)
\(728\) 76.7438 2.84431
\(729\) −23.7289 −0.878849
\(730\) −11.3814 −0.421246
\(731\) 41.2319 1.52502
\(732\) 1.01707 0.0375921
\(733\) 14.9819 0.553369 0.276685 0.960961i \(-0.410764\pi\)
0.276685 + 0.960961i \(0.410764\pi\)
\(734\) 11.6293 0.429246
\(735\) −5.33022 −0.196608
\(736\) −21.1540 −0.779747
\(737\) 0 0
\(738\) −31.0241 −1.14201
\(739\) −14.2504 −0.524209 −0.262104 0.965040i \(-0.584416\pi\)
−0.262104 + 0.965040i \(0.584416\pi\)
\(740\) −2.64062 −0.0970710
\(741\) 1.38355 0.0508261
\(742\) 6.43918 0.236390
\(743\) 9.33615 0.342510 0.171255 0.985227i \(-0.445218\pi\)
0.171255 + 0.985227i \(0.445218\pi\)
\(744\) −8.36948 −0.306840
\(745\) −35.1339 −1.28721
\(746\) 23.0284 0.843128
\(747\) 24.0420 0.879651
\(748\) 0 0
\(749\) 20.6658 0.755113
\(750\) 3.25390 0.118816
\(751\) −44.2037 −1.61302 −0.806509 0.591222i \(-0.798646\pi\)
−0.806509 + 0.591222i \(0.798646\pi\)
\(752\) 1.50871 0.0550169
\(753\) −4.63624 −0.168954
\(754\) 3.90353 0.142158
\(755\) −26.0697 −0.948774
\(756\) −5.30487 −0.192936
\(757\) −34.3770 −1.24945 −0.624727 0.780843i \(-0.714790\pi\)
−0.624727 + 0.780843i \(0.714790\pi\)
\(758\) 23.0291 0.836455
\(759\) 0 0
\(760\) −5.00487 −0.181546
\(761\) −35.6083 −1.29080 −0.645400 0.763845i \(-0.723309\pi\)
−0.645400 + 0.763845i \(0.723309\pi\)
\(762\) 0.851186 0.0308352
\(763\) −46.5088 −1.68373
\(764\) −7.09947 −0.256850
\(765\) 25.9409 0.937897
\(766\) 33.7465 1.21931
\(767\) −31.1908 −1.12624
\(768\) 3.90591 0.140942
\(769\) −18.9211 −0.682312 −0.341156 0.940007i \(-0.610819\pi\)
−0.341156 + 0.940007i \(0.610819\pi\)
\(770\) 0 0
\(771\) 3.10031 0.111655
\(772\) −16.4978 −0.593767
\(773\) −1.93704 −0.0696703 −0.0348352 0.999393i \(-0.511091\pi\)
−0.0348352 + 0.999393i \(0.511091\pi\)
\(774\) 24.5168 0.881238
\(775\) 25.6903 0.922825
\(776\) −44.8128 −1.60869
\(777\) −2.25019 −0.0807252
\(778\) −10.8650 −0.389529
\(779\) 9.64435 0.345545
\(780\) −1.80961 −0.0647943
\(781\) 0 0
\(782\) 29.7376 1.06342
\(783\) −0.943138 −0.0337050
\(784\) −23.0863 −0.824511
\(785\) 33.3840 1.19153
\(786\) −5.67943 −0.202579
\(787\) −27.5288 −0.981295 −0.490648 0.871358i \(-0.663240\pi\)
−0.490648 + 0.871358i \(0.663240\pi\)
\(788\) 9.02640 0.321552
\(789\) −1.54056 −0.0548454
\(790\) −21.8616 −0.777802
\(791\) 33.0501 1.17513
\(792\) 0 0
\(793\) −28.4891 −1.01168
\(794\) −19.3985 −0.688429
\(795\) −0.530711 −0.0188224
\(796\) −7.81890 −0.277134
\(797\) −33.0802 −1.17176 −0.585881 0.810397i \(-0.699251\pi\)
−0.585881 + 0.810397i \(0.699251\pi\)
\(798\) −1.22017 −0.0431936
\(799\) 4.65184 0.164570
\(800\) −9.84610 −0.348112
\(801\) 40.2933 1.42369
\(802\) 5.55753 0.196243
\(803\) 0 0
\(804\) 1.02240 0.0360572
\(805\) −36.7871 −1.29658
\(806\) 67.0716 2.36250
\(807\) −5.08797 −0.179105
\(808\) 53.9597 1.89830
\(809\) 39.4195 1.38591 0.692957 0.720979i \(-0.256308\pi\)
0.692957 + 0.720979i \(0.256308\pi\)
\(810\) 15.0944 0.530363
\(811\) 43.7164 1.53509 0.767544 0.640996i \(-0.221478\pi\)
0.767544 + 0.640996i \(0.221478\pi\)
\(812\) 2.30224 0.0807927
\(813\) 7.00103 0.245537
\(814\) 0 0
\(815\) 8.01931 0.280904
\(816\) −2.35642 −0.0824913
\(817\) −7.62145 −0.266641
\(818\) −19.0314 −0.665416
\(819\) 73.5260 2.56921
\(820\) −12.6142 −0.440508
\(821\) −51.8046 −1.80799 −0.903996 0.427541i \(-0.859380\pi\)
−0.903996 + 0.427541i \(0.859380\pi\)
\(822\) −2.04403 −0.0712938
\(823\) −7.98486 −0.278335 −0.139167 0.990269i \(-0.544443\pi\)
−0.139167 + 0.990269i \(0.544443\pi\)
\(824\) 19.0588 0.663946
\(825\) 0 0
\(826\) 27.5076 0.957111
\(827\) −39.0227 −1.35695 −0.678477 0.734622i \(-0.737360\pi\)
−0.678477 + 0.734622i \(0.737360\pi\)
\(828\) −11.8251 −0.410950
\(829\) 22.6572 0.786917 0.393459 0.919342i \(-0.371278\pi\)
0.393459 + 0.919342i \(0.371278\pi\)
\(830\) −14.6173 −0.507372
\(831\) −3.18523 −0.110494
\(832\) −45.2637 −1.56923
\(833\) −71.1827 −2.46633
\(834\) −1.85597 −0.0642668
\(835\) −5.01120 −0.173420
\(836\) 0 0
\(837\) −16.2053 −0.560136
\(838\) 13.7168 0.473838
\(839\) 30.3795 1.04882 0.524409 0.851467i \(-0.324286\pi\)
0.524409 + 0.851467i \(0.324286\pi\)
\(840\) 5.57822 0.192467
\(841\) −28.5907 −0.985886
\(842\) −2.11645 −0.0729376
\(843\) −1.50975 −0.0519984
\(844\) −4.63075 −0.159397
\(845\) 29.4744 1.01395
\(846\) 2.76602 0.0950976
\(847\) 0 0
\(848\) −2.29862 −0.0789350
\(849\) −0.0961900 −0.00330123
\(850\) 13.8413 0.474753
\(851\) −10.1370 −0.347492
\(852\) 0.0929512 0.00318446
\(853\) 29.7746 1.01946 0.509731 0.860334i \(-0.329745\pi\)
0.509731 + 0.860334i \(0.329745\pi\)
\(854\) 25.1249 0.859756
\(855\) −4.79502 −0.163986
\(856\) −14.1170 −0.482509
\(857\) 27.0696 0.924679 0.462339 0.886703i \(-0.347010\pi\)
0.462339 + 0.886703i \(0.347010\pi\)
\(858\) 0 0
\(859\) 19.1748 0.654237 0.327119 0.944983i \(-0.393922\pi\)
0.327119 + 0.944983i \(0.393922\pi\)
\(860\) 9.96841 0.339920
\(861\) −10.7492 −0.366331
\(862\) 9.02110 0.307260
\(863\) 13.3654 0.454964 0.227482 0.973782i \(-0.426951\pi\)
0.227482 + 0.973782i \(0.426951\pi\)
\(864\) 6.21084 0.211297
\(865\) −6.97196 −0.237054
\(866\) 12.1094 0.411493
\(867\) −3.04544 −0.103429
\(868\) 39.5577 1.34268
\(869\) 0 0
\(870\) 0.283733 0.00961945
\(871\) −28.6383 −0.970371
\(872\) 31.7705 1.07589
\(873\) −42.9338 −1.45309
\(874\) −5.49681 −0.185933
\(875\) −53.7556 −1.81727
\(876\) −1.26760 −0.0428282
\(877\) −36.3535 −1.22757 −0.613785 0.789474i \(-0.710354\pi\)
−0.613785 + 0.789474i \(0.710354\pi\)
\(878\) 7.50778 0.253375
\(879\) 3.08855 0.104174
\(880\) 0 0
\(881\) 13.3651 0.450283 0.225141 0.974326i \(-0.427716\pi\)
0.225141 + 0.974326i \(0.427716\pi\)
\(882\) −42.3257 −1.42518
\(883\) −5.98933 −0.201557 −0.100779 0.994909i \(-0.532133\pi\)
−0.100779 + 0.994909i \(0.532133\pi\)
\(884\) −24.1665 −0.812807
\(885\) −2.26714 −0.0762092
\(886\) −0.220439 −0.00740581
\(887\) 8.56387 0.287547 0.143773 0.989611i \(-0.454076\pi\)
0.143773 + 0.989611i \(0.454076\pi\)
\(888\) 1.53713 0.0515825
\(889\) −14.0619 −0.471621
\(890\) −24.4978 −0.821169
\(891\) 0 0
\(892\) 7.08510 0.237227
\(893\) −0.859862 −0.0287742
\(894\) 5.85118 0.195693
\(895\) −15.7818 −0.527527
\(896\) 2.08732 0.0697325
\(897\) −6.94686 −0.231949
\(898\) 19.0012 0.634078
\(899\) 7.03286 0.234559
\(900\) −5.50396 −0.183465
\(901\) −7.08741 −0.236116
\(902\) 0 0
\(903\) 8.49455 0.282681
\(904\) −22.5768 −0.750893
\(905\) 10.7122 0.356086
\(906\) 4.34164 0.144241
\(907\) −25.2554 −0.838593 −0.419296 0.907849i \(-0.637723\pi\)
−0.419296 + 0.907849i \(0.637723\pi\)
\(908\) 8.65356 0.287179
\(909\) 51.6972 1.71469
\(910\) −44.7029 −1.48189
\(911\) 34.6945 1.14948 0.574739 0.818337i \(-0.305103\pi\)
0.574739 + 0.818337i \(0.305103\pi\)
\(912\) 0.435570 0.0144232
\(913\) 0 0
\(914\) −28.3746 −0.938548
\(915\) −2.07077 −0.0684574
\(916\) 9.64500 0.318680
\(917\) 93.8261 3.09841
\(918\) −8.73100 −0.288166
\(919\) −2.29770 −0.0757941 −0.0378970 0.999282i \(-0.512066\pi\)
−0.0378970 + 0.999282i \(0.512066\pi\)
\(920\) 25.1296 0.828498
\(921\) 3.44829 0.113625
\(922\) −18.9199 −0.623095
\(923\) −2.60364 −0.0857000
\(924\) 0 0
\(925\) −4.71825 −0.155135
\(926\) −7.61201 −0.250146
\(927\) 18.2597 0.599727
\(928\) −2.69542 −0.0884814
\(929\) −49.5517 −1.62574 −0.812869 0.582447i \(-0.802095\pi\)
−0.812869 + 0.582447i \(0.802095\pi\)
\(930\) 4.87518 0.159864
\(931\) 13.1577 0.431225
\(932\) 10.8057 0.353954
\(933\) 8.62243 0.282286
\(934\) −16.3569 −0.535213
\(935\) 0 0
\(936\) −50.2262 −1.64169
\(937\) 14.4425 0.471817 0.235908 0.971775i \(-0.424193\pi\)
0.235908 + 0.971775i \(0.424193\pi\)
\(938\) 25.2564 0.824652
\(939\) −0.512080 −0.0167111
\(940\) 1.12465 0.0366820
\(941\) −0.846479 −0.0275944 −0.0137972 0.999905i \(-0.504392\pi\)
−0.0137972 + 0.999905i \(0.504392\pi\)
\(942\) −5.55976 −0.181147
\(943\) −48.4245 −1.57692
\(944\) −9.81949 −0.319597
\(945\) 10.8007 0.351348
\(946\) 0 0
\(947\) −29.3178 −0.952702 −0.476351 0.879255i \(-0.658041\pi\)
−0.476351 + 0.879255i \(0.658041\pi\)
\(948\) −2.43483 −0.0790795
\(949\) 35.5065 1.15259
\(950\) −2.55848 −0.0830081
\(951\) 0.221316 0.00717665
\(952\) 74.4946 2.41439
\(953\) −46.9852 −1.52200 −0.761000 0.648752i \(-0.775291\pi\)
−0.761000 + 0.648752i \(0.775291\pi\)
\(954\) −4.21422 −0.136441
\(955\) 14.4546 0.467738
\(956\) 14.5747 0.471379
\(957\) 0 0
\(958\) −38.1267 −1.23182
\(959\) 33.7681 1.09043
\(960\) −3.29005 −0.106186
\(961\) 89.8406 2.89808
\(962\) −12.3183 −0.397157
\(963\) −13.5251 −0.435839
\(964\) −1.19377 −0.0384487
\(965\) 33.5895 1.08128
\(966\) 6.12652 0.197117
\(967\) 27.6316 0.888573 0.444287 0.895885i \(-0.353457\pi\)
0.444287 + 0.895885i \(0.353457\pi\)
\(968\) 0 0
\(969\) 1.34301 0.0431435
\(970\) 26.1033 0.838125
\(971\) 2.40771 0.0772671 0.0386336 0.999253i \(-0.487699\pi\)
0.0386336 + 0.999253i \(0.487699\pi\)
\(972\) 5.22580 0.167618
\(973\) 30.6612 0.982952
\(974\) 21.9439 0.703128
\(975\) −3.23340 −0.103552
\(976\) −8.96894 −0.287089
\(977\) −33.3546 −1.06711 −0.533554 0.845766i \(-0.679144\pi\)
−0.533554 + 0.845766i \(0.679144\pi\)
\(978\) −1.33553 −0.0427056
\(979\) 0 0
\(980\) −17.2095 −0.549736
\(981\) 30.4384 0.971823
\(982\) 25.3151 0.807838
\(983\) −42.1197 −1.34341 −0.671705 0.740819i \(-0.734438\pi\)
−0.671705 + 0.740819i \(0.734438\pi\)
\(984\) 7.34285 0.234082
\(985\) −18.3778 −0.585565
\(986\) 3.78913 0.120670
\(987\) 0.958366 0.0305051
\(988\) 4.46702 0.142115
\(989\) 38.2675 1.21684
\(990\) 0 0
\(991\) 17.5474 0.557412 0.278706 0.960376i \(-0.410094\pi\)
0.278706 + 0.960376i \(0.410094\pi\)
\(992\) −46.3134 −1.47045
\(993\) −2.00584 −0.0636535
\(994\) 2.29618 0.0728306
\(995\) 15.9193 0.504676
\(996\) −1.62799 −0.0515847
\(997\) −22.8361 −0.723226 −0.361613 0.932328i \(-0.617774\pi\)
−0.361613 + 0.932328i \(0.617774\pi\)
\(998\) −20.4624 −0.647726
\(999\) 2.97623 0.0941639
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2299.2.a.p.1.6 7
11.10 odd 2 2299.2.a.r.1.2 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2299.2.a.p.1.6 7 1.1 even 1 trivial
2299.2.a.r.1.2 yes 7 11.10 odd 2