gp: [N,k,chi] = [2280,1,Mod(149,2280)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2280.149");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2280, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 9, 9, 9, 4]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = [12,0,0,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 2280 Z ) × \left(\mathbb{Z}/2280\mathbb{Z}\right)^\times ( Z / 2 2 8 0 Z ) × .
n n n
457 457 4 5 7
761 761 7 6 1
1141 1141 1 1 4 1
1711 1711 1 7 1 1
1921 1921 1 9 2 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
ζ 36 4 \zeta_{36}^{4} ζ 3 6 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 61 6 − 9 T 61 3 + 27 T_{61}^{6} - 9T_{61}^{3} + 27 T 6 1 6 − 9 T 6 1 3 + 2 7
T61^6 - 9*T61^3 + 27
acting on S 1 n e w ( 2280 , [ χ ] ) S_{1}^{\mathrm{new}}(2280, [\chi]) S 1 n e w ( 2 2 8 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 − T 2 + 1 ) 3 (T^{4} - T^{2} + 1)^{3} ( T 4 − T 2 + 1 ) 3
(T^4 - T^2 + 1)^3
3 3 3
T 12 − T 6 + 1 T^{12} - T^{6} + 1 T 1 2 − T 6 + 1
T^12 - T^6 + 1
5 5 5
T 12 − T 6 + 1 T^{12} - T^{6} + 1 T 1 2 − T 6 + 1
T^12 - T^6 + 1
7 7 7
T 12 T^{12} T 1 2
T^12
11 11 1 1
T 12 T^{12} T 1 2
T^12
13 13 1 3
T 12 T^{12} T 1 2
T^12
17 17 1 7
T 12 + 6 T 10 + ⋯ + 9 T^{12} + 6 T^{10} + \cdots + 9 T 1 2 + 6 T 1 0 + ⋯ + 9
T^12 + 6*T^10 + 9*T^8 + 3*T^6 + 36*T^4 - 27*T^2 + 9
19 19 1 9
( T 6 − T 3 + 1 ) 2 (T^{6} - T^{3} + 1)^{2} ( T 6 − T 3 + 1 ) 2
(T^6 - T^3 + 1)^2
23 23 2 3
T 12 + 27 T 6 + 729 T^{12} + 27T^{6} + 729 T 1 2 + 2 7 T 6 + 7 2 9
T^12 + 27*T^6 + 729
29 29 2 9
T 12 T^{12} T 1 2
T^12
31 31 3 1
( T 6 + 3 T 4 − 2 T 3 + ⋯ + 1 ) 2 (T^{6} + 3 T^{4} - 2 T^{3} + \cdots + 1)^{2} ( T 6 + 3 T 4 − 2 T 3 + ⋯ + 1 ) 2
(T^6 + 3*T^4 - 2*T^3 + 9*T^2 - 3*T + 1)^2
37 37 3 7
T 12 T^{12} T 1 2
T^12
41 41 4 1
T 12 T^{12} T 1 2
T^12
43 43 4 3
T 12 T^{12} T 1 2
T^12
47 47 4 7
T 12 − 3 T 10 + ⋯ + 9 T^{12} - 3 T^{10} + \cdots + 9 T 1 2 − 3 T 1 0 + ⋯ + 9
T^12 - 3*T^10 + 18*T^8 - 24*T^6 + 9*T^4 + 27*T^2 + 9
53 53 5 3
T 12 − 3 T 10 + ⋯ + 1 T^{12} - 3 T^{10} + \cdots + 1 T 1 2 − 3 T 1 0 + ⋯ + 1
T^12 - 3*T^10 + 12*T^8 - 46*T^6 + 60*T^4 + 12*T^2 + 1
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
( T 6 − 9 T 3 + 27 ) 2 (T^{6} - 9 T^{3} + 27)^{2} ( T 6 − 9 T 3 + 2 7 ) 2
(T^6 - 9*T^3 + 27)^2
67 67 6 7
T 12 T^{12} T 1 2
T^12
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
T 12 T^{12} T 1 2
T^12
79 79 7 9
( T 6 − T 3 + 1 ) 2 (T^{6} - T^{3} + 1)^{2} ( T 6 − T 3 + 1 ) 2
(T^6 - T^3 + 1)^2
83 83 8 3
T 12 − 6 T 10 + ⋯ + 1 T^{12} - 6 T^{10} + \cdots + 1 T 1 2 − 6 T 1 0 + ⋯ + 1
T^12 - 6*T^10 + 27*T^8 - 52*T^6 + 75*T^4 - 9*T^2 + 1
89 89 8 9
T 12 T^{12} T 1 2
T^12
97 97 9 7
T 12 T^{12} T 1 2
T^12
show more
show less