Properties

Label 2-2280-2280.2069-c0-0-0
Degree $2$
Conductor $2280$
Sign $-0.858 - 0.513i$
Analytic cond. $1.13786$
Root an. cond. $1.06670$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.642 + 0.766i)3-s + (0.499 + 0.866i)4-s + (0.342 + 0.939i)5-s + (0.939 − 0.342i)6-s − 0.999i·8-s + (−0.173 − 0.984i)9-s + (0.173 − 0.984i)10-s + (−0.984 − 0.173i)12-s + (−0.939 − 0.342i)15-s + (−0.5 + 0.866i)16-s + (−0.342 + 1.93i)17-s + (−0.342 + 0.939i)18-s + (−0.766 − 0.642i)19-s + (−0.642 + 0.766i)20-s + ⋯
L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.642 + 0.766i)3-s + (0.499 + 0.866i)4-s + (0.342 + 0.939i)5-s + (0.939 − 0.342i)6-s − 0.999i·8-s + (−0.173 − 0.984i)9-s + (0.173 − 0.984i)10-s + (−0.984 − 0.173i)12-s + (−0.939 − 0.342i)15-s + (−0.5 + 0.866i)16-s + (−0.342 + 1.93i)17-s + (−0.342 + 0.939i)18-s + (−0.766 − 0.642i)19-s + (−0.642 + 0.766i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.858 - 0.513i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.858 - 0.513i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2280\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.858 - 0.513i$
Analytic conductor: \(1.13786\)
Root analytic conductor: \(1.06670\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2280} (2069, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2280,\ (\ :0),\ -0.858 - 0.513i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3837339426\)
\(L(\frac12)\) \(\approx\) \(0.3837339426\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 + (0.642 - 0.766i)T \)
5 \( 1 + (-0.342 - 0.939i)T \)
19 \( 1 + (0.766 + 0.642i)T \)
good7 \( 1 + (0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (0.173 - 0.984i)T^{2} \)
17 \( 1 + (0.342 - 1.93i)T + (-0.939 - 0.342i)T^{2} \)
23 \( 1 + (1.62 + 0.592i)T + (0.766 + 0.642i)T^{2} \)
29 \( 1 + (-0.939 + 0.342i)T^{2} \)
31 \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + (-0.173 - 0.984i)T^{2} \)
43 \( 1 + (0.766 - 0.642i)T^{2} \)
47 \( 1 + (0.118 + 0.673i)T + (-0.939 + 0.342i)T^{2} \)
53 \( 1 + (-0.118 + 0.326i)T + (-0.766 - 0.642i)T^{2} \)
59 \( 1 + (-0.939 - 0.342i)T^{2} \)
61 \( 1 + (0.592 - 1.62i)T + (-0.766 - 0.642i)T^{2} \)
67 \( 1 + (-0.939 + 0.342i)T^{2} \)
71 \( 1 + (-0.766 + 0.642i)T^{2} \)
73 \( 1 + (-0.173 - 0.984i)T^{2} \)
79 \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \)
83 \( 1 + (1.32 - 0.766i)T + (0.5 - 0.866i)T^{2} \)
89 \( 1 + (-0.173 + 0.984i)T^{2} \)
97 \( 1 + (0.939 + 0.342i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.880202802364998209153034966887, −8.760293739111597006304392906327, −8.328487922633138387891379410828, −7.14141709861598642907859357852, −6.36316343480958891975097473652, −5.95721165996957991742702573078, −4.44579765843335490693640190130, −3.77820926868721763996609289593, −2.79083678383815791198290136178, −1.71123606650236916229566638867, 0.36676825379677739762530911359, 1.63154629091130091199776112670, 2.45395178322332084590328062335, 4.41537171812822120663106777409, 5.20830942363695587784332124241, 5.95247798998800777789134227585, 6.50674347119446694714446171264, 7.52627505038794432451777730898, 7.997131013327557277524073764384, 8.757007951301707754471974402137

Graph of the $Z$-function along the critical line