L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.984 + 0.173i)3-s + (0.499 − 0.866i)4-s + (−0.642 − 0.766i)5-s + (−0.766 + 0.642i)6-s − 0.999i·8-s + (0.939 − 0.342i)9-s + (−0.939 − 0.342i)10-s + (−0.342 + 0.939i)12-s + (0.766 + 0.642i)15-s + (−0.5 − 0.866i)16-s + (0.642 + 0.233i)17-s + (0.642 − 0.766i)18-s + (−0.173 − 0.984i)19-s + (−0.984 + 0.173i)20-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.984 + 0.173i)3-s + (0.499 − 0.866i)4-s + (−0.642 − 0.766i)5-s + (−0.766 + 0.642i)6-s − 0.999i·8-s + (0.939 − 0.342i)9-s + (−0.939 − 0.342i)10-s + (−0.342 + 0.939i)12-s + (0.766 + 0.642i)15-s + (−0.5 − 0.866i)16-s + (0.642 + 0.233i)17-s + (0.642 − 0.766i)18-s + (−0.173 − 0.984i)19-s + (−0.984 + 0.173i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.790 + 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.790 + 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.078154741\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.078154741\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.984 - 0.173i)T \) |
| 5 | \( 1 + (0.642 + 0.766i)T \) |
| 19 | \( 1 + (0.173 + 0.984i)T \) |
good | 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.642 - 0.233i)T + (0.766 + 0.642i)T^{2} \) |
| 23 | \( 1 + (1.32 + 1.11i)T + (0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (1.20 - 0.439i)T + (0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (-1.20 + 1.43i)T + (-0.173 - 0.984i)T^{2} \) |
| 59 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (1.11 - 1.32i)T + (-0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.300 - 0.173i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.061530803829175098386023282774, −8.061095725242309848944741077075, −7.10646567230092054105757267757, −6.31135785830731665206854258584, −5.56869046659898620560338306140, −4.75881801760645573639574035556, −4.26655724953542284492924580604, −3.36419466241226147551935355289, −1.91810932016313597134758444884, −0.62465505713173181634435956989,
1.84031266201673028909514047072, 3.21135560212293272170769957832, 3.95355700712657184487834149471, 4.78348030702557850581060254528, 5.79636478587272272853724518631, 6.18933945174162523124461593334, 7.12466427179563983963646733313, 7.66567356742259493092075511798, 8.262752524909803084047733849204, 9.720967453934272745612624129420