Properties

Label 228.2.i.b.49.1
Level $228$
Weight $2$
Character 228.49
Analytic conductor $1.821$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [228,2,Mod(49,228)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(228, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("228.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.82058916609\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.1
Root \(1.32288 + 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 228.49
Dual form 228.2.i.b.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(-1.82288 + 3.15731i) q^{5} +4.64575 q^{7} +(-0.500000 - 0.866025i) q^{9} +0.354249 q^{11} +(2.14575 + 3.71655i) q^{13} +(1.82288 + 3.15731i) q^{15} +(1.64575 - 2.85052i) q^{17} +(-2.64575 - 3.46410i) q^{19} +(2.32288 - 4.02334i) q^{21} +(2.82288 + 4.88936i) q^{23} +(-4.14575 - 7.18065i) q^{25} -1.00000 q^{27} +(-3.64575 - 6.31463i) q^{29} -0.645751 q^{31} +(0.177124 - 0.306788i) q^{33} +(-8.46863 + 14.6681i) q^{35} -5.00000 q^{37} +4.29150 q^{39} +(-2.00000 + 3.46410i) q^{41} +(-2.67712 + 4.63692i) q^{43} +3.64575 q^{45} +(-2.64575 - 4.58258i) q^{47} +14.5830 q^{49} +(-1.64575 - 2.85052i) q^{51} +(-3.46863 - 6.00784i) q^{53} +(-0.645751 + 1.11847i) q^{55} +(-4.32288 + 0.559237i) q^{57} +(-3.82288 + 6.62141i) q^{59} +(-2.50000 - 4.33013i) q^{61} +(-2.32288 - 4.02334i) q^{63} -15.6458 q^{65} +(-6.96863 - 12.0700i) q^{67} +5.64575 q^{69} +(5.00000 - 8.66025i) q^{71} +(3.14575 - 5.44860i) q^{73} -8.29150 q^{75} +1.64575 q^{77} +(-1.67712 + 2.90486i) q^{79} +(-0.500000 + 0.866025i) q^{81} +15.2915 q^{83} +(6.00000 + 10.3923i) q^{85} -7.29150 q^{87} +(-6.82288 - 11.8176i) q^{89} +(9.96863 + 17.2662i) q^{91} +(-0.322876 + 0.559237i) q^{93} +(15.7601 - 2.03884i) q^{95} +(-5.29150 + 9.16515i) q^{97} +(-0.177124 - 0.306788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{5} + 8 q^{7} - 2 q^{9} + 12 q^{11} - 2 q^{13} + 2 q^{15} - 4 q^{17} + 4 q^{21} + 6 q^{23} - 6 q^{25} - 4 q^{27} - 4 q^{29} + 8 q^{31} + 6 q^{33} - 18 q^{35} - 20 q^{37} - 4 q^{39} - 8 q^{41}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/228\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\) \(115\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) −1.82288 + 3.15731i −0.815215 + 1.41199i 0.0939588 + 0.995576i \(0.470048\pi\)
−0.909174 + 0.416417i \(0.863286\pi\)
\(6\) 0 0
\(7\) 4.64575 1.75593 0.877964 0.478726i \(-0.158901\pi\)
0.877964 + 0.478726i \(0.158901\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 0.354249 0.106810 0.0534050 0.998573i \(-0.482993\pi\)
0.0534050 + 0.998573i \(0.482993\pi\)
\(12\) 0 0
\(13\) 2.14575 + 3.71655i 0.595124 + 1.03079i 0.993529 + 0.113576i \(0.0362305\pi\)
−0.398405 + 0.917210i \(0.630436\pi\)
\(14\) 0 0
\(15\) 1.82288 + 3.15731i 0.470664 + 0.815215i
\(16\) 0 0
\(17\) 1.64575 2.85052i 0.399153 0.691354i −0.594468 0.804119i \(-0.702637\pi\)
0.993622 + 0.112765i \(0.0359708\pi\)
\(18\) 0 0
\(19\) −2.64575 3.46410i −0.606977 0.794719i
\(20\) 0 0
\(21\) 2.32288 4.02334i 0.506893 0.877964i
\(22\) 0 0
\(23\) 2.82288 + 4.88936i 0.588610 + 1.01950i 0.994415 + 0.105543i \(0.0336581\pi\)
−0.405804 + 0.913960i \(0.633009\pi\)
\(24\) 0 0
\(25\) −4.14575 7.18065i −0.829150 1.43613i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −3.64575 6.31463i −0.676999 1.17260i −0.975880 0.218306i \(-0.929947\pi\)
0.298881 0.954290i \(-0.403387\pi\)
\(30\) 0 0
\(31\) −0.645751 −0.115980 −0.0579902 0.998317i \(-0.518469\pi\)
−0.0579902 + 0.998317i \(0.518469\pi\)
\(32\) 0 0
\(33\) 0.177124 0.306788i 0.0308334 0.0534050i
\(34\) 0 0
\(35\) −8.46863 + 14.6681i −1.43146 + 2.47936i
\(36\) 0 0
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) 0 0
\(39\) 4.29150 0.687190
\(40\) 0 0
\(41\) −2.00000 + 3.46410i −0.312348 + 0.541002i −0.978870 0.204483i \(-0.934449\pi\)
0.666523 + 0.745485i \(0.267782\pi\)
\(42\) 0 0
\(43\) −2.67712 + 4.63692i −0.408258 + 0.707123i −0.994695 0.102872i \(-0.967197\pi\)
0.586437 + 0.809995i \(0.300530\pi\)
\(44\) 0 0
\(45\) 3.64575 0.543477
\(46\) 0 0
\(47\) −2.64575 4.58258i −0.385922 0.668437i 0.605974 0.795484i \(-0.292783\pi\)
−0.991897 + 0.127047i \(0.959450\pi\)
\(48\) 0 0
\(49\) 14.5830 2.08329
\(50\) 0 0
\(51\) −1.64575 2.85052i −0.230451 0.399153i
\(52\) 0 0
\(53\) −3.46863 6.00784i −0.476453 0.825240i 0.523183 0.852220i \(-0.324744\pi\)
−0.999636 + 0.0269801i \(0.991411\pi\)
\(54\) 0 0
\(55\) −0.645751 + 1.11847i −0.0870731 + 0.150815i
\(56\) 0 0
\(57\) −4.32288 + 0.559237i −0.572579 + 0.0740728i
\(58\) 0 0
\(59\) −3.82288 + 6.62141i −0.497696 + 0.862035i −0.999996 0.00265837i \(-0.999154\pi\)
0.502300 + 0.864693i \(0.332487\pi\)
\(60\) 0 0
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) 0 0
\(63\) −2.32288 4.02334i −0.292655 0.506893i
\(64\) 0 0
\(65\) −15.6458 −1.94062
\(66\) 0 0
\(67\) −6.96863 12.0700i −0.851353 1.47459i −0.879987 0.474997i \(-0.842449\pi\)
0.0286340 0.999590i \(-0.490884\pi\)
\(68\) 0 0
\(69\) 5.64575 0.679669
\(70\) 0 0
\(71\) 5.00000 8.66025i 0.593391 1.02778i −0.400381 0.916349i \(-0.631122\pi\)
0.993772 0.111434i \(-0.0355445\pi\)
\(72\) 0 0
\(73\) 3.14575 5.44860i 0.368182 0.637711i −0.621099 0.783732i \(-0.713314\pi\)
0.989281 + 0.146022i \(0.0466469\pi\)
\(74\) 0 0
\(75\) −8.29150 −0.957420
\(76\) 0 0
\(77\) 1.64575 0.187551
\(78\) 0 0
\(79\) −1.67712 + 2.90486i −0.188691 + 0.326823i −0.944814 0.327607i \(-0.893758\pi\)
0.756123 + 0.654430i \(0.227091\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 15.2915 1.67846 0.839230 0.543776i \(-0.183006\pi\)
0.839230 + 0.543776i \(0.183006\pi\)
\(84\) 0 0
\(85\) 6.00000 + 10.3923i 0.650791 + 1.12720i
\(86\) 0 0
\(87\) −7.29150 −0.781731
\(88\) 0 0
\(89\) −6.82288 11.8176i −0.723223 1.25266i −0.959701 0.281023i \(-0.909326\pi\)
0.236478 0.971637i \(-0.424007\pi\)
\(90\) 0 0
\(91\) 9.96863 + 17.2662i 1.04500 + 1.80999i
\(92\) 0 0
\(93\) −0.322876 + 0.559237i −0.0334806 + 0.0579902i
\(94\) 0 0
\(95\) 15.7601 2.03884i 1.61696 0.209180i
\(96\) 0 0
\(97\) −5.29150 + 9.16515i −0.537271 + 0.930580i 0.461779 + 0.886995i \(0.347211\pi\)
−0.999050 + 0.0435851i \(0.986122\pi\)
\(98\) 0 0
\(99\) −0.177124 0.306788i −0.0178017 0.0308334i
\(100\) 0 0
\(101\) 9.93725 + 17.2118i 0.988794 + 1.71264i 0.623684 + 0.781676i \(0.285635\pi\)
0.365109 + 0.930965i \(0.381032\pi\)
\(102\) 0 0
\(103\) 7.93725 0.782081 0.391040 0.920373i \(-0.372115\pi\)
0.391040 + 0.920373i \(0.372115\pi\)
\(104\) 0 0
\(105\) 8.46863 + 14.6681i 0.826453 + 1.43146i
\(106\) 0 0
\(107\) 14.0000 1.35343 0.676716 0.736245i \(-0.263403\pi\)
0.676716 + 0.736245i \(0.263403\pi\)
\(108\) 0 0
\(109\) 4.35425 7.54178i 0.417061 0.722372i −0.578581 0.815625i \(-0.696393\pi\)
0.995642 + 0.0932534i \(0.0297267\pi\)
\(110\) 0 0
\(111\) −2.50000 + 4.33013i −0.237289 + 0.410997i
\(112\) 0 0
\(113\) −5.64575 −0.531108 −0.265554 0.964096i \(-0.585555\pi\)
−0.265554 + 0.964096i \(0.585555\pi\)
\(114\) 0 0
\(115\) −20.5830 −1.91938
\(116\) 0 0
\(117\) 2.14575 3.71655i 0.198375 0.343595i
\(118\) 0 0
\(119\) 7.64575 13.2428i 0.700885 1.21397i
\(120\) 0 0
\(121\) −10.8745 −0.988592
\(122\) 0 0
\(123\) 2.00000 + 3.46410i 0.180334 + 0.312348i
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 1.64575 + 2.85052i 0.146037 + 0.252943i 0.929759 0.368168i \(-0.120015\pi\)
−0.783722 + 0.621111i \(0.786682\pi\)
\(128\) 0 0
\(129\) 2.67712 + 4.63692i 0.235708 + 0.408258i
\(130\) 0 0
\(131\) −3.00000 + 5.19615i −0.262111 + 0.453990i −0.966803 0.255524i \(-0.917752\pi\)
0.704692 + 0.709514i \(0.251085\pi\)
\(132\) 0 0
\(133\) −12.2915 16.0934i −1.06581 1.39547i
\(134\) 0 0
\(135\) 1.82288 3.15731i 0.156888 0.271738i
\(136\) 0 0
\(137\) −6.64575 11.5108i −0.567785 0.983432i −0.996785 0.0801276i \(-0.974467\pi\)
0.429000 0.903305i \(-0.358866\pi\)
\(138\) 0 0
\(139\) 2.32288 + 4.02334i 0.197024 + 0.341255i 0.947562 0.319572i \(-0.103539\pi\)
−0.750538 + 0.660827i \(0.770206\pi\)
\(140\) 0 0
\(141\) −5.29150 −0.445625
\(142\) 0 0
\(143\) 0.760130 + 1.31658i 0.0635652 + 0.110098i
\(144\) 0 0
\(145\) 26.5830 2.20760
\(146\) 0 0
\(147\) 7.29150 12.6293i 0.601393 1.04164i
\(148\) 0 0
\(149\) 0.822876 1.42526i 0.0674126 0.116762i −0.830349 0.557244i \(-0.811859\pi\)
0.897762 + 0.440482i \(0.145192\pi\)
\(150\) 0 0
\(151\) −0.708497 −0.0576567 −0.0288283 0.999584i \(-0.509178\pi\)
−0.0288283 + 0.999584i \(0.509178\pi\)
\(152\) 0 0
\(153\) −3.29150 −0.266102
\(154\) 0 0
\(155\) 1.17712 2.03884i 0.0945489 0.163764i
\(156\) 0 0
\(157\) −5.14575 + 8.91270i −0.410676 + 0.711311i −0.994964 0.100235i \(-0.968040\pi\)
0.584288 + 0.811546i \(0.301374\pi\)
\(158\) 0 0
\(159\) −6.93725 −0.550160
\(160\) 0 0
\(161\) 13.1144 + 22.7148i 1.03356 + 1.79017i
\(162\) 0 0
\(163\) 0.0627461 0.00491465 0.00245733 0.999997i \(-0.499218\pi\)
0.00245733 + 0.999997i \(0.499218\pi\)
\(164\) 0 0
\(165\) 0.645751 + 1.11847i 0.0502717 + 0.0870731i
\(166\) 0 0
\(167\) −0.531373 0.920365i −0.0411189 0.0712200i 0.844734 0.535187i \(-0.179759\pi\)
−0.885852 + 0.463967i \(0.846426\pi\)
\(168\) 0 0
\(169\) −2.70850 + 4.69126i −0.208346 + 0.360866i
\(170\) 0 0
\(171\) −1.67712 + 4.02334i −0.128253 + 0.307672i
\(172\) 0 0
\(173\) 4.93725 8.55157i 0.375372 0.650164i −0.615010 0.788519i \(-0.710848\pi\)
0.990383 + 0.138355i \(0.0441815\pi\)
\(174\) 0 0
\(175\) −19.2601 33.3595i −1.45593 2.52174i
\(176\) 0 0
\(177\) 3.82288 + 6.62141i 0.287345 + 0.497696i
\(178\) 0 0
\(179\) −10.3542 −0.773913 −0.386956 0.922098i \(-0.626474\pi\)
−0.386956 + 0.922098i \(0.626474\pi\)
\(180\) 0 0
\(181\) 13.2915 + 23.0216i 0.987950 + 1.71118i 0.628015 + 0.778202i \(0.283868\pi\)
0.359935 + 0.932977i \(0.382799\pi\)
\(182\) 0 0
\(183\) −5.00000 −0.369611
\(184\) 0 0
\(185\) 9.11438 15.7866i 0.670102 1.16065i
\(186\) 0 0
\(187\) 0.583005 1.00979i 0.0426336 0.0738435i
\(188\) 0 0
\(189\) −4.64575 −0.337929
\(190\) 0 0
\(191\) −0.937254 −0.0678173 −0.0339087 0.999425i \(-0.510796\pi\)
−0.0339087 + 0.999425i \(0.510796\pi\)
\(192\) 0 0
\(193\) −11.0830 + 19.1963i −0.797772 + 1.38178i 0.123292 + 0.992370i \(0.460655\pi\)
−0.921064 + 0.389411i \(0.872678\pi\)
\(194\) 0 0
\(195\) −7.82288 + 13.5496i −0.560208 + 0.970308i
\(196\) 0 0
\(197\) −17.6458 −1.25721 −0.628604 0.777726i \(-0.716373\pi\)
−0.628604 + 0.777726i \(0.716373\pi\)
\(198\) 0 0
\(199\) 5.96863 + 10.3380i 0.423105 + 0.732839i 0.996241 0.0866209i \(-0.0276069\pi\)
−0.573137 + 0.819460i \(0.694274\pi\)
\(200\) 0 0
\(201\) −13.9373 −0.983058
\(202\) 0 0
\(203\) −16.9373 29.3362i −1.18876 2.05900i
\(204\) 0 0
\(205\) −7.29150 12.6293i −0.509261 0.882065i
\(206\) 0 0
\(207\) 2.82288 4.88936i 0.196203 0.339834i
\(208\) 0 0
\(209\) −0.937254 1.22715i −0.0648312 0.0848840i
\(210\) 0 0
\(211\) −5.32288 + 9.21949i −0.366442 + 0.634696i −0.989006 0.147873i \(-0.952757\pi\)
0.622565 + 0.782568i \(0.286091\pi\)
\(212\) 0 0
\(213\) −5.00000 8.66025i −0.342594 0.593391i
\(214\) 0 0
\(215\) −9.76013 16.9050i −0.665635 1.15291i
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) 0 0
\(219\) −3.14575 5.44860i −0.212570 0.368182i
\(220\) 0 0
\(221\) 14.1255 0.950183
\(222\) 0 0
\(223\) 2.67712 4.63692i 0.179274 0.310511i −0.762358 0.647155i \(-0.775959\pi\)
0.941632 + 0.336644i \(0.109292\pi\)
\(224\) 0 0
\(225\) −4.14575 + 7.18065i −0.276383 + 0.478710i
\(226\) 0 0
\(227\) 15.5203 1.03012 0.515058 0.857155i \(-0.327770\pi\)
0.515058 + 0.857155i \(0.327770\pi\)
\(228\) 0 0
\(229\) −9.70850 −0.641556 −0.320778 0.947154i \(-0.603944\pi\)
−0.320778 + 0.947154i \(0.603944\pi\)
\(230\) 0 0
\(231\) 0.822876 1.42526i 0.0541412 0.0937754i
\(232\) 0 0
\(233\) 1.93725 3.35542i 0.126914 0.219821i −0.795566 0.605867i \(-0.792826\pi\)
0.922479 + 0.386046i \(0.126160\pi\)
\(234\) 0 0
\(235\) 19.2915 1.25844
\(236\) 0 0
\(237\) 1.67712 + 2.90486i 0.108941 + 0.188691i
\(238\) 0 0
\(239\) 4.93725 0.319364 0.159682 0.987168i \(-0.448953\pi\)
0.159682 + 0.987168i \(0.448953\pi\)
\(240\) 0 0
\(241\) −5.43725 9.41760i −0.350244 0.606641i 0.636048 0.771650i \(-0.280568\pi\)
−0.986292 + 0.165009i \(0.947235\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −26.5830 + 46.0431i −1.69833 + 2.94159i
\(246\) 0 0
\(247\) 7.19738 17.2662i 0.457959 1.09862i
\(248\) 0 0
\(249\) 7.64575 13.2428i 0.484530 0.839230i
\(250\) 0 0
\(251\) 6.64575 + 11.5108i 0.419476 + 0.726554i 0.995887 0.0906062i \(-0.0288805\pi\)
−0.576411 + 0.817160i \(0.695547\pi\)
\(252\) 0 0
\(253\) 1.00000 + 1.73205i 0.0628695 + 0.108893i
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) −7.82288 13.5496i −0.487978 0.845202i 0.511927 0.859029i \(-0.328932\pi\)
−0.999904 + 0.0138271i \(0.995599\pi\)
\(258\) 0 0
\(259\) −23.2288 −1.44336
\(260\) 0 0
\(261\) −3.64575 + 6.31463i −0.225666 + 0.390866i
\(262\) 0 0
\(263\) −9.00000 + 15.5885i −0.554964 + 0.961225i 0.442943 + 0.896550i \(0.353935\pi\)
−0.997906 + 0.0646755i \(0.979399\pi\)
\(264\) 0 0
\(265\) 25.2915 1.55364
\(266\) 0 0
\(267\) −13.6458 −0.835106
\(268\) 0 0
\(269\) 6.82288 11.8176i 0.415998 0.720530i −0.579535 0.814948i \(-0.696766\pi\)
0.995533 + 0.0944179i \(0.0300990\pi\)
\(270\) 0 0
\(271\) −5.29150 + 9.16515i −0.321436 + 0.556743i −0.980785 0.195094i \(-0.937499\pi\)
0.659349 + 0.751837i \(0.270832\pi\)
\(272\) 0 0
\(273\) 19.9373 1.20666
\(274\) 0 0
\(275\) −1.46863 2.54374i −0.0885615 0.153393i
\(276\) 0 0
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 0 0
\(279\) 0.322876 + 0.559237i 0.0193301 + 0.0334806i
\(280\) 0 0
\(281\) 3.46863 + 6.00784i 0.206921 + 0.358398i 0.950743 0.309980i \(-0.100322\pi\)
−0.743822 + 0.668378i \(0.766989\pi\)
\(282\) 0 0
\(283\) 2.70850 4.69126i 0.161003 0.278866i −0.774225 0.632910i \(-0.781860\pi\)
0.935229 + 0.354044i \(0.115194\pi\)
\(284\) 0 0
\(285\) 6.11438 14.6681i 0.362185 0.868863i
\(286\) 0 0
\(287\) −9.29150 + 16.0934i −0.548460 + 0.949961i
\(288\) 0 0
\(289\) 3.08301 + 5.33992i 0.181353 + 0.314113i
\(290\) 0 0
\(291\) 5.29150 + 9.16515i 0.310193 + 0.537271i
\(292\) 0 0
\(293\) −24.5830 −1.43615 −0.718077 0.695963i \(-0.754978\pi\)
−0.718077 + 0.695963i \(0.754978\pi\)
\(294\) 0 0
\(295\) −13.9373 24.1400i −0.811458 1.40549i
\(296\) 0 0
\(297\) −0.354249 −0.0205556
\(298\) 0 0
\(299\) −12.1144 + 20.9827i −0.700593 + 1.21346i
\(300\) 0 0
\(301\) −12.4373 + 21.5420i −0.716871 + 1.24166i
\(302\) 0 0
\(303\) 19.8745 1.14176
\(304\) 0 0
\(305\) 18.2288 1.04378
\(306\) 0 0
\(307\) 13.9373 24.1400i 0.795441 1.37774i −0.127118 0.991888i \(-0.540573\pi\)
0.922559 0.385857i \(-0.126094\pi\)
\(308\) 0 0
\(309\) 3.96863 6.87386i 0.225767 0.391040i
\(310\) 0 0
\(311\) 17.0627 0.967540 0.483770 0.875195i \(-0.339267\pi\)
0.483770 + 0.875195i \(0.339267\pi\)
\(312\) 0 0
\(313\) 9.64575 + 16.7069i 0.545210 + 0.944332i 0.998594 + 0.0530161i \(0.0168835\pi\)
−0.453384 + 0.891316i \(0.649783\pi\)
\(314\) 0 0
\(315\) 16.9373 0.954306
\(316\) 0 0
\(317\) 5.46863 + 9.47194i 0.307149 + 0.531997i 0.977737 0.209832i \(-0.0672918\pi\)
−0.670589 + 0.741829i \(0.733958\pi\)
\(318\) 0 0
\(319\) −1.29150 2.23695i −0.0723103 0.125245i
\(320\) 0 0
\(321\) 7.00000 12.1244i 0.390702 0.676716i
\(322\) 0 0
\(323\) −14.2288 + 1.84073i −0.791709 + 0.102421i
\(324\) 0 0
\(325\) 17.7915 30.8158i 0.986895 1.70935i
\(326\) 0 0
\(327\) −4.35425 7.54178i −0.240791 0.417061i
\(328\) 0 0
\(329\) −12.2915 21.2895i −0.677652 1.17373i
\(330\) 0 0
\(331\) −21.2288 −1.16684 −0.583419 0.812171i \(-0.698285\pi\)
−0.583419 + 0.812171i \(0.698285\pi\)
\(332\) 0 0
\(333\) 2.50000 + 4.33013i 0.136999 + 0.237289i
\(334\) 0 0
\(335\) 50.8118 2.77614
\(336\) 0 0
\(337\) 10.1458 17.5730i 0.552674 0.957260i −0.445406 0.895329i \(-0.646941\pi\)
0.998080 0.0619313i \(-0.0197260\pi\)
\(338\) 0 0
\(339\) −2.82288 + 4.88936i −0.153318 + 0.265554i
\(340\) 0 0
\(341\) −0.228757 −0.0123879
\(342\) 0 0
\(343\) 35.2288 1.90217
\(344\) 0 0
\(345\) −10.2915 + 17.8254i −0.554076 + 0.959688i
\(346\) 0 0
\(347\) −9.40588 + 16.2915i −0.504934 + 0.874572i 0.495050 + 0.868865i \(0.335150\pi\)
−0.999984 + 0.00570686i \(0.998183\pi\)
\(348\) 0 0
\(349\) 10.8745 0.582099 0.291050 0.956708i \(-0.405996\pi\)
0.291050 + 0.956708i \(0.405996\pi\)
\(350\) 0 0
\(351\) −2.14575 3.71655i −0.114532 0.198375i
\(352\) 0 0
\(353\) −10.9373 −0.582131 −0.291066 0.956703i \(-0.594010\pi\)
−0.291066 + 0.956703i \(0.594010\pi\)
\(354\) 0 0
\(355\) 18.2288 + 31.5731i 0.967482 + 1.67573i
\(356\) 0 0
\(357\) −7.64575 13.2428i −0.404656 0.700885i
\(358\) 0 0
\(359\) −12.0000 + 20.7846i −0.633336 + 1.09697i 0.353529 + 0.935423i \(0.384981\pi\)
−0.986865 + 0.161546i \(0.948352\pi\)
\(360\) 0 0
\(361\) −5.00000 + 18.3303i −0.263158 + 0.964753i
\(362\) 0 0
\(363\) −5.43725 + 9.41760i −0.285382 + 0.494296i
\(364\) 0 0
\(365\) 11.4686 + 19.8642i 0.600295 + 1.03974i
\(366\) 0 0
\(367\) 6.61438 + 11.4564i 0.345268 + 0.598021i 0.985402 0.170241i \(-0.0544548\pi\)
−0.640135 + 0.768263i \(0.721121\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) −16.1144 27.9109i −0.836617 1.44906i
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 6.00000 10.3923i 0.309839 0.536656i
\(376\) 0 0
\(377\) 15.6458 27.0992i 0.805797 1.39568i
\(378\) 0 0
\(379\) −8.52026 −0.437656 −0.218828 0.975763i \(-0.570223\pi\)
−0.218828 + 0.975763i \(0.570223\pi\)
\(380\) 0 0
\(381\) 3.29150 0.168629
\(382\) 0 0
\(383\) −5.82288 + 10.0855i −0.297535 + 0.515346i −0.975571 0.219683i \(-0.929498\pi\)
0.678036 + 0.735028i \(0.262831\pi\)
\(384\) 0 0
\(385\) −3.00000 + 5.19615i −0.152894 + 0.264820i
\(386\) 0 0
\(387\) 5.35425 0.272172
\(388\) 0 0
\(389\) 4.88562 + 8.46215i 0.247711 + 0.429048i 0.962890 0.269893i \(-0.0869884\pi\)
−0.715179 + 0.698941i \(0.753655\pi\)
\(390\) 0 0
\(391\) 18.5830 0.939783
\(392\) 0 0
\(393\) 3.00000 + 5.19615i 0.151330 + 0.262111i
\(394\) 0 0
\(395\) −6.11438 10.5904i −0.307648 0.532862i
\(396\) 0 0
\(397\) 11.1458 19.3050i 0.559389 0.968891i −0.438158 0.898898i \(-0.644369\pi\)
0.997548 0.0699927i \(-0.0222976\pi\)
\(398\) 0 0
\(399\) −20.0830 + 2.59808i −1.00541 + 0.130066i
\(400\) 0 0
\(401\) −7.17712 + 12.4311i −0.358408 + 0.620782i −0.987695 0.156392i \(-0.950014\pi\)
0.629287 + 0.777173i \(0.283347\pi\)
\(402\) 0 0
\(403\) −1.38562 2.39997i −0.0690227 0.119551i
\(404\) 0 0
\(405\) −1.82288 3.15731i −0.0905794 0.156888i
\(406\) 0 0
\(407\) −1.77124 −0.0877973
\(408\) 0 0
\(409\) 2.35425 + 4.07768i 0.116410 + 0.201628i 0.918343 0.395787i \(-0.129528\pi\)
−0.801932 + 0.597415i \(0.796195\pi\)
\(410\) 0 0
\(411\) −13.2915 −0.655621
\(412\) 0 0
\(413\) −17.7601 + 30.7614i −0.873919 + 1.51367i
\(414\) 0 0
\(415\) −27.8745 + 48.2801i −1.36831 + 2.36998i
\(416\) 0 0
\(417\) 4.64575 0.227503
\(418\) 0 0
\(419\) 22.9373 1.12056 0.560279 0.828304i \(-0.310694\pi\)
0.560279 + 0.828304i \(0.310694\pi\)
\(420\) 0 0
\(421\) 10.2288 17.7167i 0.498519 0.863460i −0.501479 0.865170i \(-0.667211\pi\)
0.999999 + 0.00170916i \(0.000544044\pi\)
\(422\) 0 0
\(423\) −2.64575 + 4.58258i −0.128641 + 0.222812i
\(424\) 0 0
\(425\) −27.2915 −1.32383
\(426\) 0 0
\(427\) −11.6144 20.1167i −0.562059 0.973515i
\(428\) 0 0
\(429\) 1.52026 0.0733988
\(430\) 0 0
\(431\) 17.2288 + 29.8411i 0.829880 + 1.43739i 0.898132 + 0.439726i \(0.144925\pi\)
−0.0682519 + 0.997668i \(0.521742\pi\)
\(432\) 0 0
\(433\) 5.14575 + 8.91270i 0.247289 + 0.428317i 0.962773 0.270312i \(-0.0871270\pi\)
−0.715484 + 0.698629i \(0.753794\pi\)
\(434\) 0 0
\(435\) 13.2915 23.0216i 0.637279 1.10380i
\(436\) 0 0
\(437\) 9.46863 22.7148i 0.452946 1.08659i
\(438\) 0 0
\(439\) 9.26013 16.0390i 0.441962 0.765500i −0.555873 0.831267i \(-0.687616\pi\)
0.997835 + 0.0657667i \(0.0209493\pi\)
\(440\) 0 0
\(441\) −7.29150 12.6293i −0.347214 0.601393i
\(442\) 0 0
\(443\) −9.64575 16.7069i −0.458283 0.793770i 0.540587 0.841288i \(-0.318202\pi\)
−0.998870 + 0.0475179i \(0.984869\pi\)
\(444\) 0 0
\(445\) 49.7490 2.35833
\(446\) 0 0
\(447\) −0.822876 1.42526i −0.0389207 0.0674126i
\(448\) 0 0
\(449\) 7.29150 0.344107 0.172054 0.985088i \(-0.444960\pi\)
0.172054 + 0.985088i \(0.444960\pi\)
\(450\) 0 0
\(451\) −0.708497 + 1.22715i −0.0333618 + 0.0577844i
\(452\) 0 0
\(453\) −0.354249 + 0.613577i −0.0166441 + 0.0288283i
\(454\) 0 0
\(455\) −72.6863 −3.40758
\(456\) 0 0
\(457\) −34.8745 −1.63136 −0.815680 0.578503i \(-0.803637\pi\)
−0.815680 + 0.578503i \(0.803637\pi\)
\(458\) 0 0
\(459\) −1.64575 + 2.85052i −0.0768171 + 0.133051i
\(460\) 0 0
\(461\) 2.23987 3.87957i 0.104321 0.180690i −0.809139 0.587617i \(-0.800066\pi\)
0.913461 + 0.406927i \(0.133400\pi\)
\(462\) 0 0
\(463\) 33.2288 1.54427 0.772136 0.635458i \(-0.219189\pi\)
0.772136 + 0.635458i \(0.219189\pi\)
\(464\) 0 0
\(465\) −1.17712 2.03884i −0.0545878 0.0945489i
\(466\) 0 0
\(467\) −9.16601 −0.424152 −0.212076 0.977253i \(-0.568023\pi\)
−0.212076 + 0.977253i \(0.568023\pi\)
\(468\) 0 0
\(469\) −32.3745 56.0743i −1.49492 2.58927i
\(470\) 0 0
\(471\) 5.14575 + 8.91270i 0.237104 + 0.410676i
\(472\) 0 0
\(473\) −0.948368 + 1.64262i −0.0436060 + 0.0755278i
\(474\) 0 0
\(475\) −13.9059 + 33.3595i −0.638046 + 1.53064i
\(476\) 0 0
\(477\) −3.46863 + 6.00784i −0.158818 + 0.275080i
\(478\) 0 0
\(479\) 0.416995 + 0.722256i 0.0190530 + 0.0330007i 0.875395 0.483409i \(-0.160602\pi\)
−0.856342 + 0.516410i \(0.827268\pi\)
\(480\) 0 0
\(481\) −10.7288 18.5828i −0.489189 0.847301i
\(482\) 0 0
\(483\) 26.2288 1.19345
\(484\) 0 0
\(485\) −19.2915 33.4139i −0.875982 1.51725i
\(486\) 0 0
\(487\) 0.708497 0.0321051 0.0160525 0.999871i \(-0.494890\pi\)
0.0160525 + 0.999871i \(0.494890\pi\)
\(488\) 0 0
\(489\) 0.0313730 0.0543397i 0.00141874 0.00245733i
\(490\) 0 0
\(491\) 11.5830 20.0624i 0.522734 0.905401i −0.476916 0.878949i \(-0.658246\pi\)
0.999650 0.0264527i \(-0.00842113\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 1.29150 0.0580487
\(496\) 0 0
\(497\) 23.2288 40.2334i 1.04195 1.80471i
\(498\) 0 0
\(499\) 11.5516 20.0080i 0.517122 0.895682i −0.482680 0.875797i \(-0.660337\pi\)
0.999802 0.0198850i \(-0.00633002\pi\)
\(500\) 0 0
\(501\) −1.06275 −0.0474800
\(502\) 0 0
\(503\) −10.3542 17.9341i −0.461673 0.799641i 0.537371 0.843346i \(-0.319417\pi\)
−0.999045 + 0.0437044i \(0.986084\pi\)
\(504\) 0 0
\(505\) −72.4575 −3.22432
\(506\) 0 0
\(507\) 2.70850 + 4.69126i 0.120289 + 0.208346i
\(508\) 0 0
\(509\) 22.1660 + 38.3927i 0.982491 + 1.70172i 0.652594 + 0.757708i \(0.273681\pi\)
0.329897 + 0.944017i \(0.392986\pi\)
\(510\) 0 0
\(511\) 14.6144 25.3128i 0.646502 1.11977i
\(512\) 0 0
\(513\) 2.64575 + 3.46410i 0.116813 + 0.152944i
\(514\) 0 0
\(515\) −14.4686 + 25.0604i −0.637564 + 1.10429i
\(516\) 0 0
\(517\) −0.937254 1.62337i −0.0412204 0.0713958i
\(518\) 0 0
\(519\) −4.93725 8.55157i −0.216721 0.375372i
\(520\) 0 0
\(521\) −17.6458 −0.773074 −0.386537 0.922274i \(-0.626329\pi\)
−0.386537 + 0.922274i \(0.626329\pi\)
\(522\) 0 0
\(523\) 17.1974 + 29.7867i 0.751989 + 1.30248i 0.946857 + 0.321654i \(0.104239\pi\)
−0.194868 + 0.980829i \(0.562428\pi\)
\(524\) 0 0
\(525\) −38.5203 −1.68116
\(526\) 0 0
\(527\) −1.06275 + 1.84073i −0.0462939 + 0.0801835i
\(528\) 0 0
\(529\) −4.43725 + 7.68555i −0.192924 + 0.334154i
\(530\) 0 0
\(531\) 7.64575 0.331797
\(532\) 0 0
\(533\) −17.1660 −0.743542
\(534\) 0 0
\(535\) −25.5203 + 44.2024i −1.10334 + 1.91104i
\(536\) 0 0
\(537\) −5.17712 + 8.96704i −0.223409 + 0.386956i
\(538\) 0 0
\(539\) 5.16601 0.222516
\(540\) 0 0
\(541\) −13.4373 23.2740i −0.577713 1.00063i −0.995741 0.0921937i \(-0.970612\pi\)
0.418028 0.908434i \(-0.362721\pi\)
\(542\) 0 0
\(543\) 26.5830 1.14079
\(544\) 0 0
\(545\) 15.8745 + 27.4955i 0.679989 + 1.17778i
\(546\) 0 0
\(547\) 0.614378 + 1.06413i 0.0262689 + 0.0454991i 0.878861 0.477078i \(-0.158304\pi\)
−0.852592 + 0.522577i \(0.824971\pi\)
\(548\) 0 0
\(549\) −2.50000 + 4.33013i −0.106697 + 0.184805i
\(550\) 0 0
\(551\) −12.2288 + 29.3362i −0.520963 + 1.24976i
\(552\) 0 0
\(553\) −7.79150 + 13.4953i −0.331328 + 0.573878i
\(554\) 0 0
\(555\) −9.11438 15.7866i −0.386884 0.670102i
\(556\) 0 0
\(557\) 17.9373 + 31.0682i 0.760026 + 1.31640i 0.942837 + 0.333255i \(0.108147\pi\)
−0.182811 + 0.983148i \(0.558520\pi\)
\(558\) 0 0
\(559\) −22.9778 −0.971856
\(560\) 0 0
\(561\) −0.583005 1.00979i −0.0246145 0.0426336i
\(562\) 0 0
\(563\) 6.00000 0.252870 0.126435 0.991975i \(-0.459647\pi\)
0.126435 + 0.991975i \(0.459647\pi\)
\(564\) 0 0
\(565\) 10.2915 17.8254i 0.432967 0.749920i
\(566\) 0 0
\(567\) −2.32288 + 4.02334i −0.0975516 + 0.168964i
\(568\) 0 0
\(569\) 41.1660 1.72577 0.862884 0.505401i \(-0.168656\pi\)
0.862884 + 0.505401i \(0.168656\pi\)
\(570\) 0 0
\(571\) 3.93725 0.164769 0.0823845 0.996601i \(-0.473746\pi\)
0.0823845 + 0.996601i \(0.473746\pi\)
\(572\) 0 0
\(573\) −0.468627 + 0.811686i −0.0195772 + 0.0339087i
\(574\) 0 0
\(575\) 23.4059 40.5402i 0.976093 1.69064i
\(576\) 0 0
\(577\) −0.708497 −0.0294951 −0.0147476 0.999891i \(-0.504694\pi\)
−0.0147476 + 0.999891i \(0.504694\pi\)
\(578\) 0 0
\(579\) 11.0830 + 19.1963i 0.460594 + 0.797772i
\(580\) 0 0
\(581\) 71.0405 2.94726
\(582\) 0 0
\(583\) −1.22876 2.12827i −0.0508899 0.0881439i
\(584\) 0 0
\(585\) 7.82288 + 13.5496i 0.323436 + 0.560208i
\(586\) 0 0
\(587\) 13.1144 22.7148i 0.541288 0.937539i −0.457542 0.889188i \(-0.651270\pi\)
0.998830 0.0483509i \(-0.0153966\pi\)
\(588\) 0 0
\(589\) 1.70850 + 2.23695i 0.0703974 + 0.0921718i
\(590\) 0 0
\(591\) −8.82288 + 15.2817i −0.362925 + 0.628604i
\(592\) 0 0
\(593\) −4.46863 7.73989i −0.183505 0.317839i 0.759567 0.650429i \(-0.225411\pi\)
−0.943072 + 0.332590i \(0.892078\pi\)
\(594\) 0 0
\(595\) 27.8745 + 48.2801i 1.14274 + 1.97929i
\(596\) 0 0
\(597\) 11.9373 0.488559
\(598\) 0 0
\(599\) 3.82288 + 6.62141i 0.156198 + 0.270544i 0.933495 0.358591i \(-0.116743\pi\)
−0.777296 + 0.629135i \(0.783409\pi\)
\(600\) 0 0
\(601\) −19.7085 −0.803926 −0.401963 0.915656i \(-0.631672\pi\)
−0.401963 + 0.915656i \(0.631672\pi\)
\(602\) 0 0
\(603\) −6.96863 + 12.0700i −0.283784 + 0.491529i
\(604\) 0 0
\(605\) 19.8229 34.3342i 0.805914 1.39588i
\(606\) 0 0
\(607\) −35.9373 −1.45865 −0.729324 0.684168i \(-0.760165\pi\)
−0.729324 + 0.684168i \(0.760165\pi\)
\(608\) 0 0
\(609\) −33.8745 −1.37266
\(610\) 0 0
\(611\) 11.3542 19.6661i 0.459344 0.795607i
\(612\) 0 0
\(613\) 4.58301 7.93800i 0.185106 0.320613i −0.758506 0.651666i \(-0.774071\pi\)
0.943612 + 0.331053i \(0.107404\pi\)
\(614\) 0 0
\(615\) −14.5830 −0.588044
\(616\) 0 0
\(617\) −9.53137 16.5088i −0.383719 0.664620i 0.607872 0.794035i \(-0.292023\pi\)
−0.991591 + 0.129415i \(0.958690\pi\)
\(618\) 0 0
\(619\) 23.9373 0.962119 0.481060 0.876688i \(-0.340252\pi\)
0.481060 + 0.876688i \(0.340252\pi\)
\(620\) 0 0
\(621\) −2.82288 4.88936i −0.113278 0.196203i
\(622\) 0 0
\(623\) −31.6974 54.9015i −1.26993 2.19958i
\(624\) 0 0
\(625\) −1.14575 + 1.98450i −0.0458301 + 0.0793800i
\(626\) 0 0
\(627\) −1.53137 + 0.198109i −0.0611571 + 0.00791171i
\(628\) 0 0
\(629\) −8.22876 + 14.2526i −0.328102 + 0.568289i
\(630\) 0 0
\(631\) 8.96863 + 15.5341i 0.357035 + 0.618403i 0.987464 0.157844i \(-0.0504542\pi\)
−0.630429 + 0.776247i \(0.717121\pi\)
\(632\) 0 0
\(633\) 5.32288 + 9.21949i 0.211565 + 0.366442i
\(634\) 0 0
\(635\) −12.0000 −0.476205
\(636\) 0 0
\(637\) 31.2915 + 54.1985i 1.23981 + 2.14742i
\(638\) 0 0
\(639\) −10.0000 −0.395594
\(640\) 0 0
\(641\) −0.291503 + 0.504897i −0.0115137 + 0.0199422i −0.871725 0.489996i \(-0.836998\pi\)
0.860211 + 0.509938i \(0.170332\pi\)
\(642\) 0 0
\(643\) 22.9686 39.7828i 0.905794 1.56888i 0.0859467 0.996300i \(-0.472609\pi\)
0.819848 0.572582i \(-0.194058\pi\)
\(644\) 0 0
\(645\) −19.5203 −0.768609
\(646\) 0 0
\(647\) 16.7085 0.656879 0.328439 0.944525i \(-0.393477\pi\)
0.328439 + 0.944525i \(0.393477\pi\)
\(648\) 0 0
\(649\) −1.35425 + 2.34563i −0.0531589 + 0.0920739i
\(650\) 0 0
\(651\) −1.50000 + 2.59808i −0.0587896 + 0.101827i
\(652\) 0 0
\(653\) −39.8745 −1.56041 −0.780205 0.625524i \(-0.784885\pi\)
−0.780205 + 0.625524i \(0.784885\pi\)
\(654\) 0 0
\(655\) −10.9373 18.9439i −0.427354 0.740199i
\(656\) 0 0
\(657\) −6.29150 −0.245455
\(658\) 0 0
\(659\) −17.1144 29.6430i −0.666682 1.15473i −0.978826 0.204692i \(-0.934381\pi\)
0.312145 0.950034i \(-0.398953\pi\)
\(660\) 0 0
\(661\) 1.00000 + 1.73205i 0.0388955 + 0.0673690i 0.884818 0.465937i \(-0.154283\pi\)
−0.845922 + 0.533306i \(0.820949\pi\)
\(662\) 0 0
\(663\) 7.06275 12.2330i 0.274294 0.475092i
\(664\) 0 0
\(665\) 73.2176 9.47194i 2.83926 0.367306i
\(666\) 0 0
\(667\) 20.5830 35.6508i 0.796977 1.38040i
\(668\) 0 0
\(669\) −2.67712 4.63692i −0.103504 0.179274i
\(670\) 0 0
\(671\) −0.885622 1.53394i −0.0341890 0.0592172i
\(672\) 0 0
\(673\) 7.12549 0.274668 0.137334 0.990525i \(-0.456147\pi\)
0.137334 + 0.990525i \(0.456147\pi\)
\(674\) 0 0
\(675\) 4.14575 + 7.18065i 0.159570 + 0.276383i
\(676\) 0 0
\(677\) 23.1660 0.890342 0.445171 0.895446i \(-0.353143\pi\)
0.445171 + 0.895446i \(0.353143\pi\)
\(678\) 0 0
\(679\) −24.5830 + 42.5790i −0.943409 + 1.63403i
\(680\) 0 0
\(681\) 7.76013 13.4409i 0.297369 0.515058i
\(682\) 0 0
\(683\) 0.228757 0.00875313 0.00437656 0.999990i \(-0.498607\pi\)
0.00437656 + 0.999990i \(0.498607\pi\)
\(684\) 0 0
\(685\) 48.4575 1.85147
\(686\) 0 0
\(687\) −4.85425 + 8.40781i −0.185201 + 0.320778i
\(688\) 0 0
\(689\) 14.8856 25.7827i 0.567097 0.982241i
\(690\) 0 0
\(691\) −13.1660 −0.500859 −0.250429 0.968135i \(-0.580572\pi\)
−0.250429 + 0.968135i \(0.580572\pi\)
\(692\) 0 0
\(693\) −0.822876 1.42526i −0.0312585 0.0541412i
\(694\) 0 0
\(695\) −16.9373 −0.642467
\(696\) 0 0
\(697\) 6.58301 + 11.4021i 0.249349 + 0.431885i
\(698\) 0 0
\(699\) −1.93725 3.35542i −0.0732737 0.126914i
\(700\) 0 0
\(701\) −22.0516 + 38.1945i −0.832879 + 1.44259i 0.0628673 + 0.998022i \(0.479976\pi\)
−0.895746 + 0.444566i \(0.853358\pi\)
\(702\) 0 0
\(703\) 13.2288 + 17.3205i 0.498932 + 0.653255i
\(704\) 0 0
\(705\) 9.64575 16.7069i 0.363280 0.629219i
\(706\) 0 0
\(707\) 46.1660 + 79.9619i 1.73625 + 3.00728i
\(708\) 0 0
\(709\) 1.79150 + 3.10297i 0.0672813 + 0.116535i 0.897704 0.440600i \(-0.145234\pi\)
−0.830422 + 0.557134i \(0.811901\pi\)
\(710\) 0 0
\(711\) 3.35425 0.125794
\(712\) 0 0
\(713\) −1.82288 3.15731i −0.0682672 0.118242i
\(714\) 0 0
\(715\) −5.54249 −0.207277
\(716\) 0 0
\(717\) 2.46863 4.27579i 0.0921926 0.159682i
\(718\) 0 0
\(719\) 0.468627 0.811686i 0.0174768 0.0302708i −0.857155 0.515059i \(-0.827770\pi\)
0.874632 + 0.484788i \(0.161103\pi\)
\(720\) 0 0
\(721\) 36.8745 1.37328
\(722\) 0 0
\(723\) −10.8745 −0.404427
\(724\) 0 0
\(725\) −30.2288 + 52.3577i −1.12267 + 1.94452i
\(726\) 0 0
\(727\) −12.2601 + 21.2352i −0.454703 + 0.787569i −0.998671 0.0515372i \(-0.983588\pi\)
0.543968 + 0.839106i \(0.316921\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.81176 + 15.2624i 0.325915 + 0.564501i
\(732\) 0 0
\(733\) −13.1660 −0.486298 −0.243149 0.969989i \(-0.578180\pi\)
−0.243149 + 0.969989i \(0.578180\pi\)
\(734\) 0 0
\(735\) 26.5830 + 46.0431i 0.980529 + 1.69833i
\(736\) 0 0
\(737\) −2.46863 4.27579i −0.0909330 0.157501i
\(738\) 0 0
\(739\) 16.3229 28.2720i 0.600447 1.04000i −0.392307 0.919834i \(-0.628323\pi\)
0.992753 0.120170i \(-0.0383439\pi\)
\(740\) 0 0
\(741\) −11.3542 14.8662i −0.417109 0.546124i
\(742\) 0 0
\(743\) 3.11438 5.39426i 0.114255 0.197896i −0.803226 0.595674i \(-0.796885\pi\)
0.917482 + 0.397778i \(0.130218\pi\)
\(744\) 0 0
\(745\) 3.00000 + 5.19615i 0.109911 + 0.190372i
\(746\) 0 0
\(747\) −7.64575 13.2428i −0.279743 0.484530i
\(748\) 0 0
\(749\) 65.0405 2.37653
\(750\) 0 0
\(751\) 1.32288 + 2.29129i 0.0482724 + 0.0836103i 0.889152 0.457612i \(-0.151295\pi\)
−0.840880 + 0.541222i \(0.817962\pi\)
\(752\) 0 0
\(753\) 13.2915 0.484369
\(754\) 0 0
\(755\) 1.29150 2.23695i 0.0470026 0.0814109i
\(756\) 0 0
\(757\) −6.79150 + 11.7632i −0.246841 + 0.427542i −0.962648 0.270757i \(-0.912726\pi\)
0.715806 + 0.698299i \(0.246059\pi\)
\(758\) 0 0
\(759\) 2.00000 0.0725954
\(760\) 0 0
\(761\) −35.5203 −1.28761 −0.643804 0.765190i \(-0.722645\pi\)
−0.643804 + 0.765190i \(0.722645\pi\)
\(762\) 0 0
\(763\) 20.2288 35.0372i 0.732330 1.26843i
\(764\) 0 0
\(765\) 6.00000 10.3923i 0.216930 0.375735i
\(766\) 0 0
\(767\) −32.8118 −1.18476
\(768\) 0 0
\(769\) 5.79150 + 10.0312i 0.208847 + 0.361733i 0.951352 0.308107i \(-0.0996956\pi\)
−0.742505 + 0.669841i \(0.766362\pi\)
\(770\) 0 0
\(771\) −15.6458 −0.563468
\(772\) 0 0
\(773\) −18.8745 32.6916i −0.678869 1.17584i −0.975322 0.220788i \(-0.929137\pi\)
0.296453 0.955047i \(-0.404196\pi\)
\(774\) 0 0
\(775\) 2.67712 + 4.63692i 0.0961651 + 0.166563i
\(776\) 0 0
\(777\) −11.6144 + 20.1167i −0.416663 + 0.721682i
\(778\) 0 0
\(779\) 17.2915 2.23695i 0.619532 0.0801470i
\(780\) 0 0
\(781\) 1.77124 3.06788i 0.0633801 0.109778i
\(782\) 0 0
\(783\) 3.64575 + 6.31463i 0.130289 + 0.225666i
\(784\) 0 0
\(785\) −18.7601 32.4935i −0.669578 1.15974i
\(786\) 0 0
\(787\) −19.8118 −0.706213 −0.353107 0.935583i \(-0.614875\pi\)
−0.353107 + 0.935583i \(0.614875\pi\)
\(788\) 0 0
\(789\) 9.00000 + 15.5885i 0.320408 + 0.554964i
\(790\) 0 0
\(791\) −26.2288 −0.932587
\(792\) 0 0
\(793\) 10.7288 18.5828i 0.380989 0.659893i
\(794\) 0 0
\(795\) 12.6458 21.9031i 0.448499 0.776822i
\(796\) 0 0
\(797\) 45.2915 1.60431 0.802154 0.597118i \(-0.203687\pi\)
0.802154 + 0.597118i \(0.203687\pi\)
\(798\) 0 0
\(799\) −17.4170 −0.616169
\(800\) 0 0
\(801\) −6.82288 + 11.8176i −0.241074 + 0.417553i
\(802\) 0 0
\(803\) 1.11438 1.93016i 0.0393256 0.0681139i
\(804\) 0 0
\(805\) −95.6235 −3.37029
\(806\) 0 0
\(807\) −6.82288 11.8176i −0.240177 0.415998i
\(808\) 0 0
\(809\) −10.9373 −0.384533 −0.192267 0.981343i \(-0.561584\pi\)
−0.192267 + 0.981343i \(0.561584\pi\)
\(810\) 0 0
\(811\) −2.22876 3.86032i −0.0782622 0.135554i 0.824238 0.566243i \(-0.191604\pi\)
−0.902500 + 0.430689i \(0.858270\pi\)
\(812\) 0 0
\(813\) 5.29150 + 9.16515i 0.185581 + 0.321436i
\(814\) 0 0
\(815\) −0.114378 + 0.198109i −0.00400650 + 0.00693946i
\(816\) 0 0
\(817\) 23.1458 2.99429i 0.809767 0.104757i
\(818\) 0 0
\(819\) 9.96863 17.2662i 0.348332 0.603329i
\(820\) 0 0
\(821\) 7.06275 + 12.2330i 0.246492 + 0.426936i 0.962550 0.271105i \(-0.0873889\pi\)
−0.716058 + 0.698040i \(0.754056\pi\)
\(822\) 0 0
\(823\) −17.6458 30.5633i −0.615092 1.06537i −0.990368 0.138458i \(-0.955785\pi\)
0.375276 0.926913i \(-0.377548\pi\)
\(824\) 0 0
\(825\) −2.93725 −0.102262
\(826\) 0 0
\(827\) −8.35425 14.4700i −0.290506 0.503171i 0.683424 0.730022i \(-0.260490\pi\)
−0.973929 + 0.226851i \(0.927157\pi\)
\(828\) 0 0
\(829\) −51.5830 −1.79155 −0.895776 0.444506i \(-0.853379\pi\)
−0.895776 + 0.444506i \(0.853379\pi\)
\(830\) 0 0
\(831\) −4.00000 + 6.92820i −0.138758 + 0.240337i
\(832\) 0 0
\(833\) 24.0000 41.5692i 0.831551 1.44029i
\(834\) 0 0
\(835\) 3.87451 0.134083
\(836\) 0 0
\(837\) 0.645751 0.0223204
\(838\) 0 0
\(839\) −4.82288 + 8.35347i −0.166504 + 0.288394i −0.937188 0.348824i \(-0.886581\pi\)
0.770684 + 0.637217i \(0.219915\pi\)
\(840\) 0 0
\(841\) −12.0830 + 20.9284i −0.416655 + 0.721668i
\(842\) 0 0
\(843\) 6.93725 0.238932
\(844\) 0 0
\(845\) −9.87451 17.1031i −0.339693 0.588366i
\(846\) 0 0
\(847\) −50.5203 −1.73590
\(848\) 0 0
\(849\) −2.70850 4.69126i −0.0929554 0.161003i
\(850\) 0 0
\(851\) −14.1144 24.4468i −0.483835 0.838026i
\(852\) 0 0
\(853\) −17.3745 + 30.0935i −0.594892 + 1.03038i 0.398670 + 0.917094i \(0.369472\pi\)
−0.993562 + 0.113289i \(0.963862\pi\)
\(854\) 0 0
\(855\) −9.64575 12.6293i −0.329878 0.431911i
\(856\) 0 0
\(857\) −21.0000 + 36.3731i −0.717346 + 1.24248i 0.244701 + 0.969599i \(0.421310\pi\)
−0.962048 + 0.272882i \(0.912023\pi\)
\(858\) 0 0
\(859\) 3.03137 + 5.25049i 0.103429 + 0.179144i 0.913095 0.407746i \(-0.133685\pi\)
−0.809666 + 0.586891i \(0.800352\pi\)
\(860\) 0 0
\(861\) 9.29150 + 16.0934i 0.316654 + 0.548460i
\(862\) 0 0
\(863\) −26.7085 −0.909168 −0.454584 0.890704i \(-0.650212\pi\)
−0.454584 + 0.890704i \(0.650212\pi\)
\(864\) 0 0
\(865\) 18.0000 + 31.1769i 0.612018 + 1.06005i
\(866\) 0 0
\(867\) 6.16601 0.209409
\(868\) 0 0
\(869\) −0.594119 + 1.02904i −0.0201541 + 0.0349079i
\(870\) 0 0
\(871\) 29.9059 51.7985i 1.01332 1.75513i
\(872\) 0 0
\(873\) 10.5830 0.358180
\(874\) 0 0
\(875\) 55.7490 1.88466
\(876\) 0 0
\(877\) 9.08301 15.7322i 0.306711 0.531240i −0.670930 0.741521i \(-0.734105\pi\)
0.977641 + 0.210282i \(0.0674381\pi\)
\(878\) 0 0
\(879\) −12.2915 + 21.2895i −0.414582 + 0.718077i
\(880\) 0 0
\(881\) 30.6863 1.03385 0.516923 0.856032i \(-0.327077\pi\)
0.516923 + 0.856032i \(0.327077\pi\)
\(882\) 0 0
\(883\) −8.67712 15.0292i −0.292008 0.505774i 0.682276 0.731095i \(-0.260990\pi\)
−0.974285 + 0.225321i \(0.927657\pi\)
\(884\) 0 0
\(885\) −27.8745 −0.936991
\(886\) 0 0
\(887\) −8.05163 13.9458i −0.270347 0.468255i 0.698603 0.715509i \(-0.253805\pi\)
−0.968951 + 0.247254i \(0.920472\pi\)
\(888\) 0 0
\(889\) 7.64575 + 13.2428i 0.256430 + 0.444150i
\(890\) 0 0
\(891\) −0.177124 + 0.306788i −0.00593389 + 0.0102778i
\(892\) 0 0
\(893\) −8.87451 + 21.2895i −0.296974 + 0.712426i
\(894\) 0 0
\(895\) 18.8745 32.6916i 0.630905 1.09276i
\(896\) 0 0
\(897\) 12.1144 + 20.9827i 0.404487 + 0.700593i
\(898\) 0 0
\(899\) 2.35425 + 4.07768i 0.0785186 + 0.135998i
\(900\) 0 0
\(901\) −22.8340 −0.760710
\(902\) 0 0
\(903\) 12.4373 + 21.5420i 0.413886 + 0.716871i
\(904\) 0 0
\(905\) −96.9150 −3.22156
\(906\) 0 0
\(907\) 1.41699 2.45431i 0.0470505 0.0814939i −0.841541 0.540193i \(-0.818351\pi\)
0.888592 + 0.458699i \(0.151684\pi\)
\(908\) 0 0
\(909\) 9.93725 17.2118i 0.329598 0.570880i
\(910\) 0 0
\(911\) 43.7490 1.44947 0.724735 0.689028i \(-0.241962\pi\)
0.724735 + 0.689028i \(0.241962\pi\)
\(912\) 0 0
\(913\) 5.41699 0.179276
\(914\) 0 0
\(915\) 9.11438 15.7866i 0.301312 0.521888i
\(916\) 0 0
\(917\) −13.9373 + 24.1400i −0.460249 + 0.797174i
\(918\) 0 0
\(919\) 1.22876 0.0405329 0.0202665 0.999795i \(-0.493549\pi\)
0.0202665 + 0.999795i \(0.493549\pi\)
\(920\) 0 0
\(921\) −13.9373 24.1400i −0.459248 0.795441i
\(922\) 0 0
\(923\) 42.9150 1.41257
\(924\) 0 0
\(925\) 20.7288 + 35.9033i 0.681557 + 1.18049i
\(926\) 0 0
\(927\) −3.96863 6.87386i −0.130347 0.225767i
\(928\) 0 0
\(929\) −18.7601 + 32.4935i −0.615500 + 1.06608i 0.374797 + 0.927107i \(0.377713\pi\)
−0.990297 + 0.138970i \(0.955621\pi\)
\(930\) 0 0
\(931\) −38.5830 50.5170i −1.26451 1.65563i
\(932\) 0 0
\(933\) 8.53137 14.7768i 0.279305 0.483770i
\(934\) 0 0
\(935\) 2.12549 + 3.68146i 0.0695110 + 0.120397i
\(936\) 0 0
\(937\) 3.50000 + 6.06218i 0.114340 + 0.198043i 0.917516 0.397699i \(-0.130191\pi\)
−0.803176 + 0.595742i \(0.796858\pi\)
\(938\) 0 0
\(939\) 19.2915 0.629554
\(940\) 0 0
\(941\) 19.8745 + 34.4237i 0.647890 + 1.12218i 0.983626 + 0.180223i \(0.0576819\pi\)
−0.335735 + 0.941956i \(0.608985\pi\)
\(942\) 0 0
\(943\) −22.5830 −0.735404
\(944\) 0 0
\(945\) 8.46863 14.6681i 0.275484 0.477153i
\(946\) 0 0
\(947\) −28.1660 + 48.7850i −0.915272 + 1.58530i −0.108770 + 0.994067i \(0.534691\pi\)
−0.806502 + 0.591231i \(0.798642\pi\)
\(948\) 0 0
\(949\) 27.0000 0.876457
\(950\) 0 0
\(951\) 10.9373 0.354665
\(952\) 0 0
\(953\) −21.7601 + 37.6897i −0.704880 + 1.22089i 0.261855 + 0.965107i \(0.415666\pi\)
−0.966735 + 0.255780i \(0.917668\pi\)
\(954\) 0 0
\(955\) 1.70850 2.95920i 0.0552857 0.0957576i
\(956\) 0 0
\(957\) −2.58301 −0.0834967
\(958\) 0 0
\(959\) −30.8745 53.4762i −0.996990 1.72684i
\(960\) 0 0
\(961\) −30.5830 −0.986549
\(962\) 0 0
\(963\) −7.00000 12.1244i −0.225572 0.390702i
\(964\) 0 0
\(965\) −40.4059 69.9850i −1.30071 2.25290i
\(966\) 0 0
\(967\) 6.96863 12.0700i 0.224096 0.388146i −0.731952 0.681356i \(-0.761390\pi\)
0.956048 + 0.293211i \(0.0947238\pi\)
\(968\) 0 0
\(969\) −5.52026 + 13.2428i −0.177336 + 0.425421i
\(970\) 0 0
\(971\) 22.5203 39.0062i 0.722710 1.25177i −0.237200 0.971461i \(-0.576230\pi\)
0.959910 0.280309i \(-0.0904369\pi\)
\(972\) 0 0
\(973\) 10.7915 + 18.6914i 0.345960 + 0.599220i
\(974\) 0 0
\(975\) −17.7915 30.8158i −0.569784 0.986895i
\(976\) 0 0
\(977\) −54.9150 −1.75689 −0.878444 0.477846i \(-0.841418\pi\)
−0.878444 + 0.477846i \(0.841418\pi\)
\(978\) 0 0
\(979\) −2.41699 4.18636i −0.0772475 0.133797i
\(980\) 0 0
\(981\) −8.70850 −0.278041
\(982\) 0 0
\(983\) −29.4686 + 51.0412i −0.939903 + 1.62796i −0.174255 + 0.984701i \(0.555752\pi\)
−0.765648 + 0.643260i \(0.777582\pi\)
\(984\) 0 0
\(985\) 32.1660 55.7132i 1.02489 1.77517i
\(986\) 0 0
\(987\) −24.5830 −0.782486
\(988\) 0 0
\(989\) −30.2288 −0.961219
\(990\) 0 0
\(991\) −5.96863 + 10.3380i −0.189600 + 0.328396i −0.945117 0.326733i \(-0.894052\pi\)
0.755517 + 0.655129i \(0.227386\pi\)
\(992\) 0 0
\(993\) −10.6144 + 18.3846i −0.336837 + 0.583419i
\(994\) 0 0
\(995\) −43.5203 −1.37968
\(996\) 0 0
\(997\) 14.0203 + 24.2838i 0.444026 + 0.769076i 0.997984 0.0634691i \(-0.0202164\pi\)
−0.553958 + 0.832545i \(0.686883\pi\)
\(998\) 0 0
\(999\) 5.00000 0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 228.2.i.b.49.1 4
3.2 odd 2 684.2.k.g.505.2 4
4.3 odd 2 912.2.q.g.49.1 4
12.11 even 2 2736.2.s.u.1873.2 4
19.7 even 3 inner 228.2.i.b.121.1 yes 4
19.8 odd 6 4332.2.a.m.1.2 2
19.11 even 3 4332.2.a.h.1.2 2
57.26 odd 6 684.2.k.g.577.2 4
76.7 odd 6 912.2.q.g.577.1 4
228.83 even 6 2736.2.s.u.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.i.b.49.1 4 1.1 even 1 trivial
228.2.i.b.121.1 yes 4 19.7 even 3 inner
684.2.k.g.505.2 4 3.2 odd 2
684.2.k.g.577.2 4 57.26 odd 6
912.2.q.g.49.1 4 4.3 odd 2
912.2.q.g.577.1 4 76.7 odd 6
2736.2.s.u.577.2 4 228.83 even 6
2736.2.s.u.1873.2 4 12.11 even 2
4332.2.a.h.1.2 2 19.11 even 3
4332.2.a.m.1.2 2 19.8 odd 6