L(s) = 1 | + (0.5 − 0.866i)3-s + (−1.82 + 3.15i)5-s + 4.64·7-s + (−0.499 − 0.866i)9-s + 0.354·11-s + (2.14 + 3.71i)13-s + (1.82 + 3.15i)15-s + (1.64 − 2.85i)17-s + (−2.64 − 3.46i)19-s + (2.32 − 4.02i)21-s + (2.82 + 4.88i)23-s + (−4.14 − 7.18i)25-s − 0.999·27-s + (−3.64 − 6.31i)29-s − 0.645·31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.815 + 1.41i)5-s + 1.75·7-s + (−0.166 − 0.288i)9-s + 0.106·11-s + (0.595 + 1.03i)13-s + (0.470 + 0.815i)15-s + (0.399 − 0.691i)17-s + (−0.606 − 0.794i)19-s + (0.506 − 0.877i)21-s + (0.588 + 1.01i)23-s + (−0.829 − 1.43i)25-s − 0.192·27-s + (−0.676 − 1.17i)29-s − 0.115·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 - 0.334i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.942 - 0.334i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35409 + 0.233489i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35409 + 0.233489i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (2.64 + 3.46i)T \) |
good | 5 | \( 1 + (1.82 - 3.15i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 4.64T + 7T^{2} \) |
| 11 | \( 1 - 0.354T + 11T^{2} \) |
| 13 | \( 1 + (-2.14 - 3.71i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.64 + 2.85i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.82 - 4.88i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.64 + 6.31i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 0.645T + 31T^{2} \) |
| 37 | \( 1 + 5T + 37T^{2} \) |
| 41 | \( 1 + (2 - 3.46i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.67 - 4.63i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.64 + 4.58i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.46 + 6.00i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.82 - 6.62i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.96 + 12.0i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5 + 8.66i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.14 + 5.44i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.67 - 2.90i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 15.2T + 83T^{2} \) |
| 89 | \( 1 + (6.82 + 11.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.29 - 9.16i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75942899585958860871184299746, −11.47626354465459274866594783738, −10.74900657025360383361924512229, −9.184482868962598575307530875937, −8.026063928137354569116804293347, −7.40523663416369012368474257661, −6.46349217305920116200753351129, −4.77679590566183089707330507766, −3.46621503037679029329843867293, −1.94265136438248305691524786488,
1.43737784354523566866754806779, 3.76585243242706886571605738005, 4.73906147432339918555538891198, 5.52250547127641139054474341285, 7.64618446506670680439236783675, 8.462202842434756412769772077754, 8.728984694046298523038727588929, 10.44152706274830947736625189681, 11.14285491817434855626676362325, 12.24532007020864631142059789702