Properties

Label 228.2.i
Level $228$
Weight $2$
Character orbit 228.i
Rep. character $\chi_{228}(49,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $2$
Sturm bound $80$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(228, [\chi])\).

Total New Old
Modular forms 92 8 84
Cusp forms 68 8 60
Eisenstein series 24 0 24

Trace form

\( 8 q - 2 q^{5} + 4 q^{7} - 4 q^{9} + O(q^{10}) \) \( 8 q - 2 q^{5} + 4 q^{7} - 4 q^{9} + 12 q^{11} + 2 q^{15} - 4 q^{17} + 4 q^{19} + 6 q^{21} + 18 q^{23} - 8 q^{25} - 4 q^{29} - 20 q^{31} + 6 q^{33} - 6 q^{35} - 24 q^{37} - 8 q^{39} - 8 q^{41} - 14 q^{43} + 4 q^{45} - 12 q^{47} + 16 q^{49} + 4 q^{51} + 2 q^{53} + 20 q^{55} - 14 q^{57} - 10 q^{59} + 4 q^{61} - 2 q^{63} - 52 q^{65} + 2 q^{67} - 12 q^{69} + 8 q^{71} + 16 q^{73} - 8 q^{75} + 20 q^{77} - 22 q^{79} - 4 q^{81} - 8 q^{83} - 8 q^{87} - 10 q^{89} + 22 q^{91} + 18 q^{93} + 62 q^{95} + 8 q^{97} - 6 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(228, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
228.2.i.a 228.i 19.c $4$ $1.821$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(0\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{3}+\beta _{2}q^{5}+(-1+\beta _{3})q^{7}+(-1+\cdots)q^{9}+\cdots\)
228.2.i.b 228.i 19.c $4$ $1.821$ \(\Q(\sqrt{-3}, \sqrt{7})\) None \(0\) \(2\) \(-2\) \(8\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{3}+(\beta _{1}+\beta _{2}+\beta _{3})q^{5}+(2-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(228, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(228, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)