Properties

Label 2277.2.a.r.1.4
Level $2277$
Weight $2$
Character 2277.1
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,6,8,0,-6,-6,0,-12,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} - 2x^{5} + 36x^{4} + 10x^{3} - 35x^{2} - 14x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.0620205\) of defining polynomial
Character \(\chi\) \(=\) 2277.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0620205 q^{2} -1.99615 q^{4} +2.44556 q^{5} +3.80059 q^{7} +0.247843 q^{8} -0.151675 q^{10} -1.00000 q^{11} -5.27271 q^{13} -0.235715 q^{14} +3.97694 q^{16} -4.79799 q^{17} -6.79534 q^{19} -4.88172 q^{20} +0.0620205 q^{22} -1.00000 q^{23} +0.980782 q^{25} +0.327016 q^{26} -7.58657 q^{28} -9.73379 q^{29} -0.886679 q^{31} -0.742338 q^{32} +0.297574 q^{34} +9.29460 q^{35} +1.61979 q^{37} +0.421450 q^{38} +0.606117 q^{40} -9.48834 q^{41} -3.98952 q^{43} +1.99615 q^{44} +0.0620205 q^{46} +12.0364 q^{47} +7.44452 q^{49} -0.0608286 q^{50} +10.5251 q^{52} +8.10494 q^{53} -2.44556 q^{55} +0.941952 q^{56} +0.603695 q^{58} +5.97345 q^{59} -10.1481 q^{61} +0.0549923 q^{62} -7.90783 q^{64} -12.8947 q^{65} -2.13847 q^{67} +9.57753 q^{68} -0.576455 q^{70} -10.3760 q^{71} -15.0878 q^{73} -0.100460 q^{74} +13.5645 q^{76} -3.80059 q^{77} +14.3232 q^{79} +9.72585 q^{80} +0.588471 q^{82} +9.19090 q^{83} -11.7338 q^{85} +0.247432 q^{86} -0.247843 q^{88} +9.15738 q^{89} -20.0394 q^{91} +1.99615 q^{92} -0.746506 q^{94} -16.6184 q^{95} +6.71731 q^{97} -0.461713 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} + 8 q^{5} - 6 q^{7} - 6 q^{8} - 12 q^{10} - 8 q^{11} - 10 q^{13} - 2 q^{14} - 2 q^{16} - 16 q^{19} + 12 q^{20} - 8 q^{23} - 4 q^{25} - 20 q^{28} - 2 q^{29} - 20 q^{31} - 12 q^{32} - 22 q^{34}+ \cdots + 46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0620205 −0.0438551 −0.0219276 0.999760i \(-0.506980\pi\)
−0.0219276 + 0.999760i \(0.506980\pi\)
\(3\) 0 0
\(4\) −1.99615 −0.998077
\(5\) 2.44556 1.09369 0.546845 0.837234i \(-0.315829\pi\)
0.546845 + 0.837234i \(0.315829\pi\)
\(6\) 0 0
\(7\) 3.80059 1.43649 0.718245 0.695790i \(-0.244946\pi\)
0.718245 + 0.695790i \(0.244946\pi\)
\(8\) 0.247843 0.0876259
\(9\) 0 0
\(10\) −0.151675 −0.0479639
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −5.27271 −1.46239 −0.731193 0.682170i \(-0.761036\pi\)
−0.731193 + 0.682170i \(0.761036\pi\)
\(14\) −0.235715 −0.0629974
\(15\) 0 0
\(16\) 3.97694 0.994234
\(17\) −4.79799 −1.16368 −0.581842 0.813302i \(-0.697668\pi\)
−0.581842 + 0.813302i \(0.697668\pi\)
\(18\) 0 0
\(19\) −6.79534 −1.55896 −0.779479 0.626428i \(-0.784516\pi\)
−0.779479 + 0.626428i \(0.784516\pi\)
\(20\) −4.88172 −1.09159
\(21\) 0 0
\(22\) 0.0620205 0.0132228
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0.980782 0.196156
\(26\) 0.327016 0.0641331
\(27\) 0 0
\(28\) −7.58657 −1.43373
\(29\) −9.73379 −1.80752 −0.903760 0.428039i \(-0.859204\pi\)
−0.903760 + 0.428039i \(0.859204\pi\)
\(30\) 0 0
\(31\) −0.886679 −0.159252 −0.0796262 0.996825i \(-0.525373\pi\)
−0.0796262 + 0.996825i \(0.525373\pi\)
\(32\) −0.742338 −0.131228
\(33\) 0 0
\(34\) 0.297574 0.0510335
\(35\) 9.29460 1.57107
\(36\) 0 0
\(37\) 1.61979 0.266293 0.133146 0.991096i \(-0.457492\pi\)
0.133146 + 0.991096i \(0.457492\pi\)
\(38\) 0.421450 0.0683683
\(39\) 0 0
\(40\) 0.606117 0.0958355
\(41\) −9.48834 −1.48183 −0.740915 0.671599i \(-0.765608\pi\)
−0.740915 + 0.671599i \(0.765608\pi\)
\(42\) 0 0
\(43\) −3.98952 −0.608396 −0.304198 0.952609i \(-0.598388\pi\)
−0.304198 + 0.952609i \(0.598388\pi\)
\(44\) 1.99615 0.300931
\(45\) 0 0
\(46\) 0.0620205 0.00914442
\(47\) 12.0364 1.75570 0.877848 0.478940i \(-0.158979\pi\)
0.877848 + 0.478940i \(0.158979\pi\)
\(48\) 0 0
\(49\) 7.44452 1.06350
\(50\) −0.0608286 −0.00860246
\(51\) 0 0
\(52\) 10.5251 1.45957
\(53\) 8.10494 1.11330 0.556650 0.830747i \(-0.312087\pi\)
0.556650 + 0.830747i \(0.312087\pi\)
\(54\) 0 0
\(55\) −2.44556 −0.329760
\(56\) 0.941952 0.125874
\(57\) 0 0
\(58\) 0.603695 0.0792690
\(59\) 5.97345 0.777677 0.388839 0.921306i \(-0.372876\pi\)
0.388839 + 0.921306i \(0.372876\pi\)
\(60\) 0 0
\(61\) −10.1481 −1.29933 −0.649664 0.760222i \(-0.725090\pi\)
−0.649664 + 0.760222i \(0.725090\pi\)
\(62\) 0.0549923 0.00698403
\(63\) 0 0
\(64\) −7.90783 −0.988479
\(65\) −12.8947 −1.59940
\(66\) 0 0
\(67\) −2.13847 −0.261255 −0.130628 0.991431i \(-0.541699\pi\)
−0.130628 + 0.991431i \(0.541699\pi\)
\(68\) 9.57753 1.16145
\(69\) 0 0
\(70\) −0.576455 −0.0688996
\(71\) −10.3760 −1.23140 −0.615700 0.787980i \(-0.711127\pi\)
−0.615700 + 0.787980i \(0.711127\pi\)
\(72\) 0 0
\(73\) −15.0878 −1.76589 −0.882946 0.469475i \(-0.844443\pi\)
−0.882946 + 0.469475i \(0.844443\pi\)
\(74\) −0.100460 −0.0116783
\(75\) 0 0
\(76\) 13.5645 1.55596
\(77\) −3.80059 −0.433118
\(78\) 0 0
\(79\) 14.3232 1.61148 0.805741 0.592267i \(-0.201767\pi\)
0.805741 + 0.592267i \(0.201767\pi\)
\(80\) 9.72585 1.08738
\(81\) 0 0
\(82\) 0.588471 0.0649858
\(83\) 9.19090 1.00883 0.504416 0.863461i \(-0.331708\pi\)
0.504416 + 0.863461i \(0.331708\pi\)
\(84\) 0 0
\(85\) −11.7338 −1.27271
\(86\) 0.247432 0.0266813
\(87\) 0 0
\(88\) −0.247843 −0.0264202
\(89\) 9.15738 0.970681 0.485340 0.874325i \(-0.338696\pi\)
0.485340 + 0.874325i \(0.338696\pi\)
\(90\) 0 0
\(91\) −20.0394 −2.10070
\(92\) 1.99615 0.208113
\(93\) 0 0
\(94\) −0.746506 −0.0769962
\(95\) −16.6184 −1.70502
\(96\) 0 0
\(97\) 6.71731 0.682039 0.341020 0.940056i \(-0.389228\pi\)
0.341020 + 0.940056i \(0.389228\pi\)
\(98\) −0.461713 −0.0466400
\(99\) 0 0
\(100\) −1.95779 −0.195779
\(101\) 15.6011 1.55236 0.776182 0.630509i \(-0.217154\pi\)
0.776182 + 0.630509i \(0.217154\pi\)
\(102\) 0 0
\(103\) −7.08875 −0.698476 −0.349238 0.937034i \(-0.613559\pi\)
−0.349238 + 0.937034i \(0.613559\pi\)
\(104\) −1.30681 −0.128143
\(105\) 0 0
\(106\) −0.502672 −0.0488239
\(107\) 0.372348 0.0359962 0.0179981 0.999838i \(-0.494271\pi\)
0.0179981 + 0.999838i \(0.494271\pi\)
\(108\) 0 0
\(109\) −6.12688 −0.586848 −0.293424 0.955982i \(-0.594795\pi\)
−0.293424 + 0.955982i \(0.594795\pi\)
\(110\) 0.151675 0.0144617
\(111\) 0 0
\(112\) 15.1147 1.42821
\(113\) −1.58796 −0.149383 −0.0746913 0.997207i \(-0.523797\pi\)
−0.0746913 + 0.997207i \(0.523797\pi\)
\(114\) 0 0
\(115\) −2.44556 −0.228050
\(116\) 19.4301 1.80404
\(117\) 0 0
\(118\) −0.370476 −0.0341051
\(119\) −18.2352 −1.67162
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.629389 0.0569822
\(123\) 0 0
\(124\) 1.76995 0.158946
\(125\) −9.82925 −0.879155
\(126\) 0 0
\(127\) −13.0429 −1.15737 −0.578687 0.815550i \(-0.696435\pi\)
−0.578687 + 0.815550i \(0.696435\pi\)
\(128\) 1.97512 0.174578
\(129\) 0 0
\(130\) 0.799739 0.0701417
\(131\) −0.394677 −0.0344830 −0.0172415 0.999851i \(-0.505488\pi\)
−0.0172415 + 0.999851i \(0.505488\pi\)
\(132\) 0 0
\(133\) −25.8263 −2.23943
\(134\) 0.132629 0.0114574
\(135\) 0 0
\(136\) −1.18915 −0.101969
\(137\) 4.20100 0.358916 0.179458 0.983766i \(-0.442566\pi\)
0.179458 + 0.983766i \(0.442566\pi\)
\(138\) 0 0
\(139\) −17.3537 −1.47192 −0.735962 0.677022i \(-0.763270\pi\)
−0.735962 + 0.677022i \(0.763270\pi\)
\(140\) −18.5534 −1.56805
\(141\) 0 0
\(142\) 0.643523 0.0540032
\(143\) 5.27271 0.440926
\(144\) 0 0
\(145\) −23.8046 −1.97687
\(146\) 0.935752 0.0774434
\(147\) 0 0
\(148\) −3.23336 −0.265780
\(149\) 7.35621 0.602644 0.301322 0.953522i \(-0.402572\pi\)
0.301322 + 0.953522i \(0.402572\pi\)
\(150\) 0 0
\(151\) −13.2583 −1.07894 −0.539472 0.842003i \(-0.681376\pi\)
−0.539472 + 0.842003i \(0.681376\pi\)
\(152\) −1.68418 −0.136605
\(153\) 0 0
\(154\) 0.235715 0.0189944
\(155\) −2.16843 −0.174173
\(156\) 0 0
\(157\) 1.37042 0.109371 0.0546857 0.998504i \(-0.482584\pi\)
0.0546857 + 0.998504i \(0.482584\pi\)
\(158\) −0.888330 −0.0706718
\(159\) 0 0
\(160\) −1.81544 −0.143523
\(161\) −3.80059 −0.299529
\(162\) 0 0
\(163\) −2.15342 −0.168669 −0.0843344 0.996438i \(-0.526876\pi\)
−0.0843344 + 0.996438i \(0.526876\pi\)
\(164\) 18.9402 1.47898
\(165\) 0 0
\(166\) −0.570024 −0.0442425
\(167\) 2.90785 0.225016 0.112508 0.993651i \(-0.464112\pi\)
0.112508 + 0.993651i \(0.464112\pi\)
\(168\) 0 0
\(169\) 14.8015 1.13857
\(170\) 0.727736 0.0558148
\(171\) 0 0
\(172\) 7.96369 0.607226
\(173\) 2.73583 0.208001 0.104001 0.994577i \(-0.466836\pi\)
0.104001 + 0.994577i \(0.466836\pi\)
\(174\) 0 0
\(175\) 3.72756 0.281777
\(176\) −3.97694 −0.299773
\(177\) 0 0
\(178\) −0.567945 −0.0425693
\(179\) 9.92487 0.741819 0.370910 0.928669i \(-0.379046\pi\)
0.370910 + 0.928669i \(0.379046\pi\)
\(180\) 0 0
\(181\) −22.7977 −1.69454 −0.847270 0.531163i \(-0.821755\pi\)
−0.847270 + 0.531163i \(0.821755\pi\)
\(182\) 1.24286 0.0921266
\(183\) 0 0
\(184\) −0.247843 −0.0182713
\(185\) 3.96131 0.291241
\(186\) 0 0
\(187\) 4.79799 0.350864
\(188\) −24.0266 −1.75232
\(189\) 0 0
\(190\) 1.03068 0.0747736
\(191\) −13.9028 −1.00597 −0.502985 0.864295i \(-0.667765\pi\)
−0.502985 + 0.864295i \(0.667765\pi\)
\(192\) 0 0
\(193\) 9.36653 0.674218 0.337109 0.941466i \(-0.390551\pi\)
0.337109 + 0.941466i \(0.390551\pi\)
\(194\) −0.416611 −0.0299109
\(195\) 0 0
\(196\) −14.8604 −1.06146
\(197\) 21.2598 1.51470 0.757348 0.653012i \(-0.226495\pi\)
0.757348 + 0.653012i \(0.226495\pi\)
\(198\) 0 0
\(199\) 6.05772 0.429420 0.214710 0.976678i \(-0.431119\pi\)
0.214710 + 0.976678i \(0.431119\pi\)
\(200\) 0.243080 0.0171884
\(201\) 0 0
\(202\) −0.967585 −0.0680791
\(203\) −36.9942 −2.59648
\(204\) 0 0
\(205\) −23.2043 −1.62066
\(206\) 0.439648 0.0306317
\(207\) 0 0
\(208\) −20.9692 −1.45395
\(209\) 6.79534 0.470043
\(210\) 0 0
\(211\) 7.83187 0.539168 0.269584 0.962977i \(-0.413114\pi\)
0.269584 + 0.962977i \(0.413114\pi\)
\(212\) −16.1787 −1.11116
\(213\) 0 0
\(214\) −0.0230932 −0.00157862
\(215\) −9.75662 −0.665396
\(216\) 0 0
\(217\) −3.36991 −0.228764
\(218\) 0.379992 0.0257363
\(219\) 0 0
\(220\) 4.88172 0.329126
\(221\) 25.2984 1.70176
\(222\) 0 0
\(223\) −9.78311 −0.655126 −0.327563 0.944829i \(-0.606227\pi\)
−0.327563 + 0.944829i \(0.606227\pi\)
\(224\) −2.82133 −0.188508
\(225\) 0 0
\(226\) 0.0984859 0.00655119
\(227\) −21.8481 −1.45011 −0.725055 0.688691i \(-0.758186\pi\)
−0.725055 + 0.688691i \(0.758186\pi\)
\(228\) 0 0
\(229\) 8.39529 0.554776 0.277388 0.960758i \(-0.410531\pi\)
0.277388 + 0.960758i \(0.410531\pi\)
\(230\) 0.151675 0.0100012
\(231\) 0 0
\(232\) −2.41246 −0.158386
\(233\) 8.59974 0.563388 0.281694 0.959504i \(-0.409104\pi\)
0.281694 + 0.959504i \(0.409104\pi\)
\(234\) 0 0
\(235\) 29.4359 1.92019
\(236\) −11.9239 −0.776181
\(237\) 0 0
\(238\) 1.13096 0.0733091
\(239\) 6.04883 0.391266 0.195633 0.980677i \(-0.437324\pi\)
0.195633 + 0.980677i \(0.437324\pi\)
\(240\) 0 0
\(241\) −27.5549 −1.77497 −0.887484 0.460839i \(-0.847549\pi\)
−0.887484 + 0.460839i \(0.847549\pi\)
\(242\) −0.0620205 −0.00398683
\(243\) 0 0
\(244\) 20.2571 1.29683
\(245\) 18.2060 1.16314
\(246\) 0 0
\(247\) 35.8299 2.27980
\(248\) −0.219758 −0.0139546
\(249\) 0 0
\(250\) 0.609615 0.0385554
\(251\) −26.7049 −1.68560 −0.842799 0.538228i \(-0.819094\pi\)
−0.842799 + 0.538228i \(0.819094\pi\)
\(252\) 0 0
\(253\) 1.00000 0.0628695
\(254\) 0.808930 0.0507568
\(255\) 0 0
\(256\) 15.6932 0.980823
\(257\) 22.2255 1.38639 0.693195 0.720751i \(-0.256203\pi\)
0.693195 + 0.720751i \(0.256203\pi\)
\(258\) 0 0
\(259\) 6.15618 0.382527
\(260\) 25.7399 1.59632
\(261\) 0 0
\(262\) 0.0244780 0.00151226
\(263\) 6.69665 0.412933 0.206466 0.978454i \(-0.433804\pi\)
0.206466 + 0.978454i \(0.433804\pi\)
\(264\) 0 0
\(265\) 19.8212 1.21760
\(266\) 1.60176 0.0982103
\(267\) 0 0
\(268\) 4.26871 0.260753
\(269\) −20.1313 −1.22743 −0.613713 0.789529i \(-0.710325\pi\)
−0.613713 + 0.789529i \(0.710325\pi\)
\(270\) 0 0
\(271\) 31.9169 1.93882 0.969408 0.245455i \(-0.0789373\pi\)
0.969408 + 0.245455i \(0.0789373\pi\)
\(272\) −19.0813 −1.15697
\(273\) 0 0
\(274\) −0.260548 −0.0157403
\(275\) −0.980782 −0.0591434
\(276\) 0 0
\(277\) 13.0651 0.785004 0.392502 0.919751i \(-0.371610\pi\)
0.392502 + 0.919751i \(0.371610\pi\)
\(278\) 1.07629 0.0645514
\(279\) 0 0
\(280\) 2.30360 0.137667
\(281\) −14.4815 −0.863892 −0.431946 0.901899i \(-0.642173\pi\)
−0.431946 + 0.901899i \(0.642173\pi\)
\(282\) 0 0
\(283\) −12.6799 −0.753743 −0.376872 0.926265i \(-0.623000\pi\)
−0.376872 + 0.926265i \(0.623000\pi\)
\(284\) 20.7120 1.22903
\(285\) 0 0
\(286\) −0.327016 −0.0193369
\(287\) −36.0613 −2.12863
\(288\) 0 0
\(289\) 6.02072 0.354160
\(290\) 1.47637 0.0866957
\(291\) 0 0
\(292\) 30.1175 1.76250
\(293\) −6.02608 −0.352047 −0.176024 0.984386i \(-0.556324\pi\)
−0.176024 + 0.984386i \(0.556324\pi\)
\(294\) 0 0
\(295\) 14.6085 0.850537
\(296\) 0.401455 0.0233341
\(297\) 0 0
\(298\) −0.456236 −0.0264290
\(299\) 5.27271 0.304929
\(300\) 0 0
\(301\) −15.1625 −0.873954
\(302\) 0.822286 0.0473172
\(303\) 0 0
\(304\) −27.0246 −1.54997
\(305\) −24.8178 −1.42106
\(306\) 0 0
\(307\) 16.0732 0.917347 0.458674 0.888605i \(-0.348325\pi\)
0.458674 + 0.888605i \(0.348325\pi\)
\(308\) 7.58657 0.432285
\(309\) 0 0
\(310\) 0.134487 0.00763836
\(311\) 10.6421 0.603456 0.301728 0.953394i \(-0.402436\pi\)
0.301728 + 0.953394i \(0.402436\pi\)
\(312\) 0 0
\(313\) 23.2183 1.31238 0.656188 0.754598i \(-0.272168\pi\)
0.656188 + 0.754598i \(0.272168\pi\)
\(314\) −0.0849942 −0.00479650
\(315\) 0 0
\(316\) −28.5913 −1.60838
\(317\) −28.9370 −1.62526 −0.812632 0.582778i \(-0.801966\pi\)
−0.812632 + 0.582778i \(0.801966\pi\)
\(318\) 0 0
\(319\) 9.73379 0.544988
\(320\) −19.3391 −1.08109
\(321\) 0 0
\(322\) 0.235715 0.0131359
\(323\) 32.6040 1.81413
\(324\) 0 0
\(325\) −5.17138 −0.286857
\(326\) 0.133556 0.00739699
\(327\) 0 0
\(328\) −2.35162 −0.129847
\(329\) 45.7456 2.52204
\(330\) 0 0
\(331\) 3.90143 0.214442 0.107221 0.994235i \(-0.465805\pi\)
0.107221 + 0.994235i \(0.465805\pi\)
\(332\) −18.3464 −1.00689
\(333\) 0 0
\(334\) −0.180347 −0.00986812
\(335\) −5.22976 −0.285732
\(336\) 0 0
\(337\) 25.2478 1.37534 0.687668 0.726025i \(-0.258635\pi\)
0.687668 + 0.726025i \(0.258635\pi\)
\(338\) −0.917995 −0.0499323
\(339\) 0 0
\(340\) 23.4225 1.27026
\(341\) 0.886679 0.0480164
\(342\) 0 0
\(343\) 1.68943 0.0912209
\(344\) −0.988776 −0.0533112
\(345\) 0 0
\(346\) −0.169677 −0.00912192
\(347\) 20.1964 1.08420 0.542100 0.840314i \(-0.317630\pi\)
0.542100 + 0.840314i \(0.317630\pi\)
\(348\) 0 0
\(349\) 19.6729 1.05307 0.526533 0.850155i \(-0.323492\pi\)
0.526533 + 0.850155i \(0.323492\pi\)
\(350\) −0.231185 −0.0123573
\(351\) 0 0
\(352\) 0.742338 0.0395668
\(353\) 10.0073 0.532633 0.266317 0.963886i \(-0.414193\pi\)
0.266317 + 0.963886i \(0.414193\pi\)
\(354\) 0 0
\(355\) −25.3751 −1.34677
\(356\) −18.2795 −0.968814
\(357\) 0 0
\(358\) −0.615545 −0.0325326
\(359\) 11.1068 0.586194 0.293097 0.956083i \(-0.405314\pi\)
0.293097 + 0.956083i \(0.405314\pi\)
\(360\) 0 0
\(361\) 27.1766 1.43035
\(362\) 1.41392 0.0743142
\(363\) 0 0
\(364\) 40.0018 2.09666
\(365\) −36.8981 −1.93134
\(366\) 0 0
\(367\) −6.28530 −0.328090 −0.164045 0.986453i \(-0.552454\pi\)
−0.164045 + 0.986453i \(0.552454\pi\)
\(368\) −3.97694 −0.207312
\(369\) 0 0
\(370\) −0.245683 −0.0127724
\(371\) 30.8036 1.59924
\(372\) 0 0
\(373\) 17.3123 0.896399 0.448199 0.893934i \(-0.352065\pi\)
0.448199 + 0.893934i \(0.352065\pi\)
\(374\) −0.297574 −0.0153872
\(375\) 0 0
\(376\) 2.98315 0.153844
\(377\) 51.3235 2.64329
\(378\) 0 0
\(379\) 5.24331 0.269331 0.134665 0.990891i \(-0.457004\pi\)
0.134665 + 0.990891i \(0.457004\pi\)
\(380\) 33.1729 1.70174
\(381\) 0 0
\(382\) 0.862257 0.0441169
\(383\) −18.7675 −0.958975 −0.479487 0.877549i \(-0.659177\pi\)
−0.479487 + 0.877549i \(0.659177\pi\)
\(384\) 0 0
\(385\) −9.29460 −0.473696
\(386\) −0.580917 −0.0295679
\(387\) 0 0
\(388\) −13.4088 −0.680727
\(389\) −37.6653 −1.90971 −0.954854 0.297075i \(-0.903989\pi\)
−0.954854 + 0.297075i \(0.903989\pi\)
\(390\) 0 0
\(391\) 4.79799 0.242645
\(392\) 1.84507 0.0931903
\(393\) 0 0
\(394\) −1.31854 −0.0664271
\(395\) 35.0282 1.76246
\(396\) 0 0
\(397\) −3.83422 −0.192434 −0.0962171 0.995360i \(-0.530674\pi\)
−0.0962171 + 0.995360i \(0.530674\pi\)
\(398\) −0.375703 −0.0188323
\(399\) 0 0
\(400\) 3.90051 0.195025
\(401\) 33.4473 1.67028 0.835140 0.550037i \(-0.185386\pi\)
0.835140 + 0.550037i \(0.185386\pi\)
\(402\) 0 0
\(403\) 4.67520 0.232888
\(404\) −31.1421 −1.54938
\(405\) 0 0
\(406\) 2.29440 0.113869
\(407\) −1.61979 −0.0802903
\(408\) 0 0
\(409\) −31.9566 −1.58015 −0.790076 0.613009i \(-0.789959\pi\)
−0.790076 + 0.613009i \(0.789959\pi\)
\(410\) 1.43914 0.0710743
\(411\) 0 0
\(412\) 14.1502 0.697132
\(413\) 22.7027 1.11713
\(414\) 0 0
\(415\) 22.4769 1.10335
\(416\) 3.91413 0.191906
\(417\) 0 0
\(418\) −0.421450 −0.0206138
\(419\) 27.7519 1.35577 0.677884 0.735168i \(-0.262897\pi\)
0.677884 + 0.735168i \(0.262897\pi\)
\(420\) 0 0
\(421\) −20.0832 −0.978796 −0.489398 0.872061i \(-0.662783\pi\)
−0.489398 + 0.872061i \(0.662783\pi\)
\(422\) −0.485736 −0.0236453
\(423\) 0 0
\(424\) 2.00876 0.0975538
\(425\) −4.70578 −0.228264
\(426\) 0 0
\(427\) −38.5687 −1.86647
\(428\) −0.743263 −0.0359270
\(429\) 0 0
\(430\) 0.605110 0.0291810
\(431\) 32.1617 1.54918 0.774588 0.632467i \(-0.217957\pi\)
0.774588 + 0.632467i \(0.217957\pi\)
\(432\) 0 0
\(433\) −8.04837 −0.386780 −0.193390 0.981122i \(-0.561948\pi\)
−0.193390 + 0.981122i \(0.561948\pi\)
\(434\) 0.209003 0.0100325
\(435\) 0 0
\(436\) 12.2302 0.585720
\(437\) 6.79534 0.325065
\(438\) 0 0
\(439\) −25.1695 −1.20128 −0.600638 0.799521i \(-0.705087\pi\)
−0.600638 + 0.799521i \(0.705087\pi\)
\(440\) −0.606117 −0.0288955
\(441\) 0 0
\(442\) −1.56902 −0.0746307
\(443\) −13.7201 −0.651860 −0.325930 0.945394i \(-0.605677\pi\)
−0.325930 + 0.945394i \(0.605677\pi\)
\(444\) 0 0
\(445\) 22.3950 1.06162
\(446\) 0.606753 0.0287306
\(447\) 0 0
\(448\) −30.0545 −1.41994
\(449\) −0.588616 −0.0277785 −0.0138892 0.999904i \(-0.504421\pi\)
−0.0138892 + 0.999904i \(0.504421\pi\)
\(450\) 0 0
\(451\) 9.48834 0.446788
\(452\) 3.16981 0.149095
\(453\) 0 0
\(454\) 1.35503 0.0635948
\(455\) −49.0077 −2.29752
\(456\) 0 0
\(457\) −18.4682 −0.863908 −0.431954 0.901896i \(-0.642176\pi\)
−0.431954 + 0.901896i \(0.642176\pi\)
\(458\) −0.520680 −0.0243298
\(459\) 0 0
\(460\) 4.88172 0.227611
\(461\) −4.17501 −0.194449 −0.0972247 0.995262i \(-0.530997\pi\)
−0.0972247 + 0.995262i \(0.530997\pi\)
\(462\) 0 0
\(463\) −16.3331 −0.759064 −0.379532 0.925179i \(-0.623915\pi\)
−0.379532 + 0.925179i \(0.623915\pi\)
\(464\) −38.7107 −1.79710
\(465\) 0 0
\(466\) −0.533360 −0.0247074
\(467\) −11.6963 −0.541238 −0.270619 0.962687i \(-0.587228\pi\)
−0.270619 + 0.962687i \(0.587228\pi\)
\(468\) 0 0
\(469\) −8.12745 −0.375291
\(470\) −1.82563 −0.0842100
\(471\) 0 0
\(472\) 1.48048 0.0681446
\(473\) 3.98952 0.183438
\(474\) 0 0
\(475\) −6.66475 −0.305800
\(476\) 36.4003 1.66840
\(477\) 0 0
\(478\) −0.375151 −0.0171590
\(479\) −36.3441 −1.66060 −0.830302 0.557314i \(-0.811832\pi\)
−0.830302 + 0.557314i \(0.811832\pi\)
\(480\) 0 0
\(481\) −8.54071 −0.389423
\(482\) 1.70897 0.0778414
\(483\) 0 0
\(484\) −1.99615 −0.0907342
\(485\) 16.4276 0.745939
\(486\) 0 0
\(487\) −2.42176 −0.109740 −0.0548702 0.998493i \(-0.517475\pi\)
−0.0548702 + 0.998493i \(0.517475\pi\)
\(488\) −2.51513 −0.113855
\(489\) 0 0
\(490\) −1.12915 −0.0510097
\(491\) −36.5163 −1.64796 −0.823979 0.566621i \(-0.808250\pi\)
−0.823979 + 0.566621i \(0.808250\pi\)
\(492\) 0 0
\(493\) 46.7027 2.10338
\(494\) −2.22219 −0.0999808
\(495\) 0 0
\(496\) −3.52627 −0.158334
\(497\) −39.4348 −1.76889
\(498\) 0 0
\(499\) −34.7189 −1.55423 −0.777117 0.629357i \(-0.783318\pi\)
−0.777117 + 0.629357i \(0.783318\pi\)
\(500\) 19.6207 0.877464
\(501\) 0 0
\(502\) 1.65625 0.0739221
\(503\) 16.1502 0.720101 0.360050 0.932933i \(-0.382760\pi\)
0.360050 + 0.932933i \(0.382760\pi\)
\(504\) 0 0
\(505\) 38.1534 1.69780
\(506\) −0.0620205 −0.00275715
\(507\) 0 0
\(508\) 26.0357 1.15515
\(509\) −5.78369 −0.256357 −0.128179 0.991751i \(-0.540913\pi\)
−0.128179 + 0.991751i \(0.540913\pi\)
\(510\) 0 0
\(511\) −57.3426 −2.53669
\(512\) −4.92355 −0.217592
\(513\) 0 0
\(514\) −1.37844 −0.0608002
\(515\) −17.3360 −0.763915
\(516\) 0 0
\(517\) −12.0364 −0.529362
\(518\) −0.381810 −0.0167757
\(519\) 0 0
\(520\) −3.19588 −0.140149
\(521\) −11.5404 −0.505594 −0.252797 0.967519i \(-0.581351\pi\)
−0.252797 + 0.967519i \(0.581351\pi\)
\(522\) 0 0
\(523\) −28.4732 −1.24505 −0.622523 0.782602i \(-0.713892\pi\)
−0.622523 + 0.782602i \(0.713892\pi\)
\(524\) 0.787835 0.0344167
\(525\) 0 0
\(526\) −0.415329 −0.0181092
\(527\) 4.25428 0.185319
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −1.22932 −0.0533981
\(531\) 0 0
\(532\) 51.5533 2.23512
\(533\) 50.0292 2.16701
\(534\) 0 0
\(535\) 0.910600 0.0393687
\(536\) −0.530005 −0.0228927
\(537\) 0 0
\(538\) 1.24855 0.0538289
\(539\) −7.44452 −0.320658
\(540\) 0 0
\(541\) −18.9960 −0.816701 −0.408350 0.912825i \(-0.633896\pi\)
−0.408350 + 0.912825i \(0.633896\pi\)
\(542\) −1.97950 −0.0850270
\(543\) 0 0
\(544\) 3.56173 0.152708
\(545\) −14.9837 −0.641830
\(546\) 0 0
\(547\) 16.0028 0.684229 0.342114 0.939658i \(-0.388857\pi\)
0.342114 + 0.939658i \(0.388857\pi\)
\(548\) −8.38584 −0.358225
\(549\) 0 0
\(550\) 0.0608286 0.00259374
\(551\) 66.1444 2.81785
\(552\) 0 0
\(553\) 54.4366 2.31488
\(554\) −0.810302 −0.0344264
\(555\) 0 0
\(556\) 34.6407 1.46909
\(557\) 14.0545 0.595509 0.297755 0.954642i \(-0.403762\pi\)
0.297755 + 0.954642i \(0.403762\pi\)
\(558\) 0 0
\(559\) 21.0356 0.889710
\(560\) 36.9640 1.56201
\(561\) 0 0
\(562\) 0.898148 0.0378861
\(563\) 11.8821 0.500771 0.250386 0.968146i \(-0.419443\pi\)
0.250386 + 0.968146i \(0.419443\pi\)
\(564\) 0 0
\(565\) −3.88345 −0.163378
\(566\) 0.786415 0.0330555
\(567\) 0 0
\(568\) −2.57162 −0.107903
\(569\) −26.0071 −1.09027 −0.545137 0.838347i \(-0.683522\pi\)
−0.545137 + 0.838347i \(0.683522\pi\)
\(570\) 0 0
\(571\) 5.42386 0.226981 0.113491 0.993539i \(-0.463797\pi\)
0.113491 + 0.993539i \(0.463797\pi\)
\(572\) −10.5251 −0.440078
\(573\) 0 0
\(574\) 2.23654 0.0933514
\(575\) −0.980782 −0.0409014
\(576\) 0 0
\(577\) 29.8686 1.24345 0.621723 0.783237i \(-0.286433\pi\)
0.621723 + 0.783237i \(0.286433\pi\)
\(578\) −0.373408 −0.0155317
\(579\) 0 0
\(580\) 47.5177 1.97306
\(581\) 34.9309 1.44918
\(582\) 0 0
\(583\) −8.10494 −0.335672
\(584\) −3.73941 −0.154738
\(585\) 0 0
\(586\) 0.373740 0.0154391
\(587\) 8.36955 0.345448 0.172724 0.984970i \(-0.444743\pi\)
0.172724 + 0.984970i \(0.444743\pi\)
\(588\) 0 0
\(589\) 6.02529 0.248268
\(590\) −0.906024 −0.0373004
\(591\) 0 0
\(592\) 6.44182 0.264757
\(593\) 7.21144 0.296139 0.148069 0.988977i \(-0.452694\pi\)
0.148069 + 0.988977i \(0.452694\pi\)
\(594\) 0 0
\(595\) −44.5954 −1.82823
\(596\) −14.6841 −0.601485
\(597\) 0 0
\(598\) −0.327016 −0.0133727
\(599\) 14.3381 0.585838 0.292919 0.956137i \(-0.405373\pi\)
0.292919 + 0.956137i \(0.405373\pi\)
\(600\) 0 0
\(601\) 10.2123 0.416568 0.208284 0.978068i \(-0.433212\pi\)
0.208284 + 0.978068i \(0.433212\pi\)
\(602\) 0.940388 0.0383274
\(603\) 0 0
\(604\) 26.4656 1.07687
\(605\) 2.44556 0.0994263
\(606\) 0 0
\(607\) 20.1377 0.817366 0.408683 0.912676i \(-0.365988\pi\)
0.408683 + 0.912676i \(0.365988\pi\)
\(608\) 5.04444 0.204579
\(609\) 0 0
\(610\) 1.53921 0.0623208
\(611\) −63.4647 −2.56751
\(612\) 0 0
\(613\) −8.78165 −0.354687 −0.177344 0.984149i \(-0.556750\pi\)
−0.177344 + 0.984149i \(0.556750\pi\)
\(614\) −0.996869 −0.0402304
\(615\) 0 0
\(616\) −0.941952 −0.0379523
\(617\) 21.2291 0.854653 0.427326 0.904097i \(-0.359456\pi\)
0.427326 + 0.904097i \(0.359456\pi\)
\(618\) 0 0
\(619\) −16.6270 −0.668295 −0.334147 0.942521i \(-0.608448\pi\)
−0.334147 + 0.942521i \(0.608448\pi\)
\(620\) 4.32852 0.173838
\(621\) 0 0
\(622\) −0.660026 −0.0264646
\(623\) 34.8035 1.39437
\(624\) 0 0
\(625\) −28.9420 −1.15768
\(626\) −1.44001 −0.0575544
\(627\) 0 0
\(628\) −2.73557 −0.109161
\(629\) −7.77176 −0.309880
\(630\) 0 0
\(631\) −2.58482 −0.102900 −0.0514499 0.998676i \(-0.516384\pi\)
−0.0514499 + 0.998676i \(0.516384\pi\)
\(632\) 3.54990 0.141208
\(633\) 0 0
\(634\) 1.79469 0.0712761
\(635\) −31.8974 −1.26581
\(636\) 0 0
\(637\) −39.2528 −1.55525
\(638\) −0.603695 −0.0239005
\(639\) 0 0
\(640\) 4.83029 0.190934
\(641\) −2.45708 −0.0970488 −0.0485244 0.998822i \(-0.515452\pi\)
−0.0485244 + 0.998822i \(0.515452\pi\)
\(642\) 0 0
\(643\) −18.8261 −0.742428 −0.371214 0.928547i \(-0.621058\pi\)
−0.371214 + 0.928547i \(0.621058\pi\)
\(644\) 7.58657 0.298953
\(645\) 0 0
\(646\) −2.02212 −0.0795591
\(647\) 12.9598 0.509501 0.254751 0.967007i \(-0.418007\pi\)
0.254751 + 0.967007i \(0.418007\pi\)
\(648\) 0 0
\(649\) −5.97345 −0.234478
\(650\) 0.320732 0.0125801
\(651\) 0 0
\(652\) 4.29856 0.168344
\(653\) −36.8991 −1.44397 −0.721987 0.691907i \(-0.756771\pi\)
−0.721987 + 0.691907i \(0.756771\pi\)
\(654\) 0 0
\(655\) −0.965207 −0.0377137
\(656\) −37.7345 −1.47328
\(657\) 0 0
\(658\) −2.83717 −0.110604
\(659\) 34.1824 1.33156 0.665778 0.746150i \(-0.268100\pi\)
0.665778 + 0.746150i \(0.268100\pi\)
\(660\) 0 0
\(661\) 21.2402 0.826150 0.413075 0.910697i \(-0.364455\pi\)
0.413075 + 0.910697i \(0.364455\pi\)
\(662\) −0.241968 −0.00940437
\(663\) 0 0
\(664\) 2.27790 0.0883998
\(665\) −63.1599 −2.44924
\(666\) 0 0
\(667\) 9.73379 0.376894
\(668\) −5.80452 −0.224584
\(669\) 0 0
\(670\) 0.324352 0.0125308
\(671\) 10.1481 0.391762
\(672\) 0 0
\(673\) 21.0215 0.810320 0.405160 0.914246i \(-0.367216\pi\)
0.405160 + 0.914246i \(0.367216\pi\)
\(674\) −1.56588 −0.0603155
\(675\) 0 0
\(676\) −29.5460 −1.13638
\(677\) 33.2633 1.27841 0.639207 0.769035i \(-0.279263\pi\)
0.639207 + 0.769035i \(0.279263\pi\)
\(678\) 0 0
\(679\) 25.5298 0.979742
\(680\) −2.90814 −0.111522
\(681\) 0 0
\(682\) −0.0549923 −0.00210576
\(683\) −24.6295 −0.942423 −0.471211 0.882020i \(-0.656183\pi\)
−0.471211 + 0.882020i \(0.656183\pi\)
\(684\) 0 0
\(685\) 10.2738 0.392542
\(686\) −0.104780 −0.00400050
\(687\) 0 0
\(688\) −15.8661 −0.604888
\(689\) −42.7350 −1.62807
\(690\) 0 0
\(691\) −25.3441 −0.964134 −0.482067 0.876134i \(-0.660114\pi\)
−0.482067 + 0.876134i \(0.660114\pi\)
\(692\) −5.46114 −0.207601
\(693\) 0 0
\(694\) −1.25259 −0.0475477
\(695\) −42.4397 −1.60983
\(696\) 0 0
\(697\) 45.5250 1.72438
\(698\) −1.22012 −0.0461823
\(699\) 0 0
\(700\) −7.44077 −0.281235
\(701\) −42.8313 −1.61772 −0.808858 0.588004i \(-0.799914\pi\)
−0.808858 + 0.588004i \(0.799914\pi\)
\(702\) 0 0
\(703\) −11.0071 −0.415139
\(704\) 7.90783 0.298038
\(705\) 0 0
\(706\) −0.620656 −0.0233587
\(707\) 59.2933 2.22995
\(708\) 0 0
\(709\) −15.7544 −0.591668 −0.295834 0.955239i \(-0.595597\pi\)
−0.295834 + 0.955239i \(0.595597\pi\)
\(710\) 1.57378 0.0590628
\(711\) 0 0
\(712\) 2.26960 0.0850567
\(713\) 0.886679 0.0332064
\(714\) 0 0
\(715\) 12.8947 0.482236
\(716\) −19.8116 −0.740393
\(717\) 0 0
\(718\) −0.688849 −0.0257076
\(719\) −21.6047 −0.805719 −0.402860 0.915262i \(-0.631984\pi\)
−0.402860 + 0.915262i \(0.631984\pi\)
\(720\) 0 0
\(721\) −26.9415 −1.00335
\(722\) −1.68551 −0.0627281
\(723\) 0 0
\(724\) 45.5077 1.69128
\(725\) −9.54673 −0.354557
\(726\) 0 0
\(727\) −1.85572 −0.0688249 −0.0344124 0.999408i \(-0.510956\pi\)
−0.0344124 + 0.999408i \(0.510956\pi\)
\(728\) −4.96664 −0.184076
\(729\) 0 0
\(730\) 2.28844 0.0846990
\(731\) 19.1417 0.707980
\(732\) 0 0
\(733\) −6.87471 −0.253923 −0.126962 0.991908i \(-0.540522\pi\)
−0.126962 + 0.991908i \(0.540522\pi\)
\(734\) 0.389817 0.0143884
\(735\) 0 0
\(736\) 0.742338 0.0273630
\(737\) 2.13847 0.0787715
\(738\) 0 0
\(739\) 16.4364 0.604621 0.302311 0.953209i \(-0.402242\pi\)
0.302311 + 0.953209i \(0.402242\pi\)
\(740\) −7.90739 −0.290681
\(741\) 0 0
\(742\) −1.91045 −0.0701350
\(743\) −11.7330 −0.430442 −0.215221 0.976565i \(-0.569047\pi\)
−0.215221 + 0.976565i \(0.569047\pi\)
\(744\) 0 0
\(745\) 17.9901 0.659105
\(746\) −1.07372 −0.0393117
\(747\) 0 0
\(748\) −9.57753 −0.350189
\(749\) 1.41514 0.0517082
\(750\) 0 0
\(751\) 25.4835 0.929904 0.464952 0.885336i \(-0.346071\pi\)
0.464952 + 0.885336i \(0.346071\pi\)
\(752\) 47.8682 1.74557
\(753\) 0 0
\(754\) −3.18311 −0.115922
\(755\) −32.4240 −1.18003
\(756\) 0 0
\(757\) −28.7418 −1.04464 −0.522319 0.852750i \(-0.674933\pi\)
−0.522319 + 0.852750i \(0.674933\pi\)
\(758\) −0.325193 −0.0118115
\(759\) 0 0
\(760\) −4.11877 −0.149403
\(761\) 41.2289 1.49455 0.747273 0.664517i \(-0.231363\pi\)
0.747273 + 0.664517i \(0.231363\pi\)
\(762\) 0 0
\(763\) −23.2858 −0.843001
\(764\) 27.7521 1.00404
\(765\) 0 0
\(766\) 1.16397 0.0420559
\(767\) −31.4963 −1.13726
\(768\) 0 0
\(769\) −3.24451 −0.117000 −0.0585000 0.998287i \(-0.518632\pi\)
−0.0585000 + 0.998287i \(0.518632\pi\)
\(770\) 0.576455 0.0207740
\(771\) 0 0
\(772\) −18.6970 −0.672921
\(773\) −24.0624 −0.865465 −0.432732 0.901522i \(-0.642450\pi\)
−0.432732 + 0.901522i \(0.642450\pi\)
\(774\) 0 0
\(775\) −0.869639 −0.0312384
\(776\) 1.66484 0.0597643
\(777\) 0 0
\(778\) 2.33602 0.0837505
\(779\) 64.4765 2.31011
\(780\) 0 0
\(781\) 10.3760 0.371281
\(782\) −0.297574 −0.0106412
\(783\) 0 0
\(784\) 29.6064 1.05737
\(785\) 3.35145 0.119618
\(786\) 0 0
\(787\) −48.3519 −1.72356 −0.861779 0.507284i \(-0.830650\pi\)
−0.861779 + 0.507284i \(0.830650\pi\)
\(788\) −42.4377 −1.51178
\(789\) 0 0
\(790\) −2.17247 −0.0772930
\(791\) −6.03518 −0.214586
\(792\) 0 0
\(793\) 53.5078 1.90012
\(794\) 0.237800 0.00843922
\(795\) 0 0
\(796\) −12.0921 −0.428594
\(797\) 30.3183 1.07393 0.536965 0.843605i \(-0.319571\pi\)
0.536965 + 0.843605i \(0.319571\pi\)
\(798\) 0 0
\(799\) −57.7508 −2.04307
\(800\) −0.728072 −0.0257412
\(801\) 0 0
\(802\) −2.07442 −0.0732503
\(803\) 15.0878 0.532436
\(804\) 0 0
\(805\) −9.29460 −0.327591
\(806\) −0.289958 −0.0102134
\(807\) 0 0
\(808\) 3.86662 0.136027
\(809\) 48.7336 1.71338 0.856691 0.515830i \(-0.172516\pi\)
0.856691 + 0.515830i \(0.172516\pi\)
\(810\) 0 0
\(811\) 15.7407 0.552732 0.276366 0.961052i \(-0.410870\pi\)
0.276366 + 0.961052i \(0.410870\pi\)
\(812\) 73.8461 2.59149
\(813\) 0 0
\(814\) 0.100460 0.00352114
\(815\) −5.26633 −0.184471
\(816\) 0 0
\(817\) 27.1101 0.948463
\(818\) 1.98196 0.0692977
\(819\) 0 0
\(820\) 46.3194 1.61754
\(821\) −20.4763 −0.714627 −0.357313 0.933985i \(-0.616307\pi\)
−0.357313 + 0.933985i \(0.616307\pi\)
\(822\) 0 0
\(823\) 27.3973 0.955010 0.477505 0.878629i \(-0.341541\pi\)
0.477505 + 0.878629i \(0.341541\pi\)
\(824\) −1.75690 −0.0612045
\(825\) 0 0
\(826\) −1.40803 −0.0489916
\(827\) −29.4934 −1.02559 −0.512793 0.858512i \(-0.671389\pi\)
−0.512793 + 0.858512i \(0.671389\pi\)
\(828\) 0 0
\(829\) −29.9652 −1.04073 −0.520366 0.853943i \(-0.674205\pi\)
−0.520366 + 0.853943i \(0.674205\pi\)
\(830\) −1.39403 −0.0483875
\(831\) 0 0
\(832\) 41.6957 1.44554
\(833\) −35.7187 −1.23758
\(834\) 0 0
\(835\) 7.11134 0.246098
\(836\) −13.5645 −0.469139
\(837\) 0 0
\(838\) −1.72119 −0.0594574
\(839\) −22.4124 −0.773761 −0.386881 0.922130i \(-0.626447\pi\)
−0.386881 + 0.922130i \(0.626447\pi\)
\(840\) 0 0
\(841\) 65.7468 2.26713
\(842\) 1.24557 0.0429252
\(843\) 0 0
\(844\) −15.6336 −0.538131
\(845\) 36.1979 1.24525
\(846\) 0 0
\(847\) 3.80059 0.130590
\(848\) 32.2328 1.10688
\(849\) 0 0
\(850\) 0.291855 0.0100105
\(851\) −1.61979 −0.0555259
\(852\) 0 0
\(853\) 41.7909 1.43089 0.715447 0.698667i \(-0.246223\pi\)
0.715447 + 0.698667i \(0.246223\pi\)
\(854\) 2.39205 0.0818543
\(855\) 0 0
\(856\) 0.0922839 0.00315420
\(857\) −18.6358 −0.636588 −0.318294 0.947992i \(-0.603110\pi\)
−0.318294 + 0.947992i \(0.603110\pi\)
\(858\) 0 0
\(859\) 30.1013 1.02704 0.513521 0.858077i \(-0.328341\pi\)
0.513521 + 0.858077i \(0.328341\pi\)
\(860\) 19.4757 0.664116
\(861\) 0 0
\(862\) −1.99469 −0.0679393
\(863\) −1.09826 −0.0373853 −0.0186927 0.999825i \(-0.505950\pi\)
−0.0186927 + 0.999825i \(0.505950\pi\)
\(864\) 0 0
\(865\) 6.69065 0.227489
\(866\) 0.499164 0.0169623
\(867\) 0 0
\(868\) 6.72686 0.228324
\(869\) −14.3232 −0.485880
\(870\) 0 0
\(871\) 11.2755 0.382056
\(872\) −1.51851 −0.0514231
\(873\) 0 0
\(874\) −0.421450 −0.0142558
\(875\) −37.3570 −1.26290
\(876\) 0 0
\(877\) 13.3223 0.449861 0.224930 0.974375i \(-0.427785\pi\)
0.224930 + 0.974375i \(0.427785\pi\)
\(878\) 1.56103 0.0526821
\(879\) 0 0
\(880\) −9.72585 −0.327858
\(881\) 53.6169 1.80640 0.903200 0.429220i \(-0.141211\pi\)
0.903200 + 0.429220i \(0.141211\pi\)
\(882\) 0 0
\(883\) 25.3026 0.851502 0.425751 0.904840i \(-0.360010\pi\)
0.425751 + 0.904840i \(0.360010\pi\)
\(884\) −50.4995 −1.69848
\(885\) 0 0
\(886\) 0.850925 0.0285874
\(887\) −50.6072 −1.69923 −0.849613 0.527407i \(-0.823164\pi\)
−0.849613 + 0.527407i \(0.823164\pi\)
\(888\) 0 0
\(889\) −49.5710 −1.66256
\(890\) −1.38895 −0.0465576
\(891\) 0 0
\(892\) 19.5286 0.653866
\(893\) −81.7917 −2.73706
\(894\) 0 0
\(895\) 24.2719 0.811320
\(896\) 7.50665 0.250779
\(897\) 0 0
\(898\) 0.0365062 0.00121823
\(899\) 8.63076 0.287852
\(900\) 0 0
\(901\) −38.8874 −1.29553
\(902\) −0.588471 −0.0195940
\(903\) 0 0
\(904\) −0.393565 −0.0130898
\(905\) −55.7532 −1.85330
\(906\) 0 0
\(907\) −25.8419 −0.858066 −0.429033 0.903289i \(-0.641146\pi\)
−0.429033 + 0.903289i \(0.641146\pi\)
\(908\) 43.6122 1.44732
\(909\) 0 0
\(910\) 3.03948 0.100758
\(911\) −0.789957 −0.0261725 −0.0130862 0.999914i \(-0.504166\pi\)
−0.0130862 + 0.999914i \(0.504166\pi\)
\(912\) 0 0
\(913\) −9.19090 −0.304174
\(914\) 1.14541 0.0378868
\(915\) 0 0
\(916\) −16.7583 −0.553709
\(917\) −1.50001 −0.0495345
\(918\) 0 0
\(919\) −13.0849 −0.431631 −0.215815 0.976434i \(-0.569241\pi\)
−0.215815 + 0.976434i \(0.569241\pi\)
\(920\) −0.606117 −0.0199831
\(921\) 0 0
\(922\) 0.258936 0.00852760
\(923\) 54.7095 1.80078
\(924\) 0 0
\(925\) 1.58867 0.0522350
\(926\) 1.01299 0.0332888
\(927\) 0 0
\(928\) 7.22577 0.237197
\(929\) −1.21726 −0.0399371 −0.0199686 0.999801i \(-0.506357\pi\)
−0.0199686 + 0.999801i \(0.506357\pi\)
\(930\) 0 0
\(931\) −50.5880 −1.65796
\(932\) −17.1664 −0.562304
\(933\) 0 0
\(934\) 0.725407 0.0237361
\(935\) 11.7338 0.383736
\(936\) 0 0
\(937\) 15.2407 0.497892 0.248946 0.968517i \(-0.419916\pi\)
0.248946 + 0.968517i \(0.419916\pi\)
\(938\) 0.504068 0.0164584
\(939\) 0 0
\(940\) −58.7586 −1.91649
\(941\) 19.2595 0.627843 0.313921 0.949449i \(-0.398357\pi\)
0.313921 + 0.949449i \(0.398357\pi\)
\(942\) 0 0
\(943\) 9.48834 0.308983
\(944\) 23.7560 0.773193
\(945\) 0 0
\(946\) −0.247432 −0.00804470
\(947\) 36.4068 1.18306 0.591531 0.806282i \(-0.298524\pi\)
0.591531 + 0.806282i \(0.298524\pi\)
\(948\) 0 0
\(949\) 79.5535 2.58242
\(950\) 0.413351 0.0134109
\(951\) 0 0
\(952\) −4.51948 −0.146477
\(953\) 5.05538 0.163760 0.0818799 0.996642i \(-0.473908\pi\)
0.0818799 + 0.996642i \(0.473908\pi\)
\(954\) 0 0
\(955\) −34.0001 −1.10022
\(956\) −12.0744 −0.390513
\(957\) 0 0
\(958\) 2.25408 0.0728259
\(959\) 15.9663 0.515579
\(960\) 0 0
\(961\) −30.2138 −0.974639
\(962\) 0.529699 0.0170782
\(963\) 0 0
\(964\) 55.0038 1.77155
\(965\) 22.9065 0.737385
\(966\) 0 0
\(967\) −56.4879 −1.81653 −0.908264 0.418397i \(-0.862592\pi\)
−0.908264 + 0.418397i \(0.862592\pi\)
\(968\) 0.247843 0.00796599
\(969\) 0 0
\(970\) −1.01885 −0.0327132
\(971\) 16.0663 0.515593 0.257796 0.966199i \(-0.417004\pi\)
0.257796 + 0.966199i \(0.417004\pi\)
\(972\) 0 0
\(973\) −65.9545 −2.11440
\(974\) 0.150199 0.00481268
\(975\) 0 0
\(976\) −40.3582 −1.29184
\(977\) 49.2278 1.57494 0.787468 0.616356i \(-0.211392\pi\)
0.787468 + 0.616356i \(0.211392\pi\)
\(978\) 0 0
\(979\) −9.15738 −0.292671
\(980\) −36.3421 −1.16090
\(981\) 0 0
\(982\) 2.26476 0.0722714
\(983\) −0.915251 −0.0291920 −0.0145960 0.999893i \(-0.504646\pi\)
−0.0145960 + 0.999893i \(0.504646\pi\)
\(984\) 0 0
\(985\) 51.9921 1.65661
\(986\) −2.89652 −0.0922441
\(987\) 0 0
\(988\) −71.5219 −2.27541
\(989\) 3.98952 0.126859
\(990\) 0 0
\(991\) −53.1117 −1.68715 −0.843575 0.537012i \(-0.819553\pi\)
−0.843575 + 0.537012i \(0.819553\pi\)
\(992\) 0.658216 0.0208984
\(993\) 0 0
\(994\) 2.44577 0.0775751
\(995\) 14.8145 0.469652
\(996\) 0 0
\(997\) 23.9662 0.759016 0.379508 0.925189i \(-0.376093\pi\)
0.379508 + 0.925189i \(0.376093\pi\)
\(998\) 2.15329 0.0681611
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2277.2.a.r.1.4 yes 8
3.2 odd 2 2277.2.a.q.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2277.2.a.q.1.5 8 3.2 odd 2
2277.2.a.r.1.4 yes 8 1.1 even 1 trivial