Properties

Label 2277.2.a.r
Level $2277$
Weight $2$
Character orbit 2277.a
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,6,8,0,-6,-6,0,-12,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} - 2x^{5} + 36x^{4} + 10x^{3} - 35x^{2} - 14x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + (\beta_{7} + \beta_1 + 1) q^{5} + ( - \beta_{7} + \beta_{6} - \beta_{5} - 1) q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots - 1) q^{8} + (\beta_{7} - \beta_{6} + \beta_{5} + \cdots - 2) q^{10}+ \cdots + (7 \beta_{7} - 5 \beta_{6} + 3 \beta_{5} + \cdots + 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} + 8 q^{5} - 6 q^{7} - 6 q^{8} - 12 q^{10} - 8 q^{11} - 10 q^{13} - 2 q^{14} - 2 q^{16} - 16 q^{19} + 12 q^{20} - 8 q^{23} - 4 q^{25} - 20 q^{28} - 2 q^{29} - 20 q^{31} - 12 q^{32} - 22 q^{34}+ \cdots + 46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 11x^{6} - 2x^{5} + 36x^{4} + 10x^{3} - 35x^{2} - 14x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 3\nu^{2} + 10\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - \nu^{5} - 7\nu^{4} + 4\nu^{3} + 10\nu^{2} - 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 2\nu^{5} - 6\nu^{4} + 10\nu^{3} + 7\nu^{2} - 7\nu - 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{7} + 2\nu^{6} + 7\nu^{5} - 11\nu^{4} - 14\nu^{3} + 10\nu^{2} + 12\nu + 3 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( \nu^{7} - 2\nu^{6} - 7\nu^{5} + 12\nu^{4} + 13\nu^{3} - 16\nu^{2} - 9\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} - \beta_{3} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 6\beta_{2} + 2\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} + \beta_{6} - 8\beta_{5} + 8\beta_{4} - 7\beta_{3} + 3\beta_{2} + 27\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{7} + 8\beta_{6} - 11\beta_{5} + 12\beta_{4} - 10\beta_{3} + 35\beta_{2} + 23\beta _1 + 75 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 12\beta_{7} + 11\beta_{6} - 53\beta_{5} + 55\beta_{4} - 44\beta_{3} + 35\beta_{2} + 155\beta _1 + 85 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.59781
1.74429
1.40881
0.0620205
−0.512135
−1.13892
−2.07090
−2.09098
−2.59781 0 4.74863 4.21910 0 −1.76707 −7.14042 0 −10.9604
1.2 −1.74429 0 1.04255 0.210629 0 −0.492181 1.67007 0 −0.367398
1.3 −1.40881 0 −0.0152604 0.124472 0 −1.04695 2.83911 0 −0.175357
1.4 −0.0620205 0 −1.99615 2.44556 0 3.80059 0.247843 0 −0.151675
1.5 0.512135 0 −1.73772 2.18114 0 −4.04698 −1.91422 0 1.11704
1.6 1.13892 0 −0.702863 −1.09402 0 1.67173 −3.07834 0 −1.24600
1.7 2.07090 0 2.28862 1.71731 0 −4.65170 0.597693 0 3.55637
1.8 2.09098 0 2.37220 −1.80420 0 0.532553 0.778259 0 −3.77254
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2277.2.a.r yes 8
3.b odd 2 1 2277.2.a.q 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2277.2.a.q 8 3.b odd 2 1
2277.2.a.r yes 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2277))\):

\( T_{2}^{8} - 11T_{2}^{6} + 2T_{2}^{5} + 36T_{2}^{4} - 10T_{2}^{3} - 35T_{2}^{2} + 14T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{8} - 8T_{5}^{7} + 14T_{5}^{6} + 26T_{5}^{5} - 81T_{5}^{4} + 8T_{5}^{3} + 80T_{5}^{2} - 26T_{5} + 2 \) Copy content Toggle raw display
\( T_{17}^{8} - 74T_{17}^{6} - 58T_{17}^{5} + 1282T_{17}^{4} + 560T_{17}^{3} - 5552T_{17}^{2} + 3296T_{17} + 544 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 11 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 8 T^{7} + \cdots + 2 \) Copy content Toggle raw display
$7$ \( T^{8} + 6 T^{7} + \cdots - 58 \) Copy content Toggle raw display
$11$ \( (T + 1)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + 10 T^{7} + \cdots + 4352 \) Copy content Toggle raw display
$17$ \( T^{8} - 74 T^{6} + \cdots + 544 \) Copy content Toggle raw display
$19$ \( T^{8} + 16 T^{7} + \cdots - 17312 \) Copy content Toggle raw display
$23$ \( (T + 1)^{8} \) Copy content Toggle raw display
$29$ \( T^{8} + 2 T^{7} + \cdots - 339968 \) Copy content Toggle raw display
$31$ \( T^{8} + 20 T^{7} + \cdots + 10784 \) Copy content Toggle raw display
$37$ \( T^{8} + 6 T^{7} + \cdots + 1306112 \) Copy content Toggle raw display
$41$ \( T^{8} + 6 T^{7} + \cdots - 326644 \) Copy content Toggle raw display
$43$ \( T^{8} + 26 T^{7} + \cdots - 441234 \) Copy content Toggle raw display
$47$ \( T^{8} - 12 T^{7} + \cdots - 947456 \) Copy content Toggle raw display
$53$ \( T^{8} - 14 T^{7} + \cdots - 3923542 \) Copy content Toggle raw display
$59$ \( T^{8} - 280 T^{6} + \cdots - 6036736 \) Copy content Toggle raw display
$61$ \( T^{8} + 12 T^{7} + \cdots - 27594752 \) Copy content Toggle raw display
$67$ \( T^{8} + 50 T^{7} + \cdots - 3165728 \) Copy content Toggle raw display
$71$ \( T^{8} + 32 T^{7} + \cdots + 7168 \) Copy content Toggle raw display
$73$ \( T^{8} + 24 T^{7} + \cdots + 1024 \) Copy content Toggle raw display
$79$ \( T^{8} + 4 T^{7} + \cdots - 47741146 \) Copy content Toggle raw display
$83$ \( T^{8} + 10 T^{7} + \cdots + 326528 \) Copy content Toggle raw display
$89$ \( T^{8} - 16 T^{7} + \cdots - 4465622 \) Copy content Toggle raw display
$97$ \( T^{8} + 22 T^{7} + \cdots + 335488 \) Copy content Toggle raw display
show more
show less