Properties

Label 2277.2.a.n.1.3
Level $2277$
Weight $2$
Character 2277.1
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,0,4,-6,0,0,-6,0,8,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4222000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 10x^{3} + 8x^{2} - 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 759)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.537960\) of defining polynomial
Character \(\chi\) \(=\) 2277.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.537960 q^{2} -1.71060 q^{4} -3.67524 q^{5} -2.55698 q^{7} +1.99615 q^{8} +1.97713 q^{10} +1.00000 q^{11} +4.47214 q^{13} +1.37555 q^{14} +2.34735 q^{16} -2.66496 q^{17} +2.95381 q^{19} +6.28686 q^{20} -0.537960 q^{22} -1.00000 q^{23} +8.50740 q^{25} -2.40583 q^{26} +4.37397 q^{28} +2.49712 q^{29} -3.20786 q^{31} -5.25509 q^{32} +1.43364 q^{34} +9.39752 q^{35} +9.75632 q^{37} -1.58903 q^{38} -7.33635 q^{40} -5.69445 q^{41} +7.13878 q^{43} -1.71060 q^{44} +0.537960 q^{46} -12.6064 q^{47} -0.461849 q^{49} -4.57665 q^{50} -7.65003 q^{52} +11.5228 q^{53} -3.67524 q^{55} -5.10413 q^{56} -1.34335 q^{58} +1.28418 q^{59} +8.34528 q^{61} +1.72570 q^{62} -1.86766 q^{64} -16.4362 q^{65} -6.33697 q^{67} +4.55867 q^{68} -5.05549 q^{70} +10.6270 q^{71} -3.90102 q^{73} -5.24851 q^{74} -5.05279 q^{76} -2.55698 q^{77} +5.41035 q^{79} -8.62706 q^{80} +3.06339 q^{82} -12.5491 q^{83} +9.79436 q^{85} -3.84038 q^{86} +1.99615 q^{88} -14.7009 q^{89} -11.4352 q^{91} +1.71060 q^{92} +6.78174 q^{94} -10.8560 q^{95} -10.6347 q^{97} +0.248457 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 4 q^{4} - 6 q^{5} - 6 q^{8} + 8 q^{10} + 6 q^{11} - 12 q^{14} - 10 q^{17} - 2 q^{19} - 12 q^{20} - 2 q^{22} - 6 q^{23} + 10 q^{25} + 18 q^{28} - 16 q^{29} - 12 q^{31} - 4 q^{32} - 2 q^{34}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.537960 −0.380395 −0.190198 0.981746i \(-0.560913\pi\)
−0.190198 + 0.981746i \(0.560913\pi\)
\(3\) 0 0
\(4\) −1.71060 −0.855299
\(5\) −3.67524 −1.64362 −0.821809 0.569763i \(-0.807035\pi\)
−0.821809 + 0.569763i \(0.807035\pi\)
\(6\) 0 0
\(7\) −2.55698 −0.966448 −0.483224 0.875497i \(-0.660534\pi\)
−0.483224 + 0.875497i \(0.660534\pi\)
\(8\) 1.99615 0.705747
\(9\) 0 0
\(10\) 1.97713 0.625225
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.47214 1.24035 0.620174 0.784465i \(-0.287062\pi\)
0.620174 + 0.784465i \(0.287062\pi\)
\(14\) 1.37555 0.367632
\(15\) 0 0
\(16\) 2.34735 0.586836
\(17\) −2.66496 −0.646347 −0.323173 0.946340i \(-0.604750\pi\)
−0.323173 + 0.946340i \(0.604750\pi\)
\(18\) 0 0
\(19\) 2.95381 0.677651 0.338826 0.940849i \(-0.389970\pi\)
0.338826 + 0.940849i \(0.389970\pi\)
\(20\) 6.28686 1.40579
\(21\) 0 0
\(22\) −0.537960 −0.114694
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 8.50740 1.70148
\(26\) −2.40583 −0.471822
\(27\) 0 0
\(28\) 4.37397 0.826602
\(29\) 2.49712 0.463703 0.231852 0.972751i \(-0.425522\pi\)
0.231852 + 0.972751i \(0.425522\pi\)
\(30\) 0 0
\(31\) −3.20786 −0.576148 −0.288074 0.957608i \(-0.593015\pi\)
−0.288074 + 0.957608i \(0.593015\pi\)
\(32\) −5.25509 −0.928977
\(33\) 0 0
\(34\) 1.43364 0.245867
\(35\) 9.39752 1.58847
\(36\) 0 0
\(37\) 9.75632 1.60393 0.801964 0.597372i \(-0.203788\pi\)
0.801964 + 0.597372i \(0.203788\pi\)
\(38\) −1.58903 −0.257775
\(39\) 0 0
\(40\) −7.33635 −1.15998
\(41\) −5.69445 −0.889324 −0.444662 0.895698i \(-0.646676\pi\)
−0.444662 + 0.895698i \(0.646676\pi\)
\(42\) 0 0
\(43\) 7.13878 1.08865 0.544327 0.838873i \(-0.316785\pi\)
0.544327 + 0.838873i \(0.316785\pi\)
\(44\) −1.71060 −0.257882
\(45\) 0 0
\(46\) 0.537960 0.0793179
\(47\) −12.6064 −1.83883 −0.919416 0.393286i \(-0.871338\pi\)
−0.919416 + 0.393286i \(0.871338\pi\)
\(48\) 0 0
\(49\) −0.461849 −0.0659785
\(50\) −4.57665 −0.647236
\(51\) 0 0
\(52\) −7.65003 −1.06087
\(53\) 11.5228 1.58278 0.791392 0.611309i \(-0.209357\pi\)
0.791392 + 0.611309i \(0.209357\pi\)
\(54\) 0 0
\(55\) −3.67524 −0.495570
\(56\) −5.10413 −0.682068
\(57\) 0 0
\(58\) −1.34335 −0.176391
\(59\) 1.28418 0.167186 0.0835930 0.996500i \(-0.473360\pi\)
0.0835930 + 0.996500i \(0.473360\pi\)
\(60\) 0 0
\(61\) 8.34528 1.06850 0.534252 0.845326i \(-0.320593\pi\)
0.534252 + 0.845326i \(0.320593\pi\)
\(62\) 1.72570 0.219164
\(63\) 0 0
\(64\) −1.86766 −0.233458
\(65\) −16.4362 −2.03866
\(66\) 0 0
\(67\) −6.33697 −0.774184 −0.387092 0.922041i \(-0.626520\pi\)
−0.387092 + 0.922041i \(0.626520\pi\)
\(68\) 4.55867 0.552820
\(69\) 0 0
\(70\) −5.05549 −0.604247
\(71\) 10.6270 1.26119 0.630595 0.776112i \(-0.282811\pi\)
0.630595 + 0.776112i \(0.282811\pi\)
\(72\) 0 0
\(73\) −3.90102 −0.456580 −0.228290 0.973593i \(-0.573313\pi\)
−0.228290 + 0.973593i \(0.573313\pi\)
\(74\) −5.24851 −0.610127
\(75\) 0 0
\(76\) −5.05279 −0.579595
\(77\) −2.55698 −0.291395
\(78\) 0 0
\(79\) 5.41035 0.608712 0.304356 0.952558i \(-0.401559\pi\)
0.304356 + 0.952558i \(0.401559\pi\)
\(80\) −8.62706 −0.964535
\(81\) 0 0
\(82\) 3.06339 0.338295
\(83\) −12.5491 −1.37745 −0.688723 0.725025i \(-0.741828\pi\)
−0.688723 + 0.725025i \(0.741828\pi\)
\(84\) 0 0
\(85\) 9.79436 1.06235
\(86\) −3.84038 −0.414119
\(87\) 0 0
\(88\) 1.99615 0.212791
\(89\) −14.7009 −1.55829 −0.779147 0.626841i \(-0.784347\pi\)
−0.779147 + 0.626841i \(0.784347\pi\)
\(90\) 0 0
\(91\) −11.4352 −1.19873
\(92\) 1.71060 0.178342
\(93\) 0 0
\(94\) 6.78174 0.699483
\(95\) −10.8560 −1.11380
\(96\) 0 0
\(97\) −10.6347 −1.07979 −0.539893 0.841733i \(-0.681535\pi\)
−0.539893 + 0.841733i \(0.681535\pi\)
\(98\) 0.248457 0.0250979
\(99\) 0 0
\(100\) −14.5528 −1.45528
\(101\) −11.6062 −1.15486 −0.577428 0.816441i \(-0.695944\pi\)
−0.577428 + 0.816441i \(0.695944\pi\)
\(102\) 0 0
\(103\) −11.5074 −1.13385 −0.566926 0.823768i \(-0.691868\pi\)
−0.566926 + 0.823768i \(0.691868\pi\)
\(104\) 8.92708 0.875372
\(105\) 0 0
\(106\) −6.19883 −0.602084
\(107\) 1.98570 0.191965 0.0959827 0.995383i \(-0.469401\pi\)
0.0959827 + 0.995383i \(0.469401\pi\)
\(108\) 0 0
\(109\) −16.7273 −1.60218 −0.801090 0.598543i \(-0.795746\pi\)
−0.801090 + 0.598543i \(0.795746\pi\)
\(110\) 1.97713 0.188512
\(111\) 0 0
\(112\) −6.00212 −0.567147
\(113\) 14.8002 1.39228 0.696142 0.717904i \(-0.254898\pi\)
0.696142 + 0.717904i \(0.254898\pi\)
\(114\) 0 0
\(115\) 3.67524 0.342718
\(116\) −4.27157 −0.396605
\(117\) 0 0
\(118\) −0.690838 −0.0635968
\(119\) 6.81424 0.624660
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −4.48943 −0.406454
\(123\) 0 0
\(124\) 5.48736 0.492779
\(125\) −12.8906 −1.15297
\(126\) 0 0
\(127\) −11.5297 −1.02309 −0.511547 0.859255i \(-0.670927\pi\)
−0.511547 + 0.859255i \(0.670927\pi\)
\(128\) 11.5149 1.01778
\(129\) 0 0
\(130\) 8.84201 0.775496
\(131\) −14.5897 −1.27471 −0.637355 0.770571i \(-0.719971\pi\)
−0.637355 + 0.770571i \(0.719971\pi\)
\(132\) 0 0
\(133\) −7.55285 −0.654915
\(134\) 3.40904 0.294496
\(135\) 0 0
\(136\) −5.31966 −0.456157
\(137\) 14.3153 1.22304 0.611518 0.791230i \(-0.290559\pi\)
0.611518 + 0.791230i \(0.290559\pi\)
\(138\) 0 0
\(139\) −2.42588 −0.205760 −0.102880 0.994694i \(-0.532806\pi\)
−0.102880 + 0.994694i \(0.532806\pi\)
\(140\) −16.0754 −1.35862
\(141\) 0 0
\(142\) −5.71689 −0.479751
\(143\) 4.47214 0.373979
\(144\) 0 0
\(145\) −9.17751 −0.762151
\(146\) 2.09860 0.173681
\(147\) 0 0
\(148\) −16.6891 −1.37184
\(149\) 15.5525 1.27411 0.637056 0.770817i \(-0.280152\pi\)
0.637056 + 0.770817i \(0.280152\pi\)
\(150\) 0 0
\(151\) −12.6020 −1.02554 −0.512768 0.858527i \(-0.671380\pi\)
−0.512768 + 0.858527i \(0.671380\pi\)
\(152\) 5.89627 0.478251
\(153\) 0 0
\(154\) 1.37555 0.110845
\(155\) 11.7897 0.946968
\(156\) 0 0
\(157\) −12.2083 −0.974325 −0.487163 0.873311i \(-0.661968\pi\)
−0.487163 + 0.873311i \(0.661968\pi\)
\(158\) −2.91055 −0.231551
\(159\) 0 0
\(160\) 19.3137 1.52688
\(161\) 2.55698 0.201518
\(162\) 0 0
\(163\) 11.4322 0.895437 0.447718 0.894175i \(-0.352237\pi\)
0.447718 + 0.894175i \(0.352237\pi\)
\(164\) 9.74092 0.760638
\(165\) 0 0
\(166\) 6.75093 0.523974
\(167\) 0.298238 0.0230783 0.0115392 0.999933i \(-0.496327\pi\)
0.0115392 + 0.999933i \(0.496327\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) −5.26898 −0.404112
\(171\) 0 0
\(172\) −12.2116 −0.931125
\(173\) −2.18141 −0.165850 −0.0829249 0.996556i \(-0.526426\pi\)
−0.0829249 + 0.996556i \(0.526426\pi\)
\(174\) 0 0
\(175\) −21.7533 −1.64439
\(176\) 2.34735 0.176938
\(177\) 0 0
\(178\) 7.90851 0.592768
\(179\) 7.20633 0.538627 0.269313 0.963053i \(-0.413203\pi\)
0.269313 + 0.963053i \(0.413203\pi\)
\(180\) 0 0
\(181\) 24.3892 1.81284 0.906418 0.422382i \(-0.138806\pi\)
0.906418 + 0.422382i \(0.138806\pi\)
\(182\) 6.15167 0.455992
\(183\) 0 0
\(184\) −1.99615 −0.147158
\(185\) −35.8568 −2.63625
\(186\) 0 0
\(187\) −2.66496 −0.194881
\(188\) 21.5645 1.57275
\(189\) 0 0
\(190\) 5.84009 0.423685
\(191\) 4.85569 0.351346 0.175673 0.984449i \(-0.443790\pi\)
0.175673 + 0.984449i \(0.443790\pi\)
\(192\) 0 0
\(193\) −26.0684 −1.87644 −0.938221 0.346037i \(-0.887527\pi\)
−0.938221 + 0.346037i \(0.887527\pi\)
\(194\) 5.72103 0.410746
\(195\) 0 0
\(196\) 0.790039 0.0564314
\(197\) −24.6143 −1.75370 −0.876849 0.480767i \(-0.840358\pi\)
−0.876849 + 0.480767i \(0.840358\pi\)
\(198\) 0 0
\(199\) −9.24320 −0.655233 −0.327617 0.944811i \(-0.606245\pi\)
−0.327617 + 0.944811i \(0.606245\pi\)
\(200\) 16.9821 1.20082
\(201\) 0 0
\(202\) 6.24366 0.439302
\(203\) −6.38508 −0.448145
\(204\) 0 0
\(205\) 20.9285 1.46171
\(206\) 6.19050 0.431312
\(207\) 0 0
\(208\) 10.4976 0.727881
\(209\) 2.95381 0.204320
\(210\) 0 0
\(211\) 21.6182 1.48826 0.744130 0.668035i \(-0.232864\pi\)
0.744130 + 0.668035i \(0.232864\pi\)
\(212\) −19.7110 −1.35375
\(213\) 0 0
\(214\) −1.06823 −0.0730227
\(215\) −26.2367 −1.78933
\(216\) 0 0
\(217\) 8.20243 0.556817
\(218\) 8.99860 0.609462
\(219\) 0 0
\(220\) 6.28686 0.423860
\(221\) −11.9180 −0.801694
\(222\) 0 0
\(223\) 6.53721 0.437764 0.218882 0.975751i \(-0.429759\pi\)
0.218882 + 0.975751i \(0.429759\pi\)
\(224\) 13.4372 0.897808
\(225\) 0 0
\(226\) −7.96191 −0.529618
\(227\) 10.4617 0.694367 0.347183 0.937797i \(-0.387138\pi\)
0.347183 + 0.937797i \(0.387138\pi\)
\(228\) 0 0
\(229\) 5.83401 0.385523 0.192761 0.981246i \(-0.438256\pi\)
0.192761 + 0.981246i \(0.438256\pi\)
\(230\) −1.97713 −0.130368
\(231\) 0 0
\(232\) 4.98463 0.327257
\(233\) 12.0725 0.790894 0.395447 0.918489i \(-0.370590\pi\)
0.395447 + 0.918489i \(0.370590\pi\)
\(234\) 0 0
\(235\) 46.3316 3.02234
\(236\) −2.19672 −0.142994
\(237\) 0 0
\(238\) −3.66579 −0.237618
\(239\) 2.88457 0.186587 0.0932937 0.995639i \(-0.470260\pi\)
0.0932937 + 0.995639i \(0.470260\pi\)
\(240\) 0 0
\(241\) 23.3698 1.50538 0.752690 0.658375i \(-0.228756\pi\)
0.752690 + 0.658375i \(0.228756\pi\)
\(242\) −0.537960 −0.0345814
\(243\) 0 0
\(244\) −14.2754 −0.913890
\(245\) 1.69741 0.108443
\(246\) 0 0
\(247\) 13.2099 0.840523
\(248\) −6.40338 −0.406615
\(249\) 0 0
\(250\) 6.93461 0.438583
\(251\) −4.65750 −0.293979 −0.146989 0.989138i \(-0.546958\pi\)
−0.146989 + 0.989138i \(0.546958\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) 6.20251 0.389180
\(255\) 0 0
\(256\) −2.45924 −0.153702
\(257\) −8.80355 −0.549151 −0.274575 0.961566i \(-0.588537\pi\)
−0.274575 + 0.961566i \(0.588537\pi\)
\(258\) 0 0
\(259\) −24.9467 −1.55011
\(260\) 28.1157 1.74366
\(261\) 0 0
\(262\) 7.84869 0.484893
\(263\) −10.8144 −0.666845 −0.333423 0.942777i \(-0.608204\pi\)
−0.333423 + 0.942777i \(0.608204\pi\)
\(264\) 0 0
\(265\) −42.3492 −2.60149
\(266\) 4.06313 0.249127
\(267\) 0 0
\(268\) 10.8400 0.662159
\(269\) 3.30384 0.201439 0.100719 0.994915i \(-0.467886\pi\)
0.100719 + 0.994915i \(0.467886\pi\)
\(270\) 0 0
\(271\) −3.77454 −0.229287 −0.114644 0.993407i \(-0.536573\pi\)
−0.114644 + 0.993407i \(0.536573\pi\)
\(272\) −6.25557 −0.379300
\(273\) 0 0
\(274\) −7.70105 −0.465237
\(275\) 8.50740 0.513016
\(276\) 0 0
\(277\) 9.59858 0.576723 0.288361 0.957522i \(-0.406890\pi\)
0.288361 + 0.957522i \(0.406890\pi\)
\(278\) 1.30503 0.0782702
\(279\) 0 0
\(280\) 18.7589 1.12106
\(281\) −14.7114 −0.877607 −0.438803 0.898583i \(-0.644598\pi\)
−0.438803 + 0.898583i \(0.644598\pi\)
\(282\) 0 0
\(283\) 4.25274 0.252799 0.126400 0.991979i \(-0.459658\pi\)
0.126400 + 0.991979i \(0.459658\pi\)
\(284\) −18.1785 −1.07869
\(285\) 0 0
\(286\) −2.40583 −0.142260
\(287\) 14.5606 0.859485
\(288\) 0 0
\(289\) −9.89801 −0.582236
\(290\) 4.93714 0.289919
\(291\) 0 0
\(292\) 6.67309 0.390513
\(293\) 13.1306 0.767100 0.383550 0.923520i \(-0.374701\pi\)
0.383550 + 0.923520i \(0.374701\pi\)
\(294\) 0 0
\(295\) −4.71967 −0.274790
\(296\) 19.4751 1.13197
\(297\) 0 0
\(298\) −8.36664 −0.484667
\(299\) −4.47214 −0.258630
\(300\) 0 0
\(301\) −18.2537 −1.05213
\(302\) 6.77937 0.390109
\(303\) 0 0
\(304\) 6.93362 0.397670
\(305\) −30.6709 −1.75621
\(306\) 0 0
\(307\) −9.17543 −0.523669 −0.261835 0.965113i \(-0.584327\pi\)
−0.261835 + 0.965113i \(0.584327\pi\)
\(308\) 4.37397 0.249230
\(309\) 0 0
\(310\) −6.34237 −0.360222
\(311\) −25.5144 −1.44679 −0.723396 0.690434i \(-0.757420\pi\)
−0.723396 + 0.690434i \(0.757420\pi\)
\(312\) 0 0
\(313\) −11.1238 −0.628754 −0.314377 0.949298i \(-0.601796\pi\)
−0.314377 + 0.949298i \(0.601796\pi\)
\(314\) 6.56756 0.370629
\(315\) 0 0
\(316\) −9.25493 −0.520631
\(317\) 3.31191 0.186016 0.0930078 0.995665i \(-0.470352\pi\)
0.0930078 + 0.995665i \(0.470352\pi\)
\(318\) 0 0
\(319\) 2.49712 0.139812
\(320\) 6.86411 0.383715
\(321\) 0 0
\(322\) −1.37555 −0.0766566
\(323\) −7.87178 −0.437998
\(324\) 0 0
\(325\) 38.0463 2.11043
\(326\) −6.15006 −0.340620
\(327\) 0 0
\(328\) −11.3670 −0.627638
\(329\) 32.2343 1.77714
\(330\) 0 0
\(331\) −20.0495 −1.10202 −0.551009 0.834499i \(-0.685757\pi\)
−0.551009 + 0.834499i \(0.685757\pi\)
\(332\) 21.4665 1.17813
\(333\) 0 0
\(334\) −0.160440 −0.00877888
\(335\) 23.2899 1.27246
\(336\) 0 0
\(337\) −9.89437 −0.538981 −0.269490 0.963003i \(-0.586855\pi\)
−0.269490 + 0.963003i \(0.586855\pi\)
\(338\) −3.76572 −0.204828
\(339\) 0 0
\(340\) −16.7542 −0.908625
\(341\) −3.20786 −0.173715
\(342\) 0 0
\(343\) 19.0798 1.03021
\(344\) 14.2501 0.768314
\(345\) 0 0
\(346\) 1.17351 0.0630885
\(347\) −20.5929 −1.10548 −0.552742 0.833352i \(-0.686418\pi\)
−0.552742 + 0.833352i \(0.686418\pi\)
\(348\) 0 0
\(349\) 25.9496 1.38905 0.694524 0.719469i \(-0.255615\pi\)
0.694524 + 0.719469i \(0.255615\pi\)
\(350\) 11.7024 0.625519
\(351\) 0 0
\(352\) −5.25509 −0.280097
\(353\) −5.31928 −0.283117 −0.141558 0.989930i \(-0.545211\pi\)
−0.141558 + 0.989930i \(0.545211\pi\)
\(354\) 0 0
\(355\) −39.0567 −2.07291
\(356\) 25.1474 1.33281
\(357\) 0 0
\(358\) −3.87672 −0.204891
\(359\) −7.40335 −0.390734 −0.195367 0.980730i \(-0.562590\pi\)
−0.195367 + 0.980730i \(0.562590\pi\)
\(360\) 0 0
\(361\) −10.2750 −0.540789
\(362\) −13.1204 −0.689595
\(363\) 0 0
\(364\) 19.5610 1.02527
\(365\) 14.3372 0.750444
\(366\) 0 0
\(367\) 22.4832 1.17361 0.586807 0.809727i \(-0.300385\pi\)
0.586807 + 0.809727i \(0.300385\pi\)
\(368\) −2.34735 −0.122364
\(369\) 0 0
\(370\) 19.2895 1.00282
\(371\) −29.4637 −1.52968
\(372\) 0 0
\(373\) −28.1533 −1.45772 −0.728862 0.684661i \(-0.759950\pi\)
−0.728862 + 0.684661i \(0.759950\pi\)
\(374\) 1.43364 0.0741318
\(375\) 0 0
\(376\) −25.1643 −1.29775
\(377\) 11.1675 0.575153
\(378\) 0 0
\(379\) 25.1251 1.29059 0.645296 0.763933i \(-0.276734\pi\)
0.645296 + 0.763933i \(0.276734\pi\)
\(380\) 18.5702 0.952633
\(381\) 0 0
\(382\) −2.61217 −0.133650
\(383\) −12.3110 −0.629061 −0.314530 0.949247i \(-0.601847\pi\)
−0.314530 + 0.949247i \(0.601847\pi\)
\(384\) 0 0
\(385\) 9.39752 0.478942
\(386\) 14.0237 0.713790
\(387\) 0 0
\(388\) 18.1916 0.923541
\(389\) 15.4219 0.781920 0.390960 0.920408i \(-0.372143\pi\)
0.390960 + 0.920408i \(0.372143\pi\)
\(390\) 0 0
\(391\) 2.66496 0.134773
\(392\) −0.921923 −0.0465641
\(393\) 0 0
\(394\) 13.2415 0.667098
\(395\) −19.8843 −1.00049
\(396\) 0 0
\(397\) −17.8183 −0.894277 −0.447138 0.894465i \(-0.647557\pi\)
−0.447138 + 0.894465i \(0.647557\pi\)
\(398\) 4.97248 0.249248
\(399\) 0 0
\(400\) 19.9698 0.998491
\(401\) −30.0385 −1.50005 −0.750025 0.661409i \(-0.769959\pi\)
−0.750025 + 0.661409i \(0.769959\pi\)
\(402\) 0 0
\(403\) −14.3460 −0.714624
\(404\) 19.8535 0.987748
\(405\) 0 0
\(406\) 3.43492 0.170472
\(407\) 9.75632 0.483603
\(408\) 0 0
\(409\) −24.9081 −1.23163 −0.615814 0.787891i \(-0.711173\pi\)
−0.615814 + 0.787891i \(0.711173\pi\)
\(410\) −11.2587 −0.556028
\(411\) 0 0
\(412\) 19.6845 0.969784
\(413\) −3.28362 −0.161577
\(414\) 0 0
\(415\) 46.1211 2.26399
\(416\) −23.5015 −1.15225
\(417\) 0 0
\(418\) −1.58903 −0.0777222
\(419\) 18.0499 0.881797 0.440898 0.897557i \(-0.354660\pi\)
0.440898 + 0.897557i \(0.354660\pi\)
\(420\) 0 0
\(421\) −1.42818 −0.0696054 −0.0348027 0.999394i \(-0.511080\pi\)
−0.0348027 + 0.999394i \(0.511080\pi\)
\(422\) −11.6297 −0.566127
\(423\) 0 0
\(424\) 23.0014 1.11705
\(425\) −22.6719 −1.09975
\(426\) 0 0
\(427\) −21.3387 −1.03265
\(428\) −3.39674 −0.164188
\(429\) 0 0
\(430\) 14.1143 0.680653
\(431\) −26.1677 −1.26045 −0.630226 0.776412i \(-0.717038\pi\)
−0.630226 + 0.776412i \(0.717038\pi\)
\(432\) 0 0
\(433\) −29.2047 −1.40349 −0.701744 0.712429i \(-0.747595\pi\)
−0.701744 + 0.712429i \(0.747595\pi\)
\(434\) −4.41258 −0.211811
\(435\) 0 0
\(436\) 28.6136 1.37034
\(437\) −2.95381 −0.141300
\(438\) 0 0
\(439\) −7.30712 −0.348750 −0.174375 0.984679i \(-0.555791\pi\)
−0.174375 + 0.984679i \(0.555791\pi\)
\(440\) −7.33635 −0.349747
\(441\) 0 0
\(442\) 6.41143 0.304961
\(443\) 0.632904 0.0300702 0.0150351 0.999887i \(-0.495214\pi\)
0.0150351 + 0.999887i \(0.495214\pi\)
\(444\) 0 0
\(445\) 54.0294 2.56124
\(446\) −3.51676 −0.166523
\(447\) 0 0
\(448\) 4.77557 0.225625
\(449\) −16.3423 −0.771239 −0.385619 0.922658i \(-0.626012\pi\)
−0.385619 + 0.922658i \(0.626012\pi\)
\(450\) 0 0
\(451\) −5.69445 −0.268141
\(452\) −25.3172 −1.19082
\(453\) 0 0
\(454\) −5.62798 −0.264134
\(455\) 42.0270 1.97026
\(456\) 0 0
\(457\) −18.7587 −0.877495 −0.438747 0.898610i \(-0.644578\pi\)
−0.438747 + 0.898610i \(0.644578\pi\)
\(458\) −3.13847 −0.146651
\(459\) 0 0
\(460\) −6.28686 −0.293127
\(461\) 2.75084 0.128119 0.0640596 0.997946i \(-0.479595\pi\)
0.0640596 + 0.997946i \(0.479595\pi\)
\(462\) 0 0
\(463\) −41.0048 −1.90566 −0.952828 0.303511i \(-0.901841\pi\)
−0.952828 + 0.303511i \(0.901841\pi\)
\(464\) 5.86160 0.272118
\(465\) 0 0
\(466\) −6.49451 −0.300852
\(467\) 7.83216 0.362429 0.181215 0.983444i \(-0.441997\pi\)
0.181215 + 0.983444i \(0.441997\pi\)
\(468\) 0 0
\(469\) 16.2035 0.748209
\(470\) −24.9245 −1.14968
\(471\) 0 0
\(472\) 2.56342 0.117991
\(473\) 7.13878 0.328241
\(474\) 0 0
\(475\) 25.1293 1.15301
\(476\) −11.6564 −0.534272
\(477\) 0 0
\(478\) −1.55179 −0.0709770
\(479\) −9.41104 −0.430001 −0.215001 0.976614i \(-0.568975\pi\)
−0.215001 + 0.976614i \(0.568975\pi\)
\(480\) 0 0
\(481\) 43.6316 1.98943
\(482\) −12.5720 −0.572640
\(483\) 0 0
\(484\) −1.71060 −0.0777545
\(485\) 39.0850 1.77476
\(486\) 0 0
\(487\) −27.3406 −1.23892 −0.619460 0.785028i \(-0.712649\pi\)
−0.619460 + 0.785028i \(0.712649\pi\)
\(488\) 16.6585 0.754093
\(489\) 0 0
\(490\) −0.913138 −0.0412514
\(491\) −9.18674 −0.414592 −0.207296 0.978278i \(-0.566466\pi\)
−0.207296 + 0.978278i \(0.566466\pi\)
\(492\) 0 0
\(493\) −6.65471 −0.299713
\(494\) −7.10638 −0.319731
\(495\) 0 0
\(496\) −7.52995 −0.338105
\(497\) −27.1730 −1.21887
\(498\) 0 0
\(499\) −31.4155 −1.40635 −0.703174 0.711017i \(-0.748235\pi\)
−0.703174 + 0.711017i \(0.748235\pi\)
\(500\) 22.0506 0.986132
\(501\) 0 0
\(502\) 2.50555 0.111828
\(503\) 35.7776 1.59524 0.797621 0.603158i \(-0.206091\pi\)
0.797621 + 0.603158i \(0.206091\pi\)
\(504\) 0 0
\(505\) 42.6555 1.89814
\(506\) 0.537960 0.0239153
\(507\) 0 0
\(508\) 19.7227 0.875051
\(509\) 19.3038 0.855628 0.427814 0.903867i \(-0.359284\pi\)
0.427814 + 0.903867i \(0.359284\pi\)
\(510\) 0 0
\(511\) 9.97484 0.441261
\(512\) −21.7068 −0.959316
\(513\) 0 0
\(514\) 4.73596 0.208894
\(515\) 42.2923 1.86362
\(516\) 0 0
\(517\) −12.6064 −0.554429
\(518\) 13.4203 0.589656
\(519\) 0 0
\(520\) −32.8092 −1.43878
\(521\) −35.5002 −1.55529 −0.777647 0.628701i \(-0.783587\pi\)
−0.777647 + 0.628701i \(0.783587\pi\)
\(522\) 0 0
\(523\) −33.9882 −1.48620 −0.743100 0.669180i \(-0.766645\pi\)
−0.743100 + 0.669180i \(0.766645\pi\)
\(524\) 24.9571 1.09026
\(525\) 0 0
\(526\) 5.81773 0.253665
\(527\) 8.54880 0.372392
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 22.7822 0.989596
\(531\) 0 0
\(532\) 12.9199 0.560148
\(533\) −25.4664 −1.10307
\(534\) 0 0
\(535\) −7.29795 −0.315518
\(536\) −12.6496 −0.546378
\(537\) 0 0
\(538\) −1.77734 −0.0766264
\(539\) −0.461849 −0.0198933
\(540\) 0 0
\(541\) −5.08429 −0.218591 −0.109295 0.994009i \(-0.534859\pi\)
−0.109295 + 0.994009i \(0.534859\pi\)
\(542\) 2.03056 0.0872198
\(543\) 0 0
\(544\) 14.0046 0.600441
\(545\) 61.4767 2.63337
\(546\) 0 0
\(547\) 10.5365 0.450508 0.225254 0.974300i \(-0.427679\pi\)
0.225254 + 0.974300i \(0.427679\pi\)
\(548\) −24.4877 −1.04606
\(549\) 0 0
\(550\) −4.57665 −0.195149
\(551\) 7.37602 0.314229
\(552\) 0 0
\(553\) −13.8342 −0.588288
\(554\) −5.16365 −0.219383
\(555\) 0 0
\(556\) 4.14970 0.175986
\(557\) −4.63405 −0.196351 −0.0981755 0.995169i \(-0.531301\pi\)
−0.0981755 + 0.995169i \(0.531301\pi\)
\(558\) 0 0
\(559\) 31.9256 1.35031
\(560\) 22.0592 0.932173
\(561\) 0 0
\(562\) 7.91413 0.333837
\(563\) −23.7172 −0.999560 −0.499780 0.866152i \(-0.666586\pi\)
−0.499780 + 0.866152i \(0.666586\pi\)
\(564\) 0 0
\(565\) −54.3942 −2.28838
\(566\) −2.28781 −0.0961637
\(567\) 0 0
\(568\) 21.2131 0.890081
\(569\) 24.5801 1.03045 0.515226 0.857054i \(-0.327708\pi\)
0.515226 + 0.857054i \(0.327708\pi\)
\(570\) 0 0
\(571\) −39.4422 −1.65061 −0.825303 0.564690i \(-0.808996\pi\)
−0.825303 + 0.564690i \(0.808996\pi\)
\(572\) −7.65003 −0.319864
\(573\) 0 0
\(574\) −7.83303 −0.326944
\(575\) −8.50740 −0.354783
\(576\) 0 0
\(577\) −13.9585 −0.581101 −0.290550 0.956860i \(-0.593838\pi\)
−0.290550 + 0.956860i \(0.593838\pi\)
\(578\) 5.32474 0.221480
\(579\) 0 0
\(580\) 15.6990 0.651867
\(581\) 32.0879 1.33123
\(582\) 0 0
\(583\) 11.5228 0.477227
\(584\) −7.78705 −0.322230
\(585\) 0 0
\(586\) −7.06376 −0.291801
\(587\) 21.4624 0.885848 0.442924 0.896559i \(-0.353941\pi\)
0.442924 + 0.896559i \(0.353941\pi\)
\(588\) 0 0
\(589\) −9.47542 −0.390428
\(590\) 2.53900 0.104529
\(591\) 0 0
\(592\) 22.9014 0.941243
\(593\) 44.3750 1.82226 0.911132 0.412114i \(-0.135209\pi\)
0.911132 + 0.412114i \(0.135209\pi\)
\(594\) 0 0
\(595\) −25.0440 −1.02670
\(596\) −26.6041 −1.08975
\(597\) 0 0
\(598\) 2.40583 0.0983818
\(599\) 37.1513 1.51796 0.758980 0.651114i \(-0.225698\pi\)
0.758980 + 0.651114i \(0.225698\pi\)
\(600\) 0 0
\(601\) 2.23068 0.0909911 0.0454956 0.998965i \(-0.485513\pi\)
0.0454956 + 0.998965i \(0.485513\pi\)
\(602\) 9.81978 0.400224
\(603\) 0 0
\(604\) 21.5570 0.877140
\(605\) −3.67524 −0.149420
\(606\) 0 0
\(607\) 37.9370 1.53981 0.769907 0.638156i \(-0.220303\pi\)
0.769907 + 0.638156i \(0.220303\pi\)
\(608\) −15.5226 −0.629523
\(609\) 0 0
\(610\) 16.4997 0.668055
\(611\) −56.3775 −2.28079
\(612\) 0 0
\(613\) 35.9975 1.45392 0.726962 0.686678i \(-0.240932\pi\)
0.726962 + 0.686678i \(0.240932\pi\)
\(614\) 4.93602 0.199201
\(615\) 0 0
\(616\) −5.10413 −0.205651
\(617\) −7.61360 −0.306512 −0.153256 0.988187i \(-0.548976\pi\)
−0.153256 + 0.988187i \(0.548976\pi\)
\(618\) 0 0
\(619\) −11.3517 −0.456262 −0.228131 0.973630i \(-0.573261\pi\)
−0.228131 + 0.973630i \(0.573261\pi\)
\(620\) −20.1674 −0.809941
\(621\) 0 0
\(622\) 13.7258 0.550353
\(623\) 37.5900 1.50601
\(624\) 0 0
\(625\) 4.83891 0.193556
\(626\) 5.98416 0.239175
\(627\) 0 0
\(628\) 20.8834 0.833340
\(629\) −26.0001 −1.03669
\(630\) 0 0
\(631\) −0.156214 −0.00621876 −0.00310938 0.999995i \(-0.500990\pi\)
−0.00310938 + 0.999995i \(0.500990\pi\)
\(632\) 10.7999 0.429597
\(633\) 0 0
\(634\) −1.78168 −0.0707595
\(635\) 42.3744 1.68158
\(636\) 0 0
\(637\) −2.06545 −0.0818362
\(638\) −1.34335 −0.0531838
\(639\) 0 0
\(640\) −42.3201 −1.67285
\(641\) 0.747839 0.0295379 0.0147689 0.999891i \(-0.495299\pi\)
0.0147689 + 0.999891i \(0.495299\pi\)
\(642\) 0 0
\(643\) 6.55554 0.258525 0.129263 0.991610i \(-0.458739\pi\)
0.129263 + 0.991610i \(0.458739\pi\)
\(644\) −4.37397 −0.172358
\(645\) 0 0
\(646\) 4.23471 0.166612
\(647\) −11.5431 −0.453806 −0.226903 0.973917i \(-0.572860\pi\)
−0.226903 + 0.973917i \(0.572860\pi\)
\(648\) 0 0
\(649\) 1.28418 0.0504085
\(650\) −20.4674 −0.802797
\(651\) 0 0
\(652\) −19.5559 −0.765867
\(653\) −30.3196 −1.18650 −0.593249 0.805019i \(-0.702155\pi\)
−0.593249 + 0.805019i \(0.702155\pi\)
\(654\) 0 0
\(655\) 53.6207 2.09514
\(656\) −13.3668 −0.521888
\(657\) 0 0
\(658\) −17.3408 −0.676014
\(659\) −32.7960 −1.27755 −0.638775 0.769394i \(-0.720558\pi\)
−0.638775 + 0.769394i \(0.720558\pi\)
\(660\) 0 0
\(661\) 13.9008 0.540678 0.270339 0.962765i \(-0.412864\pi\)
0.270339 + 0.962765i \(0.412864\pi\)
\(662\) 10.7858 0.419202
\(663\) 0 0
\(664\) −25.0500 −0.972129
\(665\) 27.7585 1.07643
\(666\) 0 0
\(667\) −2.49712 −0.0966888
\(668\) −0.510165 −0.0197389
\(669\) 0 0
\(670\) −12.5290 −0.484039
\(671\) 8.34528 0.322166
\(672\) 0 0
\(673\) 23.9001 0.921281 0.460640 0.887587i \(-0.347620\pi\)
0.460640 + 0.887587i \(0.347620\pi\)
\(674\) 5.32278 0.205026
\(675\) 0 0
\(676\) −11.9742 −0.460546
\(677\) −15.0523 −0.578508 −0.289254 0.957252i \(-0.593407\pi\)
−0.289254 + 0.957252i \(0.593407\pi\)
\(678\) 0 0
\(679\) 27.1926 1.04356
\(680\) 19.5511 0.749749
\(681\) 0 0
\(682\) 1.72570 0.0660805
\(683\) −10.7552 −0.411536 −0.205768 0.978601i \(-0.565969\pi\)
−0.205768 + 0.978601i \(0.565969\pi\)
\(684\) 0 0
\(685\) −52.6121 −2.01021
\(686\) −10.2642 −0.391888
\(687\) 0 0
\(688\) 16.7572 0.638862
\(689\) 51.5317 1.96320
\(690\) 0 0
\(691\) −2.78853 −0.106081 −0.0530404 0.998592i \(-0.516891\pi\)
−0.0530404 + 0.998592i \(0.516891\pi\)
\(692\) 3.73152 0.141851
\(693\) 0 0
\(694\) 11.0782 0.420521
\(695\) 8.91568 0.338191
\(696\) 0 0
\(697\) 15.1755 0.574812
\(698\) −13.9598 −0.528388
\(699\) 0 0
\(700\) 37.2111 1.40645
\(701\) 40.2559 1.52045 0.760223 0.649663i \(-0.225090\pi\)
0.760223 + 0.649663i \(0.225090\pi\)
\(702\) 0 0
\(703\) 28.8183 1.08690
\(704\) −1.86766 −0.0703901
\(705\) 0 0
\(706\) 2.86156 0.107696
\(707\) 29.6767 1.11611
\(708\) 0 0
\(709\) −34.1628 −1.28301 −0.641505 0.767119i \(-0.721690\pi\)
−0.641505 + 0.767119i \(0.721690\pi\)
\(710\) 21.0110 0.788527
\(711\) 0 0
\(712\) −29.3453 −1.09976
\(713\) 3.20786 0.120135
\(714\) 0 0
\(715\) −16.4362 −0.614678
\(716\) −12.3271 −0.460687
\(717\) 0 0
\(718\) 3.98271 0.148633
\(719\) 11.3401 0.422915 0.211458 0.977387i \(-0.432179\pi\)
0.211458 + 0.977387i \(0.432179\pi\)
\(720\) 0 0
\(721\) 29.4241 1.09581
\(722\) 5.52753 0.205713
\(723\) 0 0
\(724\) −41.7202 −1.55052
\(725\) 21.2440 0.788982
\(726\) 0 0
\(727\) 12.5470 0.465342 0.232671 0.972555i \(-0.425253\pi\)
0.232671 + 0.972555i \(0.425253\pi\)
\(728\) −22.8264 −0.846001
\(729\) 0 0
\(730\) −7.71285 −0.285465
\(731\) −19.0245 −0.703648
\(732\) 0 0
\(733\) 14.2724 0.527164 0.263582 0.964637i \(-0.415096\pi\)
0.263582 + 0.964637i \(0.415096\pi\)
\(734\) −12.0951 −0.446437
\(735\) 0 0
\(736\) 5.25509 0.193705
\(737\) −6.33697 −0.233425
\(738\) 0 0
\(739\) −22.1646 −0.815339 −0.407669 0.913130i \(-0.633658\pi\)
−0.407669 + 0.913130i \(0.633658\pi\)
\(740\) 61.3366 2.25478
\(741\) 0 0
\(742\) 15.8503 0.581883
\(743\) −10.9678 −0.402369 −0.201185 0.979553i \(-0.564479\pi\)
−0.201185 + 0.979553i \(0.564479\pi\)
\(744\) 0 0
\(745\) −57.1593 −2.09415
\(746\) 15.1454 0.554511
\(747\) 0 0
\(748\) 4.55867 0.166681
\(749\) −5.07741 −0.185524
\(750\) 0 0
\(751\) 7.44519 0.271679 0.135839 0.990731i \(-0.456627\pi\)
0.135839 + 0.990731i \(0.456627\pi\)
\(752\) −29.5916 −1.07909
\(753\) 0 0
\(754\) −6.00765 −0.218786
\(755\) 46.3154 1.68559
\(756\) 0 0
\(757\) 10.5354 0.382915 0.191458 0.981501i \(-0.438679\pi\)
0.191458 + 0.981501i \(0.438679\pi\)
\(758\) −13.5163 −0.490935
\(759\) 0 0
\(760\) −21.6702 −0.786062
\(761\) 28.4307 1.03061 0.515306 0.857006i \(-0.327678\pi\)
0.515306 + 0.857006i \(0.327678\pi\)
\(762\) 0 0
\(763\) 42.7713 1.54842
\(764\) −8.30614 −0.300506
\(765\) 0 0
\(766\) 6.62281 0.239292
\(767\) 5.74303 0.207369
\(768\) 0 0
\(769\) 28.7684 1.03742 0.518708 0.854952i \(-0.326413\pi\)
0.518708 + 0.854952i \(0.326413\pi\)
\(770\) −5.05549 −0.182187
\(771\) 0 0
\(772\) 44.5925 1.60492
\(773\) −1.94737 −0.0700420 −0.0350210 0.999387i \(-0.511150\pi\)
−0.0350210 + 0.999387i \(0.511150\pi\)
\(774\) 0 0
\(775\) −27.2906 −0.980306
\(776\) −21.2284 −0.762056
\(777\) 0 0
\(778\) −8.29635 −0.297439
\(779\) −16.8204 −0.602652
\(780\) 0 0
\(781\) 10.6270 0.380263
\(782\) −1.43364 −0.0512669
\(783\) 0 0
\(784\) −1.08412 −0.0387186
\(785\) 44.8683 1.60142
\(786\) 0 0
\(787\) −34.7354 −1.23818 −0.619091 0.785319i \(-0.712499\pi\)
−0.619091 + 0.785319i \(0.712499\pi\)
\(788\) 42.1052 1.49994
\(789\) 0 0
\(790\) 10.6970 0.380582
\(791\) −37.8438 −1.34557
\(792\) 0 0
\(793\) 37.3212 1.32532
\(794\) 9.58556 0.340179
\(795\) 0 0
\(796\) 15.8114 0.560421
\(797\) 24.5987 0.871330 0.435665 0.900109i \(-0.356513\pi\)
0.435665 + 0.900109i \(0.356513\pi\)
\(798\) 0 0
\(799\) 33.5955 1.18852
\(800\) −44.7072 −1.58064
\(801\) 0 0
\(802\) 16.1595 0.570612
\(803\) −3.90102 −0.137664
\(804\) 0 0
\(805\) −9.39752 −0.331219
\(806\) 7.71757 0.271840
\(807\) 0 0
\(808\) −23.1677 −0.815037
\(809\) 23.0270 0.809586 0.404793 0.914408i \(-0.367344\pi\)
0.404793 + 0.914408i \(0.367344\pi\)
\(810\) 0 0
\(811\) 7.14992 0.251067 0.125534 0.992089i \(-0.459936\pi\)
0.125534 + 0.992089i \(0.459936\pi\)
\(812\) 10.9223 0.383298
\(813\) 0 0
\(814\) −5.24851 −0.183960
\(815\) −42.0160 −1.47176
\(816\) 0 0
\(817\) 21.0866 0.737728
\(818\) 13.3996 0.468506
\(819\) 0 0
\(820\) −35.8003 −1.25020
\(821\) −0.461118 −0.0160931 −0.00804656 0.999968i \(-0.502561\pi\)
−0.00804656 + 0.999968i \(0.502561\pi\)
\(822\) 0 0
\(823\) −41.5177 −1.44722 −0.723608 0.690211i \(-0.757518\pi\)
−0.723608 + 0.690211i \(0.757518\pi\)
\(824\) −22.9705 −0.800214
\(825\) 0 0
\(826\) 1.76646 0.0614630
\(827\) −30.3002 −1.05364 −0.526821 0.849976i \(-0.676616\pi\)
−0.526821 + 0.849976i \(0.676616\pi\)
\(828\) 0 0
\(829\) 6.24929 0.217047 0.108523 0.994094i \(-0.465388\pi\)
0.108523 + 0.994094i \(0.465388\pi\)
\(830\) −24.8113 −0.861213
\(831\) 0 0
\(832\) −8.35244 −0.289569
\(833\) 1.23081 0.0426450
\(834\) 0 0
\(835\) −1.09610 −0.0379319
\(836\) −5.05279 −0.174754
\(837\) 0 0
\(838\) −9.71014 −0.335431
\(839\) 6.24066 0.215452 0.107726 0.994181i \(-0.465643\pi\)
0.107726 + 0.994181i \(0.465643\pi\)
\(840\) 0 0
\(841\) −22.7644 −0.784979
\(842\) 0.768306 0.0264776
\(843\) 0 0
\(844\) −36.9801 −1.27291
\(845\) −25.7267 −0.885025
\(846\) 0 0
\(847\) −2.55698 −0.0878589
\(848\) 27.0481 0.928835
\(849\) 0 0
\(850\) 12.1966 0.418339
\(851\) −9.75632 −0.334442
\(852\) 0 0
\(853\) −52.8477 −1.80947 −0.904735 0.425974i \(-0.859931\pi\)
−0.904735 + 0.425974i \(0.859931\pi\)
\(854\) 11.4794 0.392816
\(855\) 0 0
\(856\) 3.96377 0.135479
\(857\) −39.4372 −1.34715 −0.673575 0.739119i \(-0.735242\pi\)
−0.673575 + 0.739119i \(0.735242\pi\)
\(858\) 0 0
\(859\) −31.4955 −1.07461 −0.537307 0.843387i \(-0.680558\pi\)
−0.537307 + 0.843387i \(0.680558\pi\)
\(860\) 44.8805 1.53041
\(861\) 0 0
\(862\) 14.0772 0.479470
\(863\) −28.0451 −0.954666 −0.477333 0.878722i \(-0.658397\pi\)
−0.477333 + 0.878722i \(0.658397\pi\)
\(864\) 0 0
\(865\) 8.01722 0.272594
\(866\) 15.7110 0.533880
\(867\) 0 0
\(868\) −14.0311 −0.476246
\(869\) 5.41035 0.183533
\(870\) 0 0
\(871\) −28.3398 −0.960257
\(872\) −33.3902 −1.13073
\(873\) 0 0
\(874\) 1.58903 0.0537499
\(875\) 32.9609 1.11428
\(876\) 0 0
\(877\) −55.3045 −1.86750 −0.933750 0.357926i \(-0.883484\pi\)
−0.933750 + 0.357926i \(0.883484\pi\)
\(878\) 3.93094 0.132663
\(879\) 0 0
\(880\) −8.62706 −0.290818
\(881\) 13.8151 0.465443 0.232721 0.972543i \(-0.425237\pi\)
0.232721 + 0.972543i \(0.425237\pi\)
\(882\) 0 0
\(883\) −24.5296 −0.825487 −0.412743 0.910847i \(-0.635429\pi\)
−0.412743 + 0.910847i \(0.635429\pi\)
\(884\) 20.3870 0.685689
\(885\) 0 0
\(886\) −0.340477 −0.0114386
\(887\) 45.2629 1.51978 0.759890 0.650052i \(-0.225253\pi\)
0.759890 + 0.650052i \(0.225253\pi\)
\(888\) 0 0
\(889\) 29.4812 0.988767
\(890\) −29.0657 −0.974284
\(891\) 0 0
\(892\) −11.1825 −0.374419
\(893\) −37.2370 −1.24609
\(894\) 0 0
\(895\) −26.4850 −0.885297
\(896\) −29.4434 −0.983635
\(897\) 0 0
\(898\) 8.79148 0.293376
\(899\) −8.01040 −0.267162
\(900\) 0 0
\(901\) −30.7079 −1.02303
\(902\) 3.06339 0.102000
\(903\) 0 0
\(904\) 29.5435 0.982601
\(905\) −89.6363 −2.97961
\(906\) 0 0
\(907\) −45.6061 −1.51432 −0.757162 0.653227i \(-0.773415\pi\)
−0.757162 + 0.653227i \(0.773415\pi\)
\(908\) −17.8958 −0.593892
\(909\) 0 0
\(910\) −22.6089 −0.749476
\(911\) 26.1972 0.867950 0.433975 0.900925i \(-0.357111\pi\)
0.433975 + 0.900925i \(0.357111\pi\)
\(912\) 0 0
\(913\) −12.5491 −0.415315
\(914\) 10.0914 0.333795
\(915\) 0 0
\(916\) −9.97966 −0.329737
\(917\) 37.3056 1.23194
\(918\) 0 0
\(919\) 45.3241 1.49510 0.747552 0.664203i \(-0.231229\pi\)
0.747552 + 0.664203i \(0.231229\pi\)
\(920\) 7.33635 0.241872
\(921\) 0 0
\(922\) −1.47984 −0.0487360
\(923\) 47.5253 1.56431
\(924\) 0 0
\(925\) 83.0009 2.72905
\(926\) 22.0590 0.724903
\(927\) 0 0
\(928\) −13.1226 −0.430770
\(929\) −53.7418 −1.76321 −0.881606 0.471985i \(-0.843537\pi\)
−0.881606 + 0.471985i \(0.843537\pi\)
\(930\) 0 0
\(931\) −1.36422 −0.0447104
\(932\) −20.6512 −0.676451
\(933\) 0 0
\(934\) −4.21339 −0.137866
\(935\) 9.79436 0.320310
\(936\) 0 0
\(937\) −0.902045 −0.0294685 −0.0147343 0.999891i \(-0.504690\pi\)
−0.0147343 + 0.999891i \(0.504690\pi\)
\(938\) −8.71685 −0.284615
\(939\) 0 0
\(940\) −79.2547 −2.58500
\(941\) 25.5981 0.834474 0.417237 0.908798i \(-0.362999\pi\)
0.417237 + 0.908798i \(0.362999\pi\)
\(942\) 0 0
\(943\) 5.69445 0.185437
\(944\) 3.01441 0.0981108
\(945\) 0 0
\(946\) −3.84038 −0.124862
\(947\) 37.7889 1.22797 0.613987 0.789316i \(-0.289565\pi\)
0.613987 + 0.789316i \(0.289565\pi\)
\(948\) 0 0
\(949\) −17.4459 −0.566318
\(950\) −13.5186 −0.438600
\(951\) 0 0
\(952\) 13.6023 0.440852
\(953\) −61.0266 −1.97684 −0.988422 0.151730i \(-0.951516\pi\)
−0.988422 + 0.151730i \(0.951516\pi\)
\(954\) 0 0
\(955\) −17.8458 −0.577478
\(956\) −4.93435 −0.159588
\(957\) 0 0
\(958\) 5.06277 0.163571
\(959\) −36.6039 −1.18200
\(960\) 0 0
\(961\) −20.7096 −0.668053
\(962\) −23.4721 −0.756769
\(963\) 0 0
\(964\) −39.9763 −1.28755
\(965\) 95.8075 3.08415
\(966\) 0 0
\(967\) 30.0467 0.966238 0.483119 0.875555i \(-0.339504\pi\)
0.483119 + 0.875555i \(0.339504\pi\)
\(968\) 1.99615 0.0641588
\(969\) 0 0
\(970\) −21.0262 −0.675109
\(971\) −30.6106 −0.982340 −0.491170 0.871064i \(-0.663431\pi\)
−0.491170 + 0.871064i \(0.663431\pi\)
\(972\) 0 0
\(973\) 6.20292 0.198856
\(974\) 14.7082 0.471280
\(975\) 0 0
\(976\) 19.5892 0.627036
\(977\) 30.5807 0.978364 0.489182 0.872182i \(-0.337295\pi\)
0.489182 + 0.872182i \(0.337295\pi\)
\(978\) 0 0
\(979\) −14.7009 −0.469843
\(980\) −2.90358 −0.0927516
\(981\) 0 0
\(982\) 4.94210 0.157709
\(983\) 30.8962 0.985435 0.492717 0.870189i \(-0.336004\pi\)
0.492717 + 0.870189i \(0.336004\pi\)
\(984\) 0 0
\(985\) 90.4636 2.88241
\(986\) 3.57997 0.114009
\(987\) 0 0
\(988\) −22.5968 −0.718899
\(989\) −7.13878 −0.227000
\(990\) 0 0
\(991\) 8.82232 0.280250 0.140125 0.990134i \(-0.455250\pi\)
0.140125 + 0.990134i \(0.455250\pi\)
\(992\) 16.8576 0.535229
\(993\) 0 0
\(994\) 14.6180 0.463654
\(995\) 33.9710 1.07695
\(996\) 0 0
\(997\) 52.2841 1.65585 0.827927 0.560836i \(-0.189520\pi\)
0.827927 + 0.560836i \(0.189520\pi\)
\(998\) 16.9003 0.534969
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2277.2.a.n.1.3 6
3.2 odd 2 759.2.a.h.1.4 6
33.32 even 2 8349.2.a.n.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
759.2.a.h.1.4 6 3.2 odd 2
2277.2.a.n.1.3 6 1.1 even 1 trivial
8349.2.a.n.1.3 6 33.32 even 2