Properties

Label 2277.2.a.n
Level $2277$
Weight $2$
Character orbit 2277.a
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,0,4,-6,0,0,-6,0,8,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4222000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 10x^{3} + 8x^{2} - 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 759)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{4} + ( - \beta_{5} + \beta_{3} - 1) q^{5} + (\beta_{5} - \beta_{4} + \beta_{2} + \cdots - 1) q^{7} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{8} + (\beta_{5} - \beta_{4} - \beta_{3} + \cdots + 1) q^{10}+ \cdots + ( - 3 \beta_{5} + 6 \beta_{4} + \cdots - 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 4 q^{4} - 6 q^{5} - 6 q^{8} + 8 q^{10} + 6 q^{11} - 12 q^{14} - 10 q^{17} - 2 q^{19} - 12 q^{20} - 2 q^{22} - 6 q^{23} + 10 q^{25} + 18 q^{28} - 16 q^{29} - 12 q^{31} - 4 q^{32} - 2 q^{34}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 6x^{4} + 10x^{3} + 8x^{2} - 8x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 5\nu^{2} + 11\nu - 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 2\nu^{4} - 6\nu^{3} + 9\nu^{2} + 9\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} + 5\beta_{2} + 7\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{5} + 2\beta_{4} + 8\beta_{3} + 7\beta_{2} + 26\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.44912
2.06427
0.537960
0.152120
−1.21639
−1.98708
−2.44912 0 3.99818 −0.147021 0 0.804741 −4.89379 0 0.360072
1.2 −2.06427 0 2.26120 −4.04066 0 4.81590 −0.539176 0 8.34099
1.3 −0.537960 0 −1.71060 −3.67524 0 −2.55698 1.99615 0 1.97713
1.4 −0.152120 0 −1.97686 2.81666 0 −3.18555 0.604961 0 −0.428471
1.5 1.21639 0 −0.520404 0.460065 0 2.84179 −3.06579 0 0.559617
1.6 1.98708 0 1.94848 −1.41380 0 −2.71990 −0.102367 0 −2.80934
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2277.2.a.n 6
3.b odd 2 1 759.2.a.h 6
33.d even 2 1 8349.2.a.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
759.2.a.h 6 3.b odd 2 1
2277.2.a.n 6 1.a even 1 1 trivial
8349.2.a.n 6 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2277))\):

\( T_{2}^{6} + 2T_{2}^{5} - 6T_{2}^{4} - 10T_{2}^{3} + 8T_{2}^{2} + 8T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{6} + 6T_{5}^{5} - 2T_{5}^{4} - 52T_{5}^{3} - 43T_{5}^{2} + 22T_{5} + 4 \) Copy content Toggle raw display
\( T_{17}^{6} + 10T_{17}^{5} + 4T_{17}^{4} - 208T_{17}^{3} - 576T_{17}^{2} - 256T_{17} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 6 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{6} - 28 T^{4} + \cdots - 244 \) Copy content Toggle raw display
$11$ \( (T - 1)^{6} \) Copy content Toggle raw display
$13$ \( (T^{2} - 20)^{3} \) Copy content Toggle raw display
$17$ \( T^{6} + 10 T^{5} + \cdots + 256 \) Copy content Toggle raw display
$19$ \( T^{6} + 2 T^{5} + \cdots - 64 \) Copy content Toggle raw display
$23$ \( (T + 1)^{6} \) Copy content Toggle raw display
$29$ \( T^{6} + 16 T^{5} + \cdots + 2304 \) Copy content Toggle raw display
$31$ \( T^{6} + 12 T^{5} + \cdots - 3824 \) Copy content Toggle raw display
$37$ \( T^{6} - 12 T^{5} + \cdots - 21824 \) Copy content Toggle raw display
$41$ \( T^{6} + 22 T^{5} + \cdots - 36884 \) Copy content Toggle raw display
$43$ \( T^{6} - 132 T^{4} + \cdots + 1844 \) Copy content Toggle raw display
$47$ \( T^{6} + 8 T^{5} + \cdots + 38656 \) Copy content Toggle raw display
$53$ \( T^{6} + 10 T^{5} + \cdots + 250924 \) Copy content Toggle raw display
$59$ \( T^{6} + 12 T^{5} + \cdots - 1024 \) Copy content Toggle raw display
$61$ \( T^{6} - 24 T^{5} + \cdots + 84736 \) Copy content Toggle raw display
$67$ \( T^{6} + 18 T^{5} + \cdots - 22336 \) Copy content Toggle raw display
$71$ \( T^{6} + 24 T^{5} + \cdots + 277504 \) Copy content Toggle raw display
$73$ \( T^{6} + 4 T^{5} + \cdots + 704 \) Copy content Toggle raw display
$79$ \( T^{6} - 16 T^{5} + \cdots + 10924 \) Copy content Toggle raw display
$83$ \( T^{6} + 16 T^{5} + \cdots + 446464 \) Copy content Toggle raw display
$89$ \( T^{6} + 2 T^{5} + \cdots + 31844 \) Copy content Toggle raw display
$97$ \( T^{6} + 12 T^{5} + \cdots + 282944 \) Copy content Toggle raw display
show more
show less