Properties

Label 2268.2.t.c.2105.3
Level $2268$
Weight $2$
Character 2268.2105
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(1781,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.1781"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,-8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2105.3
Character \(\chi\) \(=\) 2268.2105
Dual form 2268.2.t.c.1781.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.43229 + 2.48080i) q^{5} +(-0.496452 + 2.59876i) q^{7} +(1.08671 - 0.627410i) q^{11} -5.25046i q^{13} +(-3.07356 - 5.32357i) q^{17} +(-2.62182 - 1.51371i) q^{19} +(-4.95109 - 2.85851i) q^{23} +(-1.60290 - 2.77631i) q^{25} +3.73169i q^{29} +(5.87105 - 3.38965i) q^{31} +(-5.73592 - 4.95377i) q^{35} +(3.85796 - 6.68219i) q^{37} +9.06886 q^{41} +8.66134 q^{43} +(-2.97597 + 5.15454i) q^{47} +(-6.50707 - 2.58032i) q^{49} +(-7.17959 + 4.14514i) q^{53} +3.59453i q^{55} +(-1.48584 - 2.57354i) q^{59} +(-2.24837 - 1.29810i) q^{61} +(13.0253 + 7.52018i) q^{65} +(5.31994 + 9.21441i) q^{67} +2.62965i q^{71} +(8.25342 - 4.76512i) q^{73} +(1.09099 + 3.13556i) q^{77} +(5.49170 - 9.51191i) q^{79} +14.6184 q^{83} +17.6089 q^{85} +(5.95534 - 10.3150i) q^{89} +(13.6447 + 2.60660i) q^{91} +(7.51040 - 4.33613i) q^{95} -7.15011i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{7} - 16 q^{25} + 24 q^{31} - 4 q^{37} + 8 q^{43} - 4 q^{49} + 12 q^{61} + 4 q^{67} - 36 q^{73} + 28 q^{79} - 24 q^{85} - 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.43229 + 2.48080i −0.640539 + 1.10945i 0.344774 + 0.938686i \(0.387956\pi\)
−0.985313 + 0.170760i \(0.945378\pi\)
\(6\) 0 0
\(7\) −0.496452 + 2.59876i −0.187641 + 0.982238i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.08671 0.627410i 0.327654 0.189171i −0.327145 0.944974i \(-0.606087\pi\)
0.654799 + 0.755803i \(0.272753\pi\)
\(12\) 0 0
\(13\) 5.25046i 1.45622i −0.685462 0.728108i \(-0.740400\pi\)
0.685462 0.728108i \(-0.259600\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.07356 5.32357i −0.745448 1.29115i −0.949985 0.312295i \(-0.898902\pi\)
0.204537 0.978859i \(-0.434431\pi\)
\(18\) 0 0
\(19\) −2.62182 1.51371i −0.601486 0.347268i 0.168140 0.985763i \(-0.446224\pi\)
−0.769626 + 0.638495i \(0.779557\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.95109 2.85851i −1.03237 0.596041i −0.114709 0.993399i \(-0.536594\pi\)
−0.917664 + 0.397358i \(0.869927\pi\)
\(24\) 0 0
\(25\) −1.60290 2.77631i −0.320580 0.555262i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.73169i 0.692957i 0.938058 + 0.346478i \(0.112623\pi\)
−0.938058 + 0.346478i \(0.887377\pi\)
\(30\) 0 0
\(31\) 5.87105 3.38965i 1.05447 0.608800i 0.130574 0.991439i \(-0.458318\pi\)
0.923898 + 0.382639i \(0.124985\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.73592 4.95377i −0.969548 0.837339i
\(36\) 0 0
\(37\) 3.85796 6.68219i 0.634245 1.09854i −0.352429 0.935838i \(-0.614644\pi\)
0.986675 0.162706i \(-0.0520223\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.06886 1.41632 0.708159 0.706053i \(-0.249526\pi\)
0.708159 + 0.706053i \(0.249526\pi\)
\(42\) 0 0
\(43\) 8.66134 1.32084 0.660421 0.750895i \(-0.270378\pi\)
0.660421 + 0.750895i \(0.270378\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.97597 + 5.15454i −0.434090 + 0.751866i −0.997221 0.0745015i \(-0.976263\pi\)
0.563131 + 0.826368i \(0.309597\pi\)
\(48\) 0 0
\(49\) −6.50707 2.58032i −0.929582 0.368617i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.17959 + 4.14514i −0.986193 + 0.569379i −0.904134 0.427249i \(-0.859483\pi\)
−0.0820587 + 0.996628i \(0.526149\pi\)
\(54\) 0 0
\(55\) 3.59453i 0.484686i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.48584 2.57354i −0.193439 0.335047i 0.752948 0.658080i \(-0.228631\pi\)
−0.946388 + 0.323033i \(0.895298\pi\)
\(60\) 0 0
\(61\) −2.24837 1.29810i −0.287874 0.166204i 0.349109 0.937082i \(-0.386484\pi\)
−0.636983 + 0.770878i \(0.719818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.0253 + 7.52018i 1.61559 + 0.932763i
\(66\) 0 0
\(67\) 5.31994 + 9.21441i 0.649934 + 1.12572i 0.983138 + 0.182865i \(0.0585370\pi\)
−0.333204 + 0.942855i \(0.608130\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.62965i 0.312083i 0.987751 + 0.156041i \(0.0498733\pi\)
−0.987751 + 0.156041i \(0.950127\pi\)
\(72\) 0 0
\(73\) 8.25342 4.76512i 0.965990 0.557715i 0.0679788 0.997687i \(-0.478345\pi\)
0.898011 + 0.439972i \(0.145012\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.09099 + 3.13556i 0.124330 + 0.357331i
\(78\) 0 0
\(79\) 5.49170 9.51191i 0.617865 1.07017i −0.372010 0.928229i \(-0.621331\pi\)
0.989875 0.141944i \(-0.0453354\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.6184 1.60457 0.802287 0.596938i \(-0.203616\pi\)
0.802287 + 0.596938i \(0.203616\pi\)
\(84\) 0 0
\(85\) 17.6089 1.90995
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.95534 10.3150i 0.631265 1.09338i −0.356029 0.934475i \(-0.615869\pi\)
0.987293 0.158908i \(-0.0507972\pi\)
\(90\) 0 0
\(91\) 13.6447 + 2.60660i 1.43035 + 0.273246i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.51040 4.33613i 0.770551 0.444878i
\(96\) 0 0
\(97\) 7.15011i 0.725983i −0.931792 0.362992i \(-0.881755\pi\)
0.931792 0.362992i \(-0.118245\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.44709 + 2.50644i 0.143991 + 0.249400i 0.928996 0.370089i \(-0.120673\pi\)
−0.785005 + 0.619490i \(0.787340\pi\)
\(102\) 0 0
\(103\) −5.58311 3.22341i −0.550120 0.317612i 0.199051 0.979989i \(-0.436214\pi\)
−0.749170 + 0.662377i \(0.769548\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.4017 8.31483i −1.39227 0.803825i −0.398701 0.917081i \(-0.630539\pi\)
−0.993566 + 0.113256i \(0.963872\pi\)
\(108\) 0 0
\(109\) −1.54822 2.68159i −0.148292 0.256850i 0.782304 0.622897i \(-0.214044\pi\)
−0.930596 + 0.366047i \(0.880711\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.8230i 1.58257i 0.611446 + 0.791286i \(0.290588\pi\)
−0.611446 + 0.791286i \(0.709412\pi\)
\(114\) 0 0
\(115\) 14.1828 8.18843i 1.32255 0.763575i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.3605 5.34454i 1.40810 0.489934i
\(120\) 0 0
\(121\) −4.71271 + 8.16266i −0.428429 + 0.742060i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.13961 −0.459701
\(126\) 0 0
\(127\) −10.9263 −0.969551 −0.484775 0.874639i \(-0.661099\pi\)
−0.484775 + 0.874639i \(0.661099\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.45888 9.45505i 0.476944 0.826092i −0.522707 0.852513i \(-0.675078\pi\)
0.999651 + 0.0264210i \(0.00841105\pi\)
\(132\) 0 0
\(133\) 5.23536 6.06198i 0.453964 0.525641i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.44527 + 3.72118i −0.550657 + 0.317922i −0.749387 0.662132i \(-0.769652\pi\)
0.198730 + 0.980054i \(0.436318\pi\)
\(138\) 0 0
\(139\) 16.4728i 1.39720i −0.715512 0.698600i \(-0.753807\pi\)
0.715512 0.698600i \(-0.246193\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.29419 5.70571i −0.275474 0.477135i
\(144\) 0 0
\(145\) −9.25756 5.34485i −0.768798 0.443866i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.6491 7.88029i −1.11817 0.645578i −0.177240 0.984168i \(-0.556717\pi\)
−0.940934 + 0.338589i \(0.890050\pi\)
\(150\) 0 0
\(151\) −0.339365 0.587797i −0.0276171 0.0478342i 0.851887 0.523726i \(-0.175459\pi\)
−0.879504 + 0.475892i \(0.842125\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.4199i 1.55984i
\(156\) 0 0
\(157\) −6.74094 + 3.89189i −0.537986 + 0.310606i −0.744262 0.667887i \(-0.767199\pi\)
0.206276 + 0.978494i \(0.433865\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.88655 11.4476i 0.779169 0.902194i
\(162\) 0 0
\(163\) 3.80101 6.58354i 0.297718 0.515663i −0.677896 0.735158i \(-0.737108\pi\)
0.975613 + 0.219496i \(0.0704412\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.37135 0.338266 0.169133 0.985593i \(-0.445903\pi\)
0.169133 + 0.985593i \(0.445903\pi\)
\(168\) 0 0
\(169\) −14.5674 −1.12057
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.70140 + 8.14307i −0.357441 + 0.619106i −0.987533 0.157415i \(-0.949684\pi\)
0.630092 + 0.776521i \(0.283017\pi\)
\(174\) 0 0
\(175\) 8.01071 2.78725i 0.605553 0.210696i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.06513 0.614954i 0.0796116 0.0459638i −0.459666 0.888092i \(-0.652031\pi\)
0.539277 + 0.842128i \(0.318697\pi\)
\(180\) 0 0
\(181\) 5.11079i 0.379882i −0.981795 0.189941i \(-0.939170\pi\)
0.981795 0.189941i \(-0.0608297\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.0514 + 19.1416i 0.812517 + 1.40732i
\(186\) 0 0
\(187\) −6.68012 3.85677i −0.488498 0.282035i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.04399 2.33480i −0.292613 0.168940i 0.346507 0.938047i \(-0.387368\pi\)
−0.639120 + 0.769107i \(0.720701\pi\)
\(192\) 0 0
\(193\) −12.3765 21.4368i −0.890881 1.54305i −0.838821 0.544408i \(-0.816754\pi\)
−0.0520610 0.998644i \(-0.516579\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.43044i 0.671891i −0.941881 0.335946i \(-0.890944\pi\)
0.941881 0.335946i \(-0.109056\pi\)
\(198\) 0 0
\(199\) 15.6665 9.04503i 1.11057 0.641185i 0.171590 0.985168i \(-0.445110\pi\)
0.938976 + 0.343983i \(0.111776\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.69774 1.85260i −0.680648 0.130027i
\(204\) 0 0
\(205\) −12.9892 + 22.4980i −0.907207 + 1.57133i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.79886 −0.262773
\(210\) 0 0
\(211\) 18.3379 1.26243 0.631216 0.775607i \(-0.282556\pi\)
0.631216 + 0.775607i \(0.282556\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −12.4055 + 21.4870i −0.846051 + 1.46540i
\(216\) 0 0
\(217\) 5.89419 + 16.9402i 0.400124 + 1.14998i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −27.9512 + 16.1376i −1.88020 + 1.08553i
\(222\) 0 0
\(223\) 7.83841i 0.524899i 0.964946 + 0.262449i \(0.0845303\pi\)
−0.964946 + 0.262449i \(0.915470\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.08795 14.0087i −0.536816 0.929793i −0.999073 0.0430471i \(-0.986293\pi\)
0.462257 0.886746i \(-0.347040\pi\)
\(228\) 0 0
\(229\) 6.44112 + 3.71878i 0.425641 + 0.245744i 0.697488 0.716596i \(-0.254301\pi\)
−0.271847 + 0.962341i \(0.587634\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.8568 11.4643i −1.30086 0.751051i −0.320308 0.947314i \(-0.603786\pi\)
−0.980551 + 0.196262i \(0.937120\pi\)
\(234\) 0 0
\(235\) −8.52491 14.7656i −0.556104 0.963200i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.6562i 0.883344i −0.897177 0.441672i \(-0.854386\pi\)
0.897177 0.441672i \(-0.145614\pi\)
\(240\) 0 0
\(241\) 7.04728 4.06875i 0.453955 0.262091i −0.255544 0.966797i \(-0.582255\pi\)
0.709499 + 0.704706i \(0.248921\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.7212 12.4470i 1.00439 0.795207i
\(246\) 0 0
\(247\) −7.94766 + 13.7658i −0.505698 + 0.875894i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.95828 0.628561 0.314281 0.949330i \(-0.398237\pi\)
0.314281 + 0.949330i \(0.398237\pi\)
\(252\) 0 0
\(253\) −7.17383 −0.451015
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.7450 20.3429i 0.732632 1.26896i −0.223122 0.974790i \(-0.571625\pi\)
0.955754 0.294166i \(-0.0950418\pi\)
\(258\) 0 0
\(259\) 15.4501 + 13.3433i 0.960021 + 0.829112i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.63448 + 2.67572i −0.285775 + 0.164992i −0.636035 0.771660i \(-0.719427\pi\)
0.350260 + 0.936652i \(0.386093\pi\)
\(264\) 0 0
\(265\) 23.7481i 1.45884i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.554894 0.961104i −0.0338325 0.0585995i 0.848613 0.529014i \(-0.177438\pi\)
−0.882446 + 0.470414i \(0.844105\pi\)
\(270\) 0 0
\(271\) 11.9571 + 6.90342i 0.726341 + 0.419353i 0.817082 0.576521i \(-0.195590\pi\)
−0.0907411 + 0.995875i \(0.528924\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.48377 2.01135i −0.210079 0.121289i
\(276\) 0 0
\(277\) 6.86156 + 11.8846i 0.412271 + 0.714075i 0.995138 0.0984929i \(-0.0314022\pi\)
−0.582866 + 0.812568i \(0.698069\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.5547i 1.82274i −0.411586 0.911371i \(-0.635025\pi\)
0.411586 0.911371i \(-0.364975\pi\)
\(282\) 0 0
\(283\) 12.7910 7.38491i 0.760349 0.438988i −0.0690722 0.997612i \(-0.522004\pi\)
0.829421 + 0.558624i \(0.188671\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.50225 + 23.5678i −0.265760 + 1.39116i
\(288\) 0 0
\(289\) −10.3936 + 18.0022i −0.611386 + 1.05895i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.44322 0.0843141 0.0421570 0.999111i \(-0.486577\pi\)
0.0421570 + 0.999111i \(0.486577\pi\)
\(294\) 0 0
\(295\) 8.51259 0.495622
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.0085 + 25.9955i −0.867964 + 1.50336i
\(300\) 0 0
\(301\) −4.29994 + 22.5087i −0.247845 + 1.29738i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.44063 3.71850i 0.368789 0.212921i
\(306\) 0 0
\(307\) 21.8901i 1.24933i 0.780891 + 0.624667i \(0.214765\pi\)
−0.780891 + 0.624667i \(0.785235\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.25630 + 9.10417i 0.298057 + 0.516250i 0.975691 0.219149i \(-0.0703281\pi\)
−0.677634 + 0.735399i \(0.736995\pi\)
\(312\) 0 0
\(313\) −2.85633 1.64910i −0.161449 0.0932127i 0.417099 0.908861i \(-0.363047\pi\)
−0.578548 + 0.815649i \(0.696380\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.6051 + 10.7416i 1.04496 + 0.603311i 0.921236 0.389005i \(-0.127181\pi\)
0.123729 + 0.992316i \(0.460515\pi\)
\(318\) 0 0
\(319\) 2.34130 + 4.05525i 0.131087 + 0.227050i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18.6099i 1.03548i
\(324\) 0 0
\(325\) −14.5769 + 8.41598i −0.808581 + 0.466835i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.9180 10.2928i −0.657058 0.567461i
\(330\) 0 0
\(331\) −8.49354 + 14.7112i −0.466847 + 0.808603i −0.999283 0.0378676i \(-0.987943\pi\)
0.532436 + 0.846470i \(0.321277\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −30.4788 −1.66523
\(336\) 0 0
\(337\) −18.0656 −0.984098 −0.492049 0.870568i \(-0.663752\pi\)
−0.492049 + 0.870568i \(0.663752\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.25341 7.36712i 0.230335 0.398952i
\(342\) 0 0
\(343\) 9.93606 15.6293i 0.536497 0.843902i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.7199 13.6947i 1.27335 0.735169i 0.297734 0.954649i \(-0.403769\pi\)
0.975617 + 0.219480i \(0.0704360\pi\)
\(348\) 0 0
\(349\) 23.0855i 1.23574i −0.786281 0.617869i \(-0.787996\pi\)
0.786281 0.617869i \(-0.212004\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.86592 17.0883i −0.525110 0.909517i −0.999572 0.0292415i \(-0.990691\pi\)
0.474462 0.880276i \(-0.342643\pi\)
\(354\) 0 0
\(355\) −6.52364 3.76642i −0.346239 0.199901i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.7577 + 17.7579i 1.62333 + 0.937228i 0.986022 + 0.166617i \(0.0532843\pi\)
0.637305 + 0.770611i \(0.280049\pi\)
\(360\) 0 0
\(361\) −4.91738 8.51715i −0.258809 0.448271i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 27.3001i 1.42895i
\(366\) 0 0
\(367\) −19.6561 + 11.3485i −1.02604 + 0.592386i −0.915848 0.401524i \(-0.868481\pi\)
−0.110194 + 0.993910i \(0.535147\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.20788 20.7159i −0.374215 1.07551i
\(372\) 0 0
\(373\) −7.23264 + 12.5273i −0.374492 + 0.648639i −0.990251 0.139296i \(-0.955516\pi\)
0.615759 + 0.787934i \(0.288849\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.5931 1.00909
\(378\) 0 0
\(379\) 27.2141 1.39790 0.698948 0.715173i \(-0.253652\pi\)
0.698948 + 0.715173i \(0.253652\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.4139 30.1618i 0.889810 1.54120i 0.0497104 0.998764i \(-0.484170\pi\)
0.840099 0.542432i \(-0.182497\pi\)
\(384\) 0 0
\(385\) −9.34131 1.78451i −0.476077 0.0909471i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.76819 + 1.02087i −0.0896510 + 0.0517600i −0.544155 0.838985i \(-0.683150\pi\)
0.454504 + 0.890745i \(0.349816\pi\)
\(390\) 0 0
\(391\) 35.1432i 1.77727i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.7314 + 27.2476i 0.791533 + 1.37098i
\(396\) 0 0
\(397\) −26.9678 15.5699i −1.35348 0.781430i −0.364742 0.931108i \(-0.618843\pi\)
−0.988735 + 0.149678i \(0.952176\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.2752 6.50976i −0.563058 0.325082i 0.191314 0.981529i \(-0.438725\pi\)
−0.754372 + 0.656447i \(0.772059\pi\)
\(402\) 0 0
\(403\) −17.7973 30.8257i −0.886544 1.53554i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.68210i 0.479924i
\(408\) 0 0
\(409\) −10.9054 + 6.29621i −0.539236 + 0.311328i −0.744769 0.667322i \(-0.767440\pi\)
0.205534 + 0.978650i \(0.434107\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.42566 2.58369i 0.365393 0.127135i
\(414\) 0 0
\(415\) −20.9377 + 36.2652i −1.02779 + 1.78019i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.5293 0.660948 0.330474 0.943815i \(-0.392791\pi\)
0.330474 + 0.943815i \(0.392791\pi\)
\(420\) 0 0
\(421\) 2.97498 0.144992 0.0724959 0.997369i \(-0.476904\pi\)
0.0724959 + 0.997369i \(0.476904\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.85324 + 17.0663i −0.477952 + 0.827838i
\(426\) 0 0
\(427\) 4.48965 5.19852i 0.217269 0.251574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.94179 5.16254i 0.430711 0.248671i −0.268939 0.963157i \(-0.586673\pi\)
0.699649 + 0.714486i \(0.253340\pi\)
\(432\) 0 0
\(433\) 10.9117i 0.524384i −0.965016 0.262192i \(-0.915555\pi\)
0.965016 0.262192i \(-0.0844453\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.65390 + 14.9890i 0.413972 + 0.717021i
\(438\) 0 0
\(439\) −10.1562 5.86369i −0.484729 0.279859i 0.237656 0.971349i \(-0.423621\pi\)
−0.722385 + 0.691491i \(0.756954\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.1605 + 17.4131i 1.43297 + 0.827324i 0.997346 0.0728067i \(-0.0231956\pi\)
0.435621 + 0.900130i \(0.356529\pi\)
\(444\) 0 0
\(445\) 17.0595 + 29.5480i 0.808699 + 1.40071i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.37875i 0.206646i −0.994648 0.103323i \(-0.967052\pi\)
0.994648 0.103323i \(-0.0329475\pi\)
\(450\) 0 0
\(451\) 9.85518 5.68989i 0.464062 0.267927i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −26.0096 + 30.1163i −1.21935 + 1.41187i
\(456\) 0 0
\(457\) −3.63140 + 6.28977i −0.169870 + 0.294223i −0.938374 0.345622i \(-0.887668\pi\)
0.768504 + 0.639845i \(0.221001\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.8994 −0.554208 −0.277104 0.960840i \(-0.589375\pi\)
−0.277104 + 0.960840i \(0.589375\pi\)
\(462\) 0 0
\(463\) −27.4927 −1.27769 −0.638847 0.769334i \(-0.720588\pi\)
−0.638847 + 0.769334i \(0.720588\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.57357 + 2.72550i −0.0728161 + 0.126121i −0.900134 0.435612i \(-0.856532\pi\)
0.827318 + 0.561733i \(0.189865\pi\)
\(468\) 0 0
\(469\) −26.5871 + 9.25072i −1.22768 + 0.427159i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.41233 5.43421i 0.432780 0.249865i
\(474\) 0 0
\(475\) 9.70530i 0.445310i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.7463 34.2016i −0.902231 1.56271i −0.824592 0.565728i \(-0.808595\pi\)
−0.0776390 0.996982i \(-0.524738\pi\)
\(480\) 0 0
\(481\) −35.0846 20.2561i −1.59972 0.923598i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.7380 + 10.2410i 0.805439 + 0.465021i
\(486\) 0 0
\(487\) 16.1647 + 27.9980i 0.732490 + 1.26871i 0.955816 + 0.293966i \(0.0949754\pi\)
−0.223326 + 0.974744i \(0.571691\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.3858i 0.649222i 0.945848 + 0.324611i \(0.105233\pi\)
−0.945848 + 0.324611i \(0.894767\pi\)
\(492\) 0 0
\(493\) 19.8659 11.4696i 0.894714 0.516563i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.83383 1.30550i −0.306539 0.0585596i
\(498\) 0 0
\(499\) −20.8413 + 36.0983i −0.932987 + 1.61598i −0.154801 + 0.987946i \(0.549474\pi\)
−0.778185 + 0.628035i \(0.783860\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.4755 0.556256 0.278128 0.960544i \(-0.410286\pi\)
0.278128 + 0.960544i \(0.410286\pi\)
\(504\) 0 0
\(505\) −8.29063 −0.368928
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.8574 + 24.0017i −0.614217 + 1.06385i 0.376304 + 0.926496i \(0.377195\pi\)
−0.990521 + 0.137359i \(0.956139\pi\)
\(510\) 0 0
\(511\) 8.28595 + 23.8143i 0.366549 + 1.05348i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.9932 9.23370i 0.704746 0.406885i
\(516\) 0 0
\(517\) 7.46862i 0.328470i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0961 + 20.9510i 0.529938 + 0.917880i 0.999390 + 0.0349216i \(0.0111181\pi\)
−0.469452 + 0.882958i \(0.655549\pi\)
\(522\) 0 0
\(523\) −20.8779 12.0539i −0.912927 0.527078i −0.0315550 0.999502i \(-0.510046\pi\)
−0.881372 + 0.472424i \(0.843379\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −36.0901 20.8366i −1.57211 0.907658i
\(528\) 0 0
\(529\) 4.84217 + 8.38689i 0.210529 + 0.364647i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 47.6157i 2.06246i
\(534\) 0 0
\(535\) 41.2548 23.8185i 1.78360 1.02976i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.69019 + 1.27856i −0.374313 + 0.0550713i
\(540\) 0 0
\(541\) −20.2072 + 34.9999i −0.868775 + 1.50476i −0.00552468 + 0.999985i \(0.501759\pi\)
−0.863250 + 0.504777i \(0.831575\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.86998 0.379948
\(546\) 0 0
\(547\) 22.2848 0.952830 0.476415 0.879220i \(-0.341936\pi\)
0.476415 + 0.879220i \(0.341936\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.64868 9.78380i 0.240642 0.416804i
\(552\) 0 0
\(553\) 21.9928 + 18.9938i 0.935228 + 0.807699i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.1768 13.3811i 0.982031 0.566976i 0.0791483 0.996863i \(-0.474780\pi\)
0.902883 + 0.429887i \(0.141447\pi\)
\(558\) 0 0
\(559\) 45.4761i 1.92343i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.04743 15.6706i −0.381304 0.660438i 0.609945 0.792444i \(-0.291192\pi\)
−0.991249 + 0.132006i \(0.957858\pi\)
\(564\) 0 0
\(565\) −41.7344 24.0954i −1.75578 1.01370i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.3851 11.7693i −0.854588 0.493396i 0.00760850 0.999971i \(-0.497578\pi\)
−0.862196 + 0.506575i \(0.830911\pi\)
\(570\) 0 0
\(571\) −6.19412 10.7285i −0.259216 0.448975i 0.706816 0.707397i \(-0.250131\pi\)
−0.966032 + 0.258422i \(0.916797\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.3277i 0.764316i
\(576\) 0 0
\(577\) 9.61514 5.55131i 0.400284 0.231104i −0.286323 0.958133i \(-0.592433\pi\)
0.686606 + 0.727029i \(0.259100\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.25732 + 37.9896i −0.301084 + 1.57607i
\(582\) 0 0
\(583\) −5.20140 + 9.00909i −0.215420 + 0.373119i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.6476 −1.63643 −0.818215 0.574912i \(-0.805036\pi\)
−0.818215 + 0.574912i \(0.805036\pi\)
\(588\) 0 0
\(589\) −20.5238 −0.845668
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.9778 24.2102i 0.573998 0.994194i −0.422151 0.906525i \(-0.638725\pi\)
0.996150 0.0876691i \(-0.0279418\pi\)
\(594\) 0 0
\(595\) −8.74198 + 45.7613i −0.358386 + 1.87603i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.2868 14.5993i 1.03319 0.596513i 0.115294 0.993331i \(-0.463219\pi\)
0.917897 + 0.396818i \(0.129886\pi\)
\(600\) 0 0
\(601\) 14.9790i 0.611006i 0.952191 + 0.305503i \(0.0988247\pi\)
−0.952191 + 0.305503i \(0.901175\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.4999 23.3826i −0.548850 0.950637i
\(606\) 0 0
\(607\) −21.1015 12.1830i −0.856483 0.494491i 0.00634989 0.999980i \(-0.497979\pi\)
−0.862833 + 0.505489i \(0.831312\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.0637 + 15.6252i 1.09488 + 0.632129i
\(612\) 0 0
\(613\) 10.9343 + 18.9387i 0.441631 + 0.764927i 0.997811 0.0661347i \(-0.0210667\pi\)
−0.556180 + 0.831062i \(0.687733\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 41.2793i 1.66184i −0.556391 0.830921i \(-0.687814\pi\)
0.556391 0.830921i \(-0.312186\pi\)
\(618\) 0 0
\(619\) −35.3843 + 20.4292i −1.42222 + 0.821117i −0.996488 0.0837339i \(-0.973315\pi\)
−0.425728 + 0.904851i \(0.639982\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 23.8495 + 20.5974i 0.955510 + 0.825216i
\(624\) 0 0
\(625\) 15.3759 26.6319i 0.615037 1.06527i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −47.4307 −1.89119
\(630\) 0 0
\(631\) 26.4215 1.05182 0.525911 0.850540i \(-0.323725\pi\)
0.525911 + 0.850540i \(0.323725\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.6496 27.1059i 0.621035 1.07566i
\(636\) 0 0
\(637\) −13.5479 + 34.1651i −0.536785 + 1.35367i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.1973 + 17.4344i −1.19272 + 0.688619i −0.958923 0.283666i \(-0.908449\pi\)
−0.233799 + 0.972285i \(0.575116\pi\)
\(642\) 0 0
\(643\) 26.8650i 1.05945i 0.848168 + 0.529727i \(0.177706\pi\)
−0.848168 + 0.529727i \(0.822294\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.988791 1.71264i −0.0388734 0.0673306i 0.845934 0.533287i \(-0.179044\pi\)
−0.884807 + 0.465957i \(0.845710\pi\)
\(648\) 0 0
\(649\) −3.22933 1.86446i −0.126762 0.0731863i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.4467 10.0729i −0.682742 0.394182i 0.118145 0.992996i \(-0.462305\pi\)
−0.800888 + 0.598815i \(0.795639\pi\)
\(654\) 0 0
\(655\) 15.6374 + 27.0847i 0.611003 + 1.05829i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.0826i 0.899172i 0.893237 + 0.449586i \(0.148428\pi\)
−0.893237 + 0.449586i \(0.851572\pi\)
\(660\) 0 0
\(661\) −2.42515 + 1.40016i −0.0943273 + 0.0544599i −0.546422 0.837510i \(-0.684010\pi\)
0.452094 + 0.891970i \(0.350677\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.54000 + 21.6704i 0.292389 + 0.840342i
\(666\) 0 0
\(667\) 10.6671 18.4759i 0.413030 0.715390i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.25776 −0.125764
\(672\) 0 0
\(673\) −32.6962 −1.26035 −0.630173 0.776454i \(-0.717016\pi\)
−0.630173 + 0.776454i \(0.717016\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.7293 + 39.3684i −0.873559 + 1.51305i −0.0152697 + 0.999883i \(0.504861\pi\)
−0.858290 + 0.513166i \(0.828473\pi\)
\(678\) 0 0
\(679\) 18.5814 + 3.54969i 0.713088 + 0.136224i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −43.2107 + 24.9477i −1.65341 + 0.954598i −0.677757 + 0.735286i \(0.737048\pi\)
−0.975655 + 0.219312i \(0.929619\pi\)
\(684\) 0 0
\(685\) 21.3192i 0.814565i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.7639 + 37.6962i 0.829138 + 1.43611i
\(690\) 0 0
\(691\) 27.1274 + 15.6620i 1.03198 + 0.595812i 0.917550 0.397620i \(-0.130164\pi\)
0.114426 + 0.993432i \(0.463497\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 40.8655 + 23.5937i 1.55012 + 0.894961i
\(696\) 0 0
\(697\) −27.8737 48.2787i −1.05579 1.82868i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.3593i 0.504576i 0.967652 + 0.252288i \(0.0811829\pi\)
−0.967652 + 0.252288i \(0.918817\pi\)
\(702\) 0 0
\(703\) −20.2298 + 11.6797i −0.762980 + 0.440506i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.23204 + 2.51632i −0.271989 + 0.0946359i
\(708\) 0 0
\(709\) −15.9513 + 27.6284i −0.599062 + 1.03761i 0.393897 + 0.919154i \(0.371127\pi\)
−0.992960 + 0.118452i \(0.962207\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −38.7575 −1.45148
\(714\) 0 0
\(715\) 18.8729 0.705808
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.82338 + 8.35434i −0.179882 + 0.311564i −0.941840 0.336062i \(-0.890905\pi\)
0.761958 + 0.647626i \(0.224238\pi\)
\(720\) 0 0
\(721\) 11.1486 12.9089i 0.415195 0.480751i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.3603 5.98153i 0.384772 0.222148i
\(726\) 0 0
\(727\) 38.5339i 1.42914i −0.699562 0.714572i \(-0.746622\pi\)
0.699562 0.714572i \(-0.253378\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −26.6212 46.1092i −0.984620 1.70541i
\(732\) 0 0
\(733\) −15.4377 8.91294i −0.570203 0.329207i 0.187027 0.982355i \(-0.440115\pi\)
−0.757230 + 0.653148i \(0.773448\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.5624 + 6.67557i 0.425907 + 0.245898i
\(738\) 0 0
\(739\) 4.27651 + 7.40713i 0.157314 + 0.272476i 0.933899 0.357536i \(-0.116383\pi\)
−0.776585 + 0.630012i \(0.783050\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.8144i 0.616859i −0.951247 0.308430i \(-0.900197\pi\)
0.951247 0.308430i \(-0.0998034\pi\)
\(744\) 0 0
\(745\) 39.0988 22.5737i 1.43247 0.827036i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 28.7580 33.2986i 1.05079 1.21671i
\(750\) 0 0
\(751\) 21.3063 36.9036i 0.777478 1.34663i −0.155913 0.987771i \(-0.549832\pi\)
0.933391 0.358861i \(-0.116835\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.94427 0.0707593
\(756\) 0 0
\(757\) 8.97784 0.326305 0.163153 0.986601i \(-0.447834\pi\)
0.163153 + 0.986601i \(0.447834\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.9510 34.5561i 0.723222 1.25266i −0.236480 0.971636i \(-0.575994\pi\)
0.959702 0.281021i \(-0.0906730\pi\)
\(762\) 0 0
\(763\) 7.73742 2.69216i 0.280114 0.0974627i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.5123 + 7.80133i −0.487901 + 0.281690i
\(768\) 0 0
\(769\) 9.48373i 0.341992i 0.985272 + 0.170996i \(0.0546985\pi\)
−0.985272 + 0.170996i \(0.945301\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.60509 11.4403i −0.237568 0.411481i 0.722448 0.691426i \(-0.243017\pi\)
−0.960016 + 0.279945i \(0.909684\pi\)
\(774\) 0 0
\(775\) −18.8215 10.8666i −0.676087 0.390339i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −23.7769 13.7276i −0.851896 0.491842i
\(780\) 0 0
\(781\) 1.64987 + 2.85766i 0.0590370 + 0.102255i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.2972i 0.795822i
\(786\) 0 0
\(787\) −6.91018 + 3.98960i −0.246321 + 0.142214i −0.618079 0.786116i \(-0.712089\pi\)
0.371757 + 0.928330i \(0.378755\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −43.7188 8.35180i −1.55446 0.296956i
\(792\) 0 0
\(793\) −6.81561 + 11.8050i −0.242029 + 0.419207i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −37.4408 −1.32622 −0.663110 0.748522i \(-0.730764\pi\)
−0.663110 + 0.748522i \(0.730764\pi\)
\(798\) 0 0
\(799\) 36.5873 1.29437
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.97936 10.3566i 0.211007 0.365475i
\(804\) 0 0
\(805\) 14.2387 + 40.9227i 0.501847 + 1.44234i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.0001 6.92824i 0.421900 0.243584i −0.273990 0.961733i \(-0.588344\pi\)
0.695890 + 0.718149i \(0.255010\pi\)
\(810\) 0 0
\(811\) 17.6343i 0.619223i 0.950863 + 0.309611i \(0.100199\pi\)
−0.950863 + 0.309611i \(0.899801\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.8883 + 18.8591i 0.381400 + 0.660604i
\(816\) 0 0
\(817\) −22.7085 13.1107i −0.794469 0.458687i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.6604 + 24.6300i 1.48886 + 0.859593i 0.999919 0.0127244i \(-0.00405042\pi\)
0.488940 + 0.872318i \(0.337384\pi\)
\(822\) 0 0
\(823\) 17.2854 + 29.9392i 0.602530 + 1.04361i 0.992437 + 0.122759i \(0.0391741\pi\)
−0.389906 + 0.920855i \(0.627493\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.2579i 1.57377i −0.617099 0.786886i \(-0.711692\pi\)
0.617099 0.786886i \(-0.288308\pi\)
\(828\) 0 0
\(829\) 8.17327 4.71884i 0.283869 0.163892i −0.351305 0.936261i \(-0.614262\pi\)
0.635174 + 0.772369i \(0.280928\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.26340 + 42.5716i 0.217014 + 1.47502i
\(834\) 0 0
\(835\) −6.26104 + 10.8444i −0.216672 + 0.375287i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.61174 −0.159215 −0.0796075 0.996826i \(-0.525367\pi\)
−0.0796075 + 0.996826i \(0.525367\pi\)
\(840\) 0 0
\(841\) 15.0745 0.519811
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20.8647 36.1386i 0.717766 1.24321i
\(846\) 0 0
\(847\) −18.8731 16.2996i −0.648488 0.560060i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38.2022 + 22.0561i −1.30955 + 0.756072i
\(852\) 0 0
\(853\) 46.1077i 1.57870i 0.613946 + 0.789348i \(0.289581\pi\)
−0.613946 + 0.789348i \(0.710419\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.7762 + 37.7174i 0.743859 + 1.28840i 0.950726 + 0.310033i \(0.100340\pi\)
−0.206867 + 0.978369i \(0.566327\pi\)
\(858\) 0 0
\(859\) −13.4377 7.75827i −0.458489 0.264709i 0.252920 0.967487i \(-0.418609\pi\)
−0.711409 + 0.702779i \(0.751942\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15.3098 8.83910i −0.521151 0.300887i 0.216255 0.976337i \(-0.430616\pi\)
−0.737405 + 0.675450i \(0.763949\pi\)
\(864\) 0 0
\(865\) −13.4675 23.3264i −0.457910 0.793123i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.7822i 0.467529i
\(870\) 0 0
\(871\) 48.3799 27.9322i 1.63929 0.946445i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.55157 13.3566i 0.0862588 0.451535i
\(876\) 0 0
\(877\) −7.53791 + 13.0560i −0.254537 + 0.440871i −0.964770 0.263096i \(-0.915256\pi\)
0.710233 + 0.703967i \(0.248590\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.9248 −0.502830 −0.251415 0.967879i \(-0.580896\pi\)
−0.251415 + 0.967879i \(0.580896\pi\)
\(882\) 0 0
\(883\) 19.8737 0.668802 0.334401 0.942431i \(-0.391466\pi\)
0.334401 + 0.942431i \(0.391466\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.80844 8.32847i 0.161452 0.279643i −0.773938 0.633262i \(-0.781716\pi\)
0.935390 + 0.353619i \(0.115049\pi\)
\(888\) 0 0
\(889\) 5.42438 28.3947i 0.181928 0.952329i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.6049 9.00951i 0.522199 0.301492i
\(894\) 0 0
\(895\) 3.52317i 0.117766i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.6491 + 21.9089i 0.421872 + 0.730704i
\(900\) 0 0
\(901\) 44.1338 + 25.4807i 1.47031 + 0.848885i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.6788 + 7.32013i 0.421459 + 0.243329i
\(906\) 0 0
\(907\) −20.7363 35.9163i −0.688536 1.19258i −0.972311 0.233689i \(-0.924920\pi\)
0.283775 0.958891i \(-0.408413\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31.5561i 1.04550i −0.852486 0.522751i \(-0.824906\pi\)
0.852486 0.522751i \(-0.175094\pi\)
\(912\) 0 0
\(913\) 15.8859 9.17171i 0.525746 0.303539i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.8613 + 18.8803i 0.721924 + 0.623481i
\(918\) 0 0
\(919\) −23.5531 + 40.7951i −0.776944 + 1.34571i 0.156751 + 0.987638i \(0.449898\pi\)
−0.933695 + 0.358069i \(0.883435\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.8069 0.454460
\(924\) 0 0
\(925\) −24.7357 −0.813306
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27.0468 + 46.8464i −0.887377 + 1.53698i −0.0444117 + 0.999013i \(0.514141\pi\)
−0.842965 + 0.537968i \(0.819192\pi\)
\(930\) 0 0
\(931\) 13.1545 + 16.6149i 0.431122 + 0.544532i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 19.1357 11.0480i 0.625805 0.361308i
\(936\) 0 0
\(937\) 52.2751i 1.70775i −0.520476 0.853876i \(-0.674245\pi\)
0.520476 0.853876i \(-0.325755\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.1565 + 38.3761i 0.722280 + 1.25103i 0.960084 + 0.279712i \(0.0902390\pi\)
−0.237804 + 0.971313i \(0.576428\pi\)
\(942\) 0 0
\(943\) −44.9007 25.9234i −1.46217 0.844183i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.4036 + 16.3988i 0.922992 + 0.532890i 0.884588 0.466373i \(-0.154439\pi\)
0.0384035 + 0.999262i \(0.487773\pi\)
\(948\) 0 0
\(949\) −25.0191 43.3343i −0.812153 1.40669i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.96162i 0.290295i −0.989410 0.145148i \(-0.953634\pi\)
0.989410 0.145148i \(-0.0463657\pi\)
\(954\) 0 0
\(955\) 11.5843 6.68821i 0.374860 0.216425i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.47067 18.5971i −0.208949 0.600531i
\(960\) 0 0
\(961\) 7.47952 12.9549i 0.241275 0.417900i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 70.9070 2.28258
\(966\) 0 0
\(967\) −24.0469 −0.773296 −0.386648 0.922227i \(-0.626367\pi\)
−0.386648 + 0.922227i \(0.626367\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.25010 + 5.62934i −0.104301 + 0.180654i −0.913452 0.406946i \(-0.866594\pi\)
0.809152 + 0.587600i \(0.199927\pi\)
\(972\) 0 0
\(973\) 42.8087 + 8.17793i 1.37238 + 0.262172i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.63263 4.40670i 0.244190 0.140983i −0.372911 0.927867i \(-0.621640\pi\)
0.617101 + 0.786884i \(0.288307\pi\)
\(978\) 0 0
\(979\) 14.9458i 0.477668i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.4558 + 28.5023i 0.524859 + 0.909083i 0.999581 + 0.0289467i \(0.00921530\pi\)
−0.474722 + 0.880136i \(0.657451\pi\)
\(984\) 0 0
\(985\) 23.3950 + 13.5071i 0.745427 + 0.430373i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −42.8831 24.7585i −1.36360 0.787276i
\(990\) 0 0
\(991\) −8.84072 15.3126i −0.280835 0.486420i 0.690756 0.723088i \(-0.257278\pi\)
−0.971591 + 0.236668i \(0.923945\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 51.8204i 1.64282i
\(996\) 0 0
\(997\) 33.5541 19.3725i 1.06267 0.613532i 0.136500 0.990640i \(-0.456415\pi\)
0.926169 + 0.377108i \(0.123081\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.t.c.2105.3 yes 32
3.2 odd 2 inner 2268.2.t.c.2105.14 yes 32
7.3 odd 6 inner 2268.2.t.c.1781.14 yes 32
9.2 odd 6 2268.2.w.j.1349.14 32
9.4 even 3 2268.2.bm.j.593.14 32
9.5 odd 6 2268.2.bm.j.593.3 32
9.7 even 3 2268.2.w.j.1349.3 32
21.17 even 6 inner 2268.2.t.c.1781.3 32
63.31 odd 6 2268.2.w.j.269.14 32
63.38 even 6 2268.2.bm.j.1025.14 32
63.52 odd 6 2268.2.bm.j.1025.3 32
63.59 even 6 2268.2.w.j.269.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.3 32 21.17 even 6 inner
2268.2.t.c.1781.14 yes 32 7.3 odd 6 inner
2268.2.t.c.2105.3 yes 32 1.1 even 1 trivial
2268.2.t.c.2105.14 yes 32 3.2 odd 2 inner
2268.2.w.j.269.3 32 63.59 even 6
2268.2.w.j.269.14 32 63.31 odd 6
2268.2.w.j.1349.3 32 9.7 even 3
2268.2.w.j.1349.14 32 9.2 odd 6
2268.2.bm.j.593.3 32 9.5 odd 6
2268.2.bm.j.593.14 32 9.4 even 3
2268.2.bm.j.1025.3 32 63.52 odd 6
2268.2.bm.j.1025.14 32 63.38 even 6