Properties

Label 2268.2.bm.j.1025.14
Level $2268$
Weight $2$
Character 2268.1025
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.14
Character \(\chi\) \(=\) 2268.1025
Dual form 2268.2.bm.j.593.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.86458 q^{5} +(-2.00236 + 1.72932i) q^{7} -1.25482i q^{11} +(-4.54703 - 2.62523i) q^{13} +(-3.07356 + 5.32357i) q^{17} +(-2.62182 + 1.51371i) q^{19} -5.71702i q^{23} +3.20580 q^{25} +(-3.23174 + 1.86584i) q^{29} +(-5.87105 + 3.38965i) q^{31} +(-5.73592 + 4.95377i) q^{35} +(3.85796 + 6.68219i) q^{37} +(-4.53443 + 7.85386i) q^{41} +(-4.33067 - 7.50094i) q^{43} +(-2.97597 + 5.15454i) q^{47} +(1.01892 - 6.92545i) q^{49} +(-7.17959 - 4.14514i) q^{53} -3.59453i q^{55} +(-1.48584 - 2.57354i) q^{59} +(2.24837 + 1.29810i) q^{61} +(-13.0253 - 7.52018i) q^{65} +(5.31994 + 9.21441i) q^{67} -2.62965i q^{71} +(8.25342 + 4.76512i) q^{73} +(2.16998 + 2.51261i) q^{77} +(5.49170 - 9.51191i) q^{79} +(-7.30919 - 12.6599i) q^{83} +(-8.80446 + 15.2498i) q^{85} +(5.95534 + 10.3150i) q^{89} +(13.6447 - 2.60660i) q^{91} +(-7.51040 + 4.33613i) q^{95} +(6.19217 - 3.57505i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} - 12 q^{13} + 32 q^{25} - 24 q^{31} - 4 q^{37} - 4 q^{43} - 16 q^{49} - 12 q^{61} + 4 q^{67} - 36 q^{73} + 28 q^{79} + 12 q^{85} - 36 q^{91} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.86458 1.28108 0.640539 0.767926i \(-0.278711\pi\)
0.640539 + 0.767926i \(0.278711\pi\)
\(6\) 0 0
\(7\) −2.00236 + 1.72932i −0.756822 + 0.653621i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.25482i 0.378342i −0.981944 0.189171i \(-0.939420\pi\)
0.981944 0.189171i \(-0.0605801\pi\)
\(12\) 0 0
\(13\) −4.54703 2.62523i −1.26112 0.728108i −0.287829 0.957682i \(-0.592933\pi\)
−0.973291 + 0.229574i \(0.926267\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.07356 + 5.32357i −0.745448 + 1.29115i 0.204537 + 0.978859i \(0.434431\pi\)
−0.949985 + 0.312295i \(0.898902\pi\)
\(18\) 0 0
\(19\) −2.62182 + 1.51371i −0.601486 + 0.347268i −0.769626 0.638495i \(-0.779557\pi\)
0.168140 + 0.985763i \(0.446224\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.71702i 1.19208i −0.802954 0.596041i \(-0.796740\pi\)
0.802954 0.596041i \(-0.203260\pi\)
\(24\) 0 0
\(25\) 3.20580 0.641161
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.23174 + 1.86584i −0.600118 + 0.346478i −0.769088 0.639143i \(-0.779289\pi\)
0.168970 + 0.985621i \(0.445956\pi\)
\(30\) 0 0
\(31\) −5.87105 + 3.38965i −1.05447 + 0.608800i −0.923898 0.382639i \(-0.875015\pi\)
−0.130574 + 0.991439i \(0.541682\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.73592 + 4.95377i −0.969548 + 0.837339i
\(36\) 0 0
\(37\) 3.85796 + 6.68219i 0.634245 + 1.09854i 0.986675 + 0.162706i \(0.0520223\pi\)
−0.352429 + 0.935838i \(0.614644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.53443 + 7.85386i −0.708159 + 1.22657i 0.257380 + 0.966310i \(0.417141\pi\)
−0.965539 + 0.260257i \(0.916193\pi\)
\(42\) 0 0
\(43\) −4.33067 7.50094i −0.660421 1.14388i −0.980505 0.196494i \(-0.937044\pi\)
0.320084 0.947389i \(-0.396289\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.97597 + 5.15454i −0.434090 + 0.751866i −0.997221 0.0745015i \(-0.976263\pi\)
0.563131 + 0.826368i \(0.309597\pi\)
\(48\) 0 0
\(49\) 1.01892 6.92545i 0.145559 0.989350i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.17959 4.14514i −0.986193 0.569379i −0.0820587 0.996628i \(-0.526149\pi\)
−0.904134 + 0.427249i \(0.859483\pi\)
\(54\) 0 0
\(55\) 3.59453i 0.484686i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.48584 2.57354i −0.193439 0.335047i 0.752948 0.658080i \(-0.228631\pi\)
−0.946388 + 0.323033i \(0.895298\pi\)
\(60\) 0 0
\(61\) 2.24837 + 1.29810i 0.287874 + 0.166204i 0.636983 0.770878i \(-0.280182\pi\)
−0.349109 + 0.937082i \(0.613516\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.0253 7.52018i −1.61559 0.932763i
\(66\) 0 0
\(67\) 5.31994 + 9.21441i 0.649934 + 1.12572i 0.983138 + 0.182865i \(0.0585370\pi\)
−0.333204 + 0.942855i \(0.608130\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.62965i 0.312083i −0.987751 0.156041i \(-0.950127\pi\)
0.987751 0.156041i \(-0.0498733\pi\)
\(72\) 0 0
\(73\) 8.25342 + 4.76512i 0.965990 + 0.557715i 0.898011 0.439972i \(-0.145012\pi\)
0.0679788 + 0.997687i \(0.478345\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.16998 + 2.51261i 0.247293 + 0.286338i
\(78\) 0 0
\(79\) 5.49170 9.51191i 0.617865 1.07017i −0.372010 0.928229i \(-0.621331\pi\)
0.989875 0.141944i \(-0.0453354\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.30919 12.6599i −0.802287 1.38960i −0.918107 0.396332i \(-0.870283\pi\)
0.115820 0.993270i \(-0.463051\pi\)
\(84\) 0 0
\(85\) −8.80446 + 15.2498i −0.954977 + 1.65407i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.95534 + 10.3150i 0.631265 + 1.09338i 0.987293 + 0.158908i \(0.0507972\pi\)
−0.356029 + 0.934475i \(0.615869\pi\)
\(90\) 0 0
\(91\) 13.6447 2.60660i 1.43035 0.273246i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.51040 + 4.33613i −0.770551 + 0.444878i
\(96\) 0 0
\(97\) 6.19217 3.57505i 0.628720 0.362992i −0.151536 0.988452i \(-0.548422\pi\)
0.780256 + 0.625460i \(0.215089\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.89419 −0.287983 −0.143991 0.989579i \(-0.545994\pi\)
−0.143991 + 0.989579i \(0.545994\pi\)
\(102\) 0 0
\(103\) 6.44681i 0.635224i −0.948221 0.317612i \(-0.897119\pi\)
0.948221 0.317612i \(-0.102881\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.4017 + 8.31483i −1.39227 + 0.803825i −0.993566 0.113256i \(-0.963872\pi\)
−0.398701 + 0.917081i \(0.630539\pi\)
\(108\) 0 0
\(109\) −1.54822 + 2.68159i −0.148292 + 0.256850i −0.930596 0.366047i \(-0.880711\pi\)
0.782304 + 0.622897i \(0.214044\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.5691 + 8.41149i 1.37055 + 0.791286i 0.990997 0.133884i \(-0.0427451\pi\)
0.379551 + 0.925171i \(0.376078\pi\)
\(114\) 0 0
\(115\) 16.3769i 1.52715i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.05175 15.9749i −0.279754 1.46441i
\(120\) 0 0
\(121\) 9.42543 0.856857
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.13961 −0.459701
\(126\) 0 0
\(127\) −10.9263 −0.969551 −0.484775 0.874639i \(-0.661099\pi\)
−0.484775 + 0.874639i \(0.661099\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.9178 −0.953888 −0.476944 0.878934i \(-0.658256\pi\)
−0.476944 + 0.878934i \(0.658256\pi\)
\(132\) 0 0
\(133\) 2.63215 7.56495i 0.228236 0.655964i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.44236i 0.635844i 0.948117 + 0.317922i \(0.102985\pi\)
−0.948117 + 0.317922i \(0.897015\pi\)
\(138\) 0 0
\(139\) −14.2658 8.23638i −1.21001 0.698600i −0.247249 0.968952i \(-0.579527\pi\)
−0.962762 + 0.270352i \(0.912860\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.29419 + 5.70571i −0.275474 + 0.477135i
\(144\) 0 0
\(145\) −9.25756 + 5.34485i −0.768798 + 0.443866i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.7606i 1.29116i −0.763694 0.645578i \(-0.776616\pi\)
0.763694 0.645578i \(-0.223384\pi\)
\(150\) 0 0
\(151\) 0.678729 0.0552342 0.0276171 0.999619i \(-0.491208\pi\)
0.0276171 + 0.999619i \(0.491208\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.8181 + 9.70993i −1.35086 + 0.779920i
\(156\) 0 0
\(157\) 6.74094 3.89189i 0.537986 0.310606i −0.206276 0.978494i \(-0.566135\pi\)
0.744262 + 0.667887i \(0.232801\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.88655 + 11.4476i 0.779169 + 0.902194i
\(162\) 0 0
\(163\) 3.80101 + 6.58354i 0.297718 + 0.515663i 0.975613 0.219496i \(-0.0704412\pi\)
−0.677896 + 0.735158i \(0.737108\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.18568 + 3.78570i −0.169133 + 0.292947i −0.938115 0.346323i \(-0.887430\pi\)
0.768982 + 0.639270i \(0.220763\pi\)
\(168\) 0 0
\(169\) 7.28368 + 12.6157i 0.560283 + 0.970438i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.70140 + 8.14307i −0.357441 + 0.619106i −0.987533 0.157415i \(-0.949684\pi\)
0.630092 + 0.776521i \(0.283017\pi\)
\(174\) 0 0
\(175\) −6.41919 + 5.54386i −0.485245 + 0.419076i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.06513 + 0.614954i 0.0796116 + 0.0459638i 0.539277 0.842128i \(-0.318697\pi\)
−0.459666 + 0.888092i \(0.652031\pi\)
\(180\) 0 0
\(181\) 5.11079i 0.379882i 0.981795 + 0.189941i \(0.0608297\pi\)
−0.981795 + 0.189941i \(0.939170\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.0514 + 19.1416i 0.812517 + 1.40732i
\(186\) 0 0
\(187\) 6.68012 + 3.85677i 0.488498 + 0.282035i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.04399 + 2.33480i 0.292613 + 0.168940i 0.639120 0.769107i \(-0.279299\pi\)
−0.346507 + 0.938047i \(0.612632\pi\)
\(192\) 0 0
\(193\) −12.3765 21.4368i −0.890881 1.54305i −0.838821 0.544408i \(-0.816754\pi\)
−0.0520610 0.998644i \(-0.516579\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.43044i 0.671891i 0.941881 + 0.335946i \(0.109056\pi\)
−0.941881 + 0.335946i \(0.890944\pi\)
\(198\) 0 0
\(199\) 15.6665 + 9.04503i 1.11057 + 0.641185i 0.938976 0.343983i \(-0.111776\pi\)
0.171590 + 0.985168i \(0.445110\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.24447 9.32479i 0.227717 0.654472i
\(204\) 0 0
\(205\) −12.9892 + 22.4980i −0.907207 + 1.57133i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.89943 + 3.28991i 0.131386 + 0.227568i
\(210\) 0 0
\(211\) −9.16894 + 15.8811i −0.631216 + 1.09330i 0.356088 + 0.934453i \(0.384110\pi\)
−0.987303 + 0.158845i \(0.949223\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −12.4055 21.4870i −0.846051 1.46540i
\(216\) 0 0
\(217\) 5.89419 16.9402i 0.400124 1.14998i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 27.9512 16.1376i 1.88020 1.08553i
\(222\) 0 0
\(223\) −6.78826 + 3.91920i −0.454576 + 0.262449i −0.709761 0.704443i \(-0.751197\pi\)
0.255185 + 0.966892i \(0.417864\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.1759 1.07363 0.536816 0.843699i \(-0.319627\pi\)
0.536816 + 0.843699i \(0.319627\pi\)
\(228\) 0 0
\(229\) 7.43757i 0.491488i 0.969335 + 0.245744i \(0.0790323\pi\)
−0.969335 + 0.245744i \(0.920968\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.8568 + 11.4643i −1.30086 + 0.751051i −0.980551 0.196262i \(-0.937120\pi\)
−0.320308 + 0.947314i \(0.603786\pi\)
\(234\) 0 0
\(235\) −8.52491 + 14.7656i −0.556104 + 0.963200i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.8266 6.82808i −0.764998 0.441672i 0.0660893 0.997814i \(-0.478948\pi\)
−0.831087 + 0.556142i \(0.812281\pi\)
\(240\) 0 0
\(241\) 8.13750i 0.524182i −0.965043 0.262091i \(-0.915588\pi\)
0.965043 0.262091i \(-0.0844121\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.91876 19.8385i 0.186473 1.26743i
\(246\) 0 0
\(247\) 15.8953 1.01140
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.95828 0.628561 0.314281 0.949330i \(-0.398237\pi\)
0.314281 + 0.949330i \(0.398237\pi\)
\(252\) 0 0
\(253\) −7.17383 −0.451015
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −23.4900 −1.46526 −0.732632 0.680625i \(-0.761708\pi\)
−0.732632 + 0.680625i \(0.761708\pi\)
\(258\) 0 0
\(259\) −19.2807 6.70852i −1.19804 0.416847i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.35144i 0.329984i 0.986295 + 0.164992i \(0.0527598\pi\)
−0.986295 + 0.164992i \(0.947240\pi\)
\(264\) 0 0
\(265\) −20.5665 11.8741i −1.26339 0.729418i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.554894 + 0.961104i −0.0338325 + 0.0585995i −0.882446 0.470414i \(-0.844105\pi\)
0.848613 + 0.529014i \(0.177438\pi\)
\(270\) 0 0
\(271\) 11.9571 6.90342i 0.726341 0.419353i −0.0907411 0.995875i \(-0.528924\pi\)
0.817082 + 0.576521i \(0.195590\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.02271i 0.242578i
\(276\) 0 0
\(277\) −13.7231 −0.824543 −0.412271 0.911061i \(-0.635264\pi\)
−0.412271 + 0.911061i \(0.635264\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.4612 15.2774i 1.57854 0.911371i 0.583478 0.812129i \(-0.301692\pi\)
0.995063 0.0992419i \(-0.0316418\pi\)
\(282\) 0 0
\(283\) −12.7910 + 7.38491i −0.760349 + 0.438988i −0.829421 0.558624i \(-0.811329\pi\)
0.0690722 + 0.997612i \(0.477996\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.50225 23.5678i −0.265760 1.39116i
\(288\) 0 0
\(289\) −10.3936 18.0022i −0.611386 1.05895i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.721612 + 1.24987i −0.0421570 + 0.0730181i −0.886334 0.463046i \(-0.846756\pi\)
0.844177 + 0.536065i \(0.180090\pi\)
\(294\) 0 0
\(295\) −4.25629 7.37212i −0.247811 0.429221i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.0085 + 25.9955i −0.867964 + 1.50336i
\(300\) 0 0
\(301\) 21.6431 + 7.53050i 1.24749 + 0.434051i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.44063 + 3.71850i 0.368789 + 0.212921i
\(306\) 0 0
\(307\) 21.8901i 1.24933i −0.780891 0.624667i \(-0.785235\pi\)
0.780891 0.624667i \(-0.214765\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.25630 + 9.10417i 0.298057 + 0.516250i 0.975691 0.219149i \(-0.0703281\pi\)
−0.677634 + 0.735399i \(0.736995\pi\)
\(312\) 0 0
\(313\) 2.85633 + 1.64910i 0.161449 + 0.0932127i 0.578548 0.815649i \(-0.303620\pi\)
−0.417099 + 0.908861i \(0.636953\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.6051 10.7416i −1.04496 0.603311i −0.123729 0.992316i \(-0.539485\pi\)
−0.921236 + 0.389005i \(0.872819\pi\)
\(318\) 0 0
\(319\) 2.34130 + 4.05525i 0.131087 + 0.227050i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18.6099i 1.03548i
\(324\) 0 0
\(325\) −14.5769 8.41598i −0.808581 0.466835i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.95486 15.4677i −0.162906 0.852760i
\(330\) 0 0
\(331\) −8.49354 + 14.7112i −0.466847 + 0.808603i −0.999283 0.0378676i \(-0.987943\pi\)
0.532436 + 0.846470i \(0.321277\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.2394 + 26.3954i 0.832617 + 1.44213i
\(336\) 0 0
\(337\) 9.03282 15.6453i 0.492049 0.852254i −0.507909 0.861411i \(-0.669581\pi\)
0.999958 + 0.00915682i \(0.00291475\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.25341 + 7.36712i 0.230335 + 0.398952i
\(342\) 0 0
\(343\) 9.93606 + 15.6293i 0.536497 + 0.843902i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −23.7199 + 13.6947i −1.27335 + 0.735169i −0.975617 0.219480i \(-0.929564\pi\)
−0.297734 + 0.954649i \(0.596231\pi\)
\(348\) 0 0
\(349\) 19.9926 11.5427i 1.07018 0.617869i 0.141950 0.989874i \(-0.454663\pi\)
0.928231 + 0.372005i \(0.121329\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.7318 1.05022 0.525110 0.851034i \(-0.324024\pi\)
0.525110 + 0.851034i \(0.324024\pi\)
\(354\) 0 0
\(355\) 7.53285i 0.399802i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.7577 17.7579i 1.62333 0.937228i 0.637305 0.770611i \(-0.280049\pi\)
0.986022 0.166617i \(-0.0532843\pi\)
\(360\) 0 0
\(361\) −4.91738 + 8.51715i −0.258809 + 0.448271i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.6426 + 13.6500i 1.23751 + 0.714476i
\(366\) 0 0
\(367\) 22.6970i 1.18477i 0.805654 + 0.592386i \(0.201814\pi\)
−0.805654 + 0.592386i \(0.798186\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.5444 4.11573i 1.11853 0.213678i
\(372\) 0 0
\(373\) 14.4653 0.748983 0.374492 0.927230i \(-0.377817\pi\)
0.374492 + 0.927230i \(0.377817\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.5931 1.00909
\(378\) 0 0
\(379\) 27.2141 1.39790 0.698948 0.715173i \(-0.253652\pi\)
0.698948 + 0.715173i \(0.253652\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −34.8278 −1.77962 −0.889810 0.456331i \(-0.849163\pi\)
−0.889810 + 0.456331i \(0.849163\pi\)
\(384\) 0 0
\(385\) 6.21608 + 7.19755i 0.316801 + 0.366821i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.04173i 0.103520i 0.998660 + 0.0517600i \(0.0164831\pi\)
−0.998660 + 0.0517600i \(0.983517\pi\)
\(390\) 0 0
\(391\) 30.4349 + 17.5716i 1.53916 + 0.888635i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.7314 27.2476i 0.791533 1.37098i
\(396\) 0 0
\(397\) −26.9678 + 15.5699i −1.35348 + 0.781430i −0.988735 0.149678i \(-0.952176\pi\)
−0.364742 + 0.931108i \(0.618843\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.0195i 0.650164i −0.945686 0.325082i \(-0.894608\pi\)
0.945686 0.325082i \(-0.105392\pi\)
\(402\) 0 0
\(403\) 35.5945 1.77309
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.38494 4.84105i 0.415626 0.239962i
\(408\) 0 0
\(409\) 10.9054 6.29621i 0.539236 0.311328i −0.205534 0.978650i \(-0.565893\pi\)
0.744769 + 0.667322i \(0.232560\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.42566 + 2.58369i 0.365393 + 0.127135i
\(414\) 0 0
\(415\) −20.9377 36.2652i −1.02779 1.78019i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.76463 + 11.7167i −0.330474 + 0.572398i −0.982605 0.185709i \(-0.940542\pi\)
0.652131 + 0.758106i \(0.273875\pi\)
\(420\) 0 0
\(421\) −1.48749 2.57641i −0.0724959 0.125567i 0.827499 0.561468i \(-0.189763\pi\)
−0.899995 + 0.435901i \(0.856430\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.85324 + 17.0663i −0.477952 + 0.827838i
\(426\) 0 0
\(427\) −6.74687 + 1.28889i −0.326504 + 0.0623735i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.94179 + 5.16254i 0.430711 + 0.248671i 0.699649 0.714486i \(-0.253340\pi\)
−0.268939 + 0.963157i \(0.586673\pi\)
\(432\) 0 0
\(433\) 10.9117i 0.524384i 0.965016 + 0.262192i \(0.0844453\pi\)
−0.965016 + 0.262192i \(0.915555\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.65390 + 14.9890i 0.413972 + 0.717021i
\(438\) 0 0
\(439\) 10.1562 + 5.86369i 0.484729 + 0.279859i 0.722385 0.691491i \(-0.243046\pi\)
−0.237656 + 0.971349i \(0.576379\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.1605 17.4131i −1.43297 0.827324i −0.435621 0.900130i \(-0.643471\pi\)
−0.997346 + 0.0728067i \(0.976804\pi\)
\(444\) 0 0
\(445\) 17.0595 + 29.5480i 0.808699 + 1.40071i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.37875i 0.206646i 0.994648 + 0.103323i \(0.0329475\pi\)
−0.994648 + 0.103323i \(0.967052\pi\)
\(450\) 0 0
\(451\) 9.85518 + 5.68989i 0.464062 + 0.267927i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 39.0862 7.46682i 1.83239 0.350050i
\(456\) 0 0
\(457\) −3.63140 + 6.28977i −0.169870 + 0.294223i −0.938374 0.345622i \(-0.887668\pi\)
0.768504 + 0.639845i \(0.221001\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.94968 + 10.3051i 0.277104 + 0.479958i 0.970664 0.240441i \(-0.0772920\pi\)
−0.693560 + 0.720399i \(0.743959\pi\)
\(462\) 0 0
\(463\) 13.7464 23.8094i 0.638847 1.10652i −0.346839 0.937925i \(-0.612745\pi\)
0.985686 0.168591i \(-0.0539217\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.57357 2.72550i −0.0728161 0.126121i 0.827318 0.561733i \(-0.189865\pi\)
−0.900134 + 0.435612i \(0.856532\pi\)
\(468\) 0 0
\(469\) −26.5871 9.25072i −1.22768 0.427159i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.41233 + 5.43421i −0.432780 + 0.249865i
\(474\) 0 0
\(475\) −8.40504 + 4.85265i −0.385650 + 0.222655i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 39.4926 1.80446 0.902231 0.431253i \(-0.141929\pi\)
0.902231 + 0.431253i \(0.141929\pi\)
\(480\) 0 0
\(481\) 40.5122i 1.84720i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.7380 10.2410i 0.805439 0.465021i
\(486\) 0 0
\(487\) 16.1647 27.9980i 0.732490 1.26871i −0.223326 0.974744i \(-0.571691\pi\)
0.955816 0.293966i \(-0.0949754\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.4585 + 7.19290i 0.562242 + 0.324611i 0.754045 0.656823i \(-0.228100\pi\)
−0.191803 + 0.981434i \(0.561433\pi\)
\(492\) 0 0
\(493\) 22.9391i 1.03313i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.54751 + 5.26552i 0.203984 + 0.236191i
\(498\) 0 0
\(499\) 41.6827 1.86597 0.932987 0.359911i \(-0.117193\pi\)
0.932987 + 0.359911i \(0.117193\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.4755 0.556256 0.278128 0.960544i \(-0.410286\pi\)
0.278128 + 0.960544i \(0.410286\pi\)
\(504\) 0 0
\(505\) −8.29063 −0.368928
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 27.7147 1.22843 0.614217 0.789137i \(-0.289472\pi\)
0.614217 + 0.789137i \(0.289472\pi\)
\(510\) 0 0
\(511\) −24.7668 + 4.73130i −1.09562 + 0.209301i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.4674i 0.813771i
\(516\) 0 0
\(517\) 6.46801 + 3.73431i 0.284463 + 0.164235i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0961 20.9510i 0.529938 0.917880i −0.469452 0.882958i \(-0.655549\pi\)
0.999390 0.0349216i \(-0.0111181\pi\)
\(522\) 0 0
\(523\) −20.8779 + 12.0539i −0.912927 + 0.527078i −0.881372 0.472424i \(-0.843379\pi\)
−0.0315550 + 0.999502i \(0.510046\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 41.6733i 1.81532i
\(528\) 0 0
\(529\) −9.68434 −0.421058
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 41.2364 23.8078i 1.78615 1.03123i
\(534\) 0 0
\(535\) −41.2548 + 23.8185i −1.78360 + 1.02976i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.69019 1.27856i −0.374313 0.0550713i
\(540\) 0 0
\(541\) −20.2072 34.9999i −0.868775 1.50476i −0.863250 0.504777i \(-0.831575\pi\)
−0.00552468 0.999985i \(-0.501759\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.43499 + 7.68163i −0.189974 + 0.329045i
\(546\) 0 0
\(547\) −11.1424 19.2992i −0.476415 0.825175i 0.523220 0.852198i \(-0.324731\pi\)
−0.999635 + 0.0270226i \(0.991397\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.64868 9.78380i 0.240642 0.416804i
\(552\) 0 0
\(553\) 5.45273 + 28.5432i 0.231874 + 1.21378i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.1768 + 13.3811i 0.982031 + 0.566976i 0.902883 0.429887i \(-0.141447\pi\)
0.0791483 + 0.996863i \(0.474780\pi\)
\(558\) 0 0
\(559\) 45.4761i 1.92343i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.04743 15.6706i −0.381304 0.660438i 0.609945 0.792444i \(-0.291192\pi\)
−0.991249 + 0.132006i \(0.957858\pi\)
\(564\) 0 0
\(565\) 41.7344 + 24.0954i 1.75578 + 1.01370i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.3851 + 11.7693i 0.854588 + 0.493396i 0.862196 0.506575i \(-0.169089\pi\)
−0.00760850 + 0.999971i \(0.502422\pi\)
\(570\) 0 0
\(571\) −6.19412 10.7285i −0.259216 0.448975i 0.706816 0.707397i \(-0.250131\pi\)
−0.966032 + 0.258422i \(0.916797\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.3277i 0.764316i
\(576\) 0 0
\(577\) 9.61514 + 5.55131i 0.400284 + 0.231104i 0.686606 0.727029i \(-0.259100\pi\)
−0.286323 + 0.958133i \(0.592433\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 36.5286 + 12.7098i 1.51546 + 0.527290i
\(582\) 0 0
\(583\) −5.20140 + 9.00909i −0.215420 + 0.373119i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.8238 + 34.3358i 0.818215 + 1.41719i 0.906996 + 0.421139i \(0.138370\pi\)
−0.0887810 + 0.996051i \(0.528297\pi\)
\(588\) 0 0
\(589\) 10.2619 17.7741i 0.422834 0.732370i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.9778 + 24.2102i 0.573998 + 0.994194i 0.996150 + 0.0876691i \(0.0279418\pi\)
−0.422151 + 0.906525i \(0.638725\pi\)
\(594\) 0 0
\(595\) −8.74198 45.7613i −0.358386 1.87603i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25.2868 + 14.5993i −1.03319 + 0.596513i −0.917897 0.396818i \(-0.870114\pi\)
−0.115294 + 0.993331i \(0.536781\pi\)
\(600\) 0 0
\(601\) −12.9722 + 7.48950i −0.529147 + 0.305503i −0.740669 0.671870i \(-0.765491\pi\)
0.211522 + 0.977373i \(0.432158\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.9999 1.09770
\(606\) 0 0
\(607\) 24.3659i 0.988982i −0.869183 0.494491i \(-0.835355\pi\)
0.869183 0.494491i \(-0.164645\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.0637 15.6252i 1.09488 0.632129i
\(612\) 0 0
\(613\) 10.9343 18.9387i 0.441631 0.764927i −0.556180 0.831062i \(-0.687733\pi\)
0.997811 + 0.0661347i \(0.0210667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −35.7489 20.6396i −1.43920 0.830921i −0.441403 0.897309i \(-0.645519\pi\)
−0.997794 + 0.0663885i \(0.978852\pi\)
\(618\) 0 0
\(619\) 40.8583i 1.64223i 0.570760 + 0.821117i \(0.306649\pi\)
−0.570760 + 0.821117i \(0.693351\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −29.7626 10.3556i −1.19241 0.414888i
\(624\) 0 0
\(625\) −30.7518 −1.23007
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −47.4307 −1.89119
\(630\) 0 0
\(631\) 26.4215 1.05182 0.525911 0.850540i \(-0.323725\pi\)
0.525911 + 0.850540i \(0.323725\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −31.2992 −1.24207
\(636\) 0 0
\(637\) −22.8139 + 28.8153i −0.903921 + 1.14171i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.8689i 1.37724i 0.725124 + 0.688619i \(0.241783\pi\)
−0.725124 + 0.688619i \(0.758217\pi\)
\(642\) 0 0
\(643\) 23.2658 + 13.4325i 0.917514 + 0.529727i 0.882841 0.469672i \(-0.155628\pi\)
0.0346728 + 0.999399i \(0.488961\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.988791 + 1.71264i −0.0388734 + 0.0673306i −0.884807 0.465957i \(-0.845710\pi\)
0.845934 + 0.533287i \(0.179044\pi\)
\(648\) 0 0
\(649\) −3.22933 + 1.86446i −0.126762 + 0.0731863i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.1457i 0.788363i −0.919033 0.394182i \(-0.871028\pi\)
0.919033 0.394182i \(-0.128972\pi\)
\(654\) 0 0
\(655\) −31.2747 −1.22201
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.9901 + 11.5413i −0.778706 + 0.449586i −0.835971 0.548773i \(-0.815095\pi\)
0.0572657 + 0.998359i \(0.481762\pi\)
\(660\) 0 0
\(661\) 2.42515 1.40016i 0.0943273 0.0544599i −0.452094 0.891970i \(-0.649323\pi\)
0.546422 + 0.837510i \(0.315990\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.54000 21.6704i 0.292389 0.840342i
\(666\) 0 0
\(667\) 10.6671 + 18.4759i 0.413030 + 0.715390i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.62888 2.82130i 0.0628821 0.108915i
\(672\) 0 0
\(673\) 16.3481 + 28.3158i 0.630173 + 1.09149i 0.987516 + 0.157519i \(0.0503496\pi\)
−0.357343 + 0.933973i \(0.616317\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.7293 + 39.3684i −0.873559 + 1.51305i −0.0152697 + 0.999883i \(0.504861\pi\)
−0.858290 + 0.513166i \(0.828473\pi\)
\(678\) 0 0
\(679\) −6.21658 + 17.8668i −0.238570 + 0.685665i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −43.2107 24.9477i −1.65341 0.954598i −0.975655 0.219312i \(-0.929619\pi\)
−0.677757 0.735286i \(-0.737048\pi\)
\(684\) 0 0
\(685\) 21.3192i 0.814565i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.7639 + 37.6962i 0.829138 + 1.43611i
\(690\) 0 0
\(691\) −27.1274 15.6620i −1.03198 0.595812i −0.114426 0.993432i \(-0.536503\pi\)
−0.917550 + 0.397620i \(0.869836\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −40.8655 23.5937i −1.55012 0.894961i
\(696\) 0 0
\(697\) −27.8737 48.2787i −1.05579 1.82868i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.3593i 0.504576i −0.967652 0.252288i \(-0.918817\pi\)
0.967652 0.252288i \(-0.0811829\pi\)
\(702\) 0 0
\(703\) −20.2298 11.6797i −0.762980 0.440506i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.79522 5.00497i 0.217952 0.188231i
\(708\) 0 0
\(709\) −15.9513 + 27.6284i −0.599062 + 1.03761i 0.393897 + 0.919154i \(0.371127\pi\)
−0.992960 + 0.118452i \(0.962207\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19.3787 + 33.5649i 0.725739 + 1.25702i
\(714\) 0 0
\(715\) −9.43647 + 16.3444i −0.352904 + 0.611248i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.82338 8.35434i −0.179882 0.311564i 0.761958 0.647626i \(-0.224238\pi\)
−0.941840 + 0.336062i \(0.890905\pi\)
\(720\) 0 0
\(721\) 11.1486 + 12.9089i 0.415195 + 0.480751i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.3603 + 5.98153i −0.384772 + 0.222148i
\(726\) 0 0
\(727\) 33.3713 19.2670i 1.23767 0.714572i 0.269056 0.963125i \(-0.413288\pi\)
0.968618 + 0.248553i \(0.0799550\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 53.2424 1.96924
\(732\) 0 0
\(733\) 17.8259i 0.658414i −0.944258 0.329207i \(-0.893219\pi\)
0.944258 0.329207i \(-0.106781\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.5624 6.67557i 0.425907 0.245898i
\(738\) 0 0
\(739\) 4.27651 7.40713i 0.157314 0.272476i −0.776585 0.630012i \(-0.783050\pi\)
0.933899 + 0.357536i \(0.116383\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.5617 8.40718i −0.534216 0.308430i 0.208516 0.978019i \(-0.433137\pi\)
−0.742731 + 0.669589i \(0.766470\pi\)
\(744\) 0 0
\(745\) 45.1474i 1.65407i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.4585 41.5545i 0.528301 1.51837i
\(750\) 0 0
\(751\) −42.6126 −1.55496 −0.777478 0.628910i \(-0.783501\pi\)
−0.777478 + 0.628910i \(0.783501\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.94427 0.0707593
\(756\) 0 0
\(757\) 8.97784 0.326305 0.163153 0.986601i \(-0.447834\pi\)
0.163153 + 0.986601i \(0.447834\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −39.9019 −1.44644 −0.723222 0.690616i \(-0.757340\pi\)
−0.723222 + 0.690616i \(0.757340\pi\)
\(762\) 0 0
\(763\) −1.53723 8.04689i −0.0556516 0.291317i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.6027i 0.563379i
\(768\) 0 0
\(769\) 8.21315 + 4.74186i 0.296174 + 0.170996i 0.640723 0.767772i \(-0.278635\pi\)
−0.344549 + 0.938768i \(0.611968\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.60509 + 11.4403i −0.237568 + 0.411481i −0.960016 0.279945i \(-0.909684\pi\)
0.722448 + 0.691426i \(0.243017\pi\)
\(774\) 0 0
\(775\) −18.8215 + 10.8666i −0.676087 + 0.390339i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.4552i 0.983685i
\(780\) 0 0
\(781\) −3.29974 −0.118074
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 19.3100 11.1486i 0.689202 0.397911i
\(786\) 0 0
\(787\) 6.91018 3.98960i 0.246321 0.142214i −0.371757 0.928330i \(-0.621245\pi\)
0.618079 + 0.786116i \(0.287911\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −43.7188 + 8.35180i −1.55446 + 0.296956i
\(792\) 0 0
\(793\) −6.81561 11.8050i −0.242029 0.419207i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.7204 32.4247i 0.663110 1.14854i −0.316684 0.948531i \(-0.602569\pi\)
0.979794 0.200009i \(-0.0640972\pi\)
\(798\) 0 0
\(799\) −18.2937 31.6856i −0.647184 1.12095i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.97936 10.3566i 0.211007 0.365475i
\(804\) 0 0
\(805\) 28.3208 + 32.7924i 0.998177 + 1.15578i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.0001 + 6.92824i 0.421900 + 0.243584i 0.695890 0.718149i \(-0.255010\pi\)
−0.273990 + 0.961733i \(0.588344\pi\)
\(810\) 0 0
\(811\) 17.6343i 0.619223i −0.950863 0.309611i \(-0.899801\pi\)
0.950863 0.309611i \(-0.100199\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.8883 + 18.8591i 0.381400 + 0.660604i
\(816\) 0 0
\(817\) 22.7085 + 13.1107i 0.794469 + 0.458687i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.6604 24.6300i −1.48886 0.859593i −0.488940 0.872318i \(-0.662616\pi\)
−0.999919 + 0.0127244i \(0.995950\pi\)
\(822\) 0 0
\(823\) 17.2854 + 29.9392i 0.602530 + 1.04361i 0.992437 + 0.122759i \(0.0391741\pi\)
−0.389906 + 0.920855i \(0.627493\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.2579i 1.57377i 0.617099 + 0.786886i \(0.288308\pi\)
−0.617099 + 0.786886i \(0.711692\pi\)
\(828\) 0 0
\(829\) 8.17327 + 4.71884i 0.283869 + 0.163892i 0.635174 0.772369i \(-0.280928\pi\)
−0.351305 + 0.936261i \(0.614262\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.7364 + 26.7101i 1.16890 + 0.925449i
\(834\) 0 0
\(835\) −6.26104 + 10.8444i −0.216672 + 0.375287i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.30587 + 3.99389i 0.0796075 + 0.137884i 0.903081 0.429471i \(-0.141300\pi\)
−0.823473 + 0.567355i \(0.807967\pi\)
\(840\) 0 0
\(841\) −7.53726 + 13.0549i −0.259905 + 0.450169i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20.8647 + 36.1386i 0.717766 + 1.24321i
\(846\) 0 0
\(847\) −18.8731 + 16.2996i −0.648488 + 0.560060i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 38.2022 22.0561i 1.30955 0.756072i
\(852\) 0 0
\(853\) −39.9304 + 23.0538i −1.36719 + 0.789348i −0.990568 0.137019i \(-0.956248\pi\)
−0.376623 + 0.926367i \(0.622915\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −43.5523 −1.48772 −0.743859 0.668336i \(-0.767007\pi\)
−0.743859 + 0.668336i \(0.767007\pi\)
\(858\) 0 0
\(859\) 15.5165i 0.529418i −0.964328 0.264709i \(-0.914724\pi\)
0.964328 0.264709i \(-0.0852758\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15.3098 + 8.83910i −0.521151 + 0.300887i −0.737405 0.675450i \(-0.763949\pi\)
0.216255 + 0.976337i \(0.430616\pi\)
\(864\) 0 0
\(865\) −13.4675 + 23.3264i −0.457910 + 0.793123i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.9357 6.89110i −0.404892 0.233764i
\(870\) 0 0
\(871\) 55.8643i 1.89289i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.2914 8.88802i 0.347912 0.300470i
\(876\) 0 0
\(877\) 15.0758 0.509074 0.254537 0.967063i \(-0.418077\pi\)
0.254537 + 0.967063i \(0.418077\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.9248 −0.502830 −0.251415 0.967879i \(-0.580896\pi\)
−0.251415 + 0.967879i \(0.580896\pi\)
\(882\) 0 0
\(883\) 19.8737 0.668802 0.334401 0.942431i \(-0.391466\pi\)
0.334401 + 0.942431i \(0.391466\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.61689 −0.322903 −0.161452 0.986881i \(-0.551618\pi\)
−0.161452 + 0.986881i \(0.551618\pi\)
\(888\) 0 0
\(889\) 21.8784 18.8950i 0.733777 0.633719i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.0190i 0.602983i
\(894\) 0 0
\(895\) 3.05115 + 1.76158i 0.101989 + 0.0588832i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.6491 21.9089i 0.421872 0.730704i
\(900\) 0 0
\(901\) 44.1338 25.4807i 1.47031 0.848885i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.6403i 0.486659i
\(906\) 0 0
\(907\) 41.4725 1.37707 0.688536 0.725202i \(-0.258254\pi\)
0.688536 + 0.725202i \(0.258254\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 27.3284 15.7781i 0.905431 0.522751i 0.0264725 0.999650i \(-0.491573\pi\)
0.878958 + 0.476899i \(0.158239\pi\)
\(912\) 0 0
\(913\) −15.8859 + 9.17171i −0.525746 + 0.303539i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.8613 18.8803i 0.721924 0.623481i
\(918\) 0 0
\(919\) −23.5531 40.7951i −0.776944 1.34571i −0.933695 0.358069i \(-0.883435\pi\)
0.156751 0.987638i \(-0.449898\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.90345 + 11.9571i −0.227230 + 0.393574i
\(924\) 0 0
\(925\) 12.3679 + 21.4218i 0.406653 + 0.704344i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27.0468 + 46.8464i −0.887377 + 1.53698i −0.0444117 + 0.999013i \(0.514141\pi\)
−0.842965 + 0.537968i \(0.819192\pi\)
\(930\) 0 0
\(931\) 7.81169 + 19.6996i 0.256018 + 0.645628i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 19.1357 + 11.0480i 0.625805 + 0.361308i
\(936\) 0 0
\(937\) 52.2751i 1.70775i 0.520476 + 0.853876i \(0.325755\pi\)
−0.520476 + 0.853876i \(0.674245\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.1565 + 38.3761i 0.722280 + 1.25103i 0.960084 + 0.279712i \(0.0902390\pi\)
−0.237804 + 0.971313i \(0.576428\pi\)
\(942\) 0 0
\(943\) 44.9007 + 25.9234i 1.46217 + 0.844183i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.4036 16.3988i −0.922992 0.532890i −0.0384035 0.999262i \(-0.512227\pi\)
−0.884588 + 0.466373i \(0.845561\pi\)
\(948\) 0 0
\(949\) −25.0191 43.3343i −0.812153 1.40669i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.96162i 0.290295i 0.989410 + 0.145148i \(0.0463657\pi\)
−0.989410 + 0.145148i \(0.953634\pi\)
\(954\) 0 0
\(955\) 11.5843 + 6.68821i 0.374860 + 0.216425i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.8702 14.9023i −0.415601 0.481220i
\(960\) 0 0
\(961\) 7.47952 12.9549i 0.241275 0.417900i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −35.4535 61.4073i −1.14129 1.97677i
\(966\) 0 0
\(967\) 12.0234 20.8252i 0.386648 0.669694i −0.605348 0.795961i \(-0.706966\pi\)
0.991996 + 0.126267i \(0.0402995\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.25010 5.62934i −0.104301 0.180654i 0.809152 0.587600i \(-0.199927\pi\)
−0.913452 + 0.406946i \(0.866594\pi\)
\(972\) 0 0
\(973\) 42.8087 8.17793i 1.37238 0.262172i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.63263 + 4.40670i −0.244190 + 0.140983i −0.617101 0.786884i \(-0.711693\pi\)
0.372911 + 0.927867i \(0.378360\pi\)
\(978\) 0 0
\(979\) 12.9434 7.47288i 0.413673 0.238834i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −32.9116 −1.04972 −0.524859 0.851189i \(-0.675882\pi\)
−0.524859 + 0.851189i \(0.675882\pi\)
\(984\) 0 0
\(985\) 27.0142i 0.860745i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −42.8831 + 24.7585i −1.36360 + 0.787276i
\(990\) 0 0
\(991\) −8.84072 + 15.3126i −0.280835 + 0.486420i −0.971591 0.236668i \(-0.923945\pi\)
0.690756 + 0.723088i \(0.257278\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 44.8778 + 25.9102i 1.42272 + 0.821409i
\(996\) 0 0
\(997\) 38.7450i 1.22706i −0.789669 0.613532i \(-0.789748\pi\)
0.789669 0.613532i \(-0.210252\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.j.1025.14 32
3.2 odd 2 inner 2268.2.bm.j.1025.3 32
7.5 odd 6 2268.2.w.j.1349.14 32
9.2 odd 6 2268.2.w.j.269.14 32
9.4 even 3 2268.2.t.c.1781.3 32
9.5 odd 6 2268.2.t.c.1781.14 yes 32
9.7 even 3 2268.2.w.j.269.3 32
21.5 even 6 2268.2.w.j.1349.3 32
63.5 even 6 2268.2.t.c.2105.3 yes 32
63.40 odd 6 2268.2.t.c.2105.14 yes 32
63.47 even 6 inner 2268.2.bm.j.593.14 32
63.61 odd 6 inner 2268.2.bm.j.593.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.3 32 9.4 even 3
2268.2.t.c.1781.14 yes 32 9.5 odd 6
2268.2.t.c.2105.3 yes 32 63.5 even 6
2268.2.t.c.2105.14 yes 32 63.40 odd 6
2268.2.w.j.269.3 32 9.7 even 3
2268.2.w.j.269.14 32 9.2 odd 6
2268.2.w.j.1349.3 32 21.5 even 6
2268.2.w.j.1349.14 32 7.5 odd 6
2268.2.bm.j.593.3 32 63.61 odd 6 inner
2268.2.bm.j.593.14 32 63.47 even 6 inner
2268.2.bm.j.1025.3 32 3.2 odd 2 inner
2268.2.bm.j.1025.14 32 1.1 even 1 trivial