Properties

Label 2268.2.bm.j.593.3
Level $2268$
Weight $2$
Character 2268.593
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.3
Character \(\chi\) \(=\) 2268.593
Dual form 2268.2.bm.j.1025.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.86458 q^{5} +(-2.00236 - 1.72932i) q^{7} -1.25482i q^{11} +(-4.54703 + 2.62523i) q^{13} +(3.07356 + 5.32357i) q^{17} +(-2.62182 - 1.51371i) q^{19} -5.71702i q^{23} +3.20580 q^{25} +(3.23174 + 1.86584i) q^{29} +(-5.87105 - 3.38965i) q^{31} +(5.73592 + 4.95377i) q^{35} +(3.85796 - 6.68219i) q^{37} +(4.53443 + 7.85386i) q^{41} +(-4.33067 + 7.50094i) q^{43} +(2.97597 + 5.15454i) q^{47} +(1.01892 + 6.92545i) q^{49} +(7.17959 - 4.14514i) q^{53} +3.59453i q^{55} +(1.48584 - 2.57354i) q^{59} +(2.24837 - 1.29810i) q^{61} +(13.0253 - 7.52018i) q^{65} +(5.31994 - 9.21441i) q^{67} -2.62965i q^{71} +(8.25342 - 4.76512i) q^{73} +(-2.16998 + 2.51261i) q^{77} +(5.49170 + 9.51191i) q^{79} +(7.30919 - 12.6599i) q^{83} +(-8.80446 - 15.2498i) q^{85} +(-5.95534 + 10.3150i) q^{89} +(13.6447 + 2.60660i) q^{91} +(7.51040 + 4.33613i) q^{95} +(6.19217 + 3.57505i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} - 12 q^{13} + 32 q^{25} - 24 q^{31} - 4 q^{37} - 4 q^{43} - 16 q^{49} - 12 q^{61} + 4 q^{67} - 36 q^{73} + 28 q^{79} + 12 q^{85} - 36 q^{91} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.86458 −1.28108 −0.640539 0.767926i \(-0.721289\pi\)
−0.640539 + 0.767926i \(0.721289\pi\)
\(6\) 0 0
\(7\) −2.00236 1.72932i −0.756822 0.653621i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.25482i 0.378342i −0.981944 0.189171i \(-0.939420\pi\)
0.981944 0.189171i \(-0.0605801\pi\)
\(12\) 0 0
\(13\) −4.54703 + 2.62523i −1.26112 + 0.728108i −0.973291 0.229574i \(-0.926267\pi\)
−0.287829 + 0.957682i \(0.592933\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.07356 + 5.32357i 0.745448 + 1.29115i 0.949985 + 0.312295i \(0.101098\pi\)
−0.204537 + 0.978859i \(0.565569\pi\)
\(18\) 0 0
\(19\) −2.62182 1.51371i −0.601486 0.347268i 0.168140 0.985763i \(-0.446224\pi\)
−0.769626 + 0.638495i \(0.779557\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.71702i 1.19208i −0.802954 0.596041i \(-0.796740\pi\)
0.802954 0.596041i \(-0.203260\pi\)
\(24\) 0 0
\(25\) 3.20580 0.641161
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.23174 + 1.86584i 0.600118 + 0.346478i 0.769088 0.639143i \(-0.220711\pi\)
−0.168970 + 0.985621i \(0.554044\pi\)
\(30\) 0 0
\(31\) −5.87105 3.38965i −1.05447 0.608800i −0.130574 0.991439i \(-0.541682\pi\)
−0.923898 + 0.382639i \(0.875015\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.73592 + 4.95377i 0.969548 + 0.837339i
\(36\) 0 0
\(37\) 3.85796 6.68219i 0.634245 1.09854i −0.352429 0.935838i \(-0.614644\pi\)
0.986675 0.162706i \(-0.0520223\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.53443 + 7.85386i 0.708159 + 1.22657i 0.965539 + 0.260257i \(0.0838073\pi\)
−0.257380 + 0.966310i \(0.582859\pi\)
\(42\) 0 0
\(43\) −4.33067 + 7.50094i −0.660421 + 1.14388i 0.320084 + 0.947389i \(0.396289\pi\)
−0.980505 + 0.196494i \(0.937044\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.97597 + 5.15454i 0.434090 + 0.751866i 0.997221 0.0745015i \(-0.0237366\pi\)
−0.563131 + 0.826368i \(0.690403\pi\)
\(48\) 0 0
\(49\) 1.01892 + 6.92545i 0.145559 + 0.989350i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.17959 4.14514i 0.986193 0.569379i 0.0820587 0.996628i \(-0.473851\pi\)
0.904134 + 0.427249i \(0.140517\pi\)
\(54\) 0 0
\(55\) 3.59453i 0.484686i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.48584 2.57354i 0.193439 0.335047i −0.752948 0.658080i \(-0.771369\pi\)
0.946388 + 0.323033i \(0.104702\pi\)
\(60\) 0 0
\(61\) 2.24837 1.29810i 0.287874 0.166204i −0.349109 0.937082i \(-0.613516\pi\)
0.636983 + 0.770878i \(0.280182\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.0253 7.52018i 1.61559 0.932763i
\(66\) 0 0
\(67\) 5.31994 9.21441i 0.649934 1.12572i −0.333204 0.942855i \(-0.608130\pi\)
0.983138 0.182865i \(-0.0585370\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.62965i 0.312083i −0.987751 0.156041i \(-0.950127\pi\)
0.987751 0.156041i \(-0.0498733\pi\)
\(72\) 0 0
\(73\) 8.25342 4.76512i 0.965990 0.557715i 0.0679788 0.997687i \(-0.478345\pi\)
0.898011 + 0.439972i \(0.145012\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.16998 + 2.51261i −0.247293 + 0.286338i
\(78\) 0 0
\(79\) 5.49170 + 9.51191i 0.617865 + 1.07017i 0.989875 + 0.141944i \(0.0453354\pi\)
−0.372010 + 0.928229i \(0.621331\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.30919 12.6599i 0.802287 1.38960i −0.115820 0.993270i \(-0.536949\pi\)
0.918107 0.396332i \(-0.129717\pi\)
\(84\) 0 0
\(85\) −8.80446 15.2498i −0.954977 1.65407i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.95534 + 10.3150i −0.631265 + 1.09338i 0.356029 + 0.934475i \(0.384131\pi\)
−0.987293 + 0.158908i \(0.949203\pi\)
\(90\) 0 0
\(91\) 13.6447 + 2.60660i 1.43035 + 0.273246i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.51040 + 4.33613i 0.770551 + 0.444878i
\(96\) 0 0
\(97\) 6.19217 + 3.57505i 0.628720 + 0.362992i 0.780256 0.625460i \(-0.215089\pi\)
−0.151536 + 0.988452i \(0.548422\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.89419 0.287983 0.143991 0.989579i \(-0.454006\pi\)
0.143991 + 0.989579i \(0.454006\pi\)
\(102\) 0 0
\(103\) 6.44681i 0.635224i 0.948221 + 0.317612i \(0.102881\pi\)
−0.948221 + 0.317612i \(0.897119\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.4017 + 8.31483i 1.39227 + 0.803825i 0.993566 0.113256i \(-0.0361279\pi\)
0.398701 + 0.917081i \(0.369461\pi\)
\(108\) 0 0
\(109\) −1.54822 2.68159i −0.148292 0.256850i 0.782304 0.622897i \(-0.214044\pi\)
−0.930596 + 0.366047i \(0.880711\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.5691 + 8.41149i −1.37055 + 0.791286i −0.990997 0.133884i \(-0.957255\pi\)
−0.379551 + 0.925171i \(0.623922\pi\)
\(114\) 0 0
\(115\) 16.3769i 1.52715i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.05175 15.9749i 0.279754 1.46441i
\(120\) 0 0
\(121\) 9.42543 0.856857
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.13961 0.459701
\(126\) 0 0
\(127\) −10.9263 −0.969551 −0.484775 0.874639i \(-0.661099\pi\)
−0.484775 + 0.874639i \(0.661099\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.9178 0.953888 0.476944 0.878934i \(-0.341744\pi\)
0.476944 + 0.878934i \(0.341744\pi\)
\(132\) 0 0
\(133\) 2.63215 + 7.56495i 0.228236 + 0.655964i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.44236i 0.635844i 0.948117 + 0.317922i \(0.102985\pi\)
−0.948117 + 0.317922i \(0.897015\pi\)
\(138\) 0 0
\(139\) −14.2658 + 8.23638i −1.21001 + 0.698600i −0.962762 0.270352i \(-0.912860\pi\)
−0.247249 + 0.968952i \(0.579527\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.29419 + 5.70571i 0.275474 + 0.477135i
\(144\) 0 0
\(145\) −9.25756 5.34485i −0.768798 0.443866i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.7606i 1.29116i −0.763694 0.645578i \(-0.776616\pi\)
0.763694 0.645578i \(-0.223384\pi\)
\(150\) 0 0
\(151\) 0.678729 0.0552342 0.0276171 0.999619i \(-0.491208\pi\)
0.0276171 + 0.999619i \(0.491208\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.8181 + 9.70993i 1.35086 + 0.779920i
\(156\) 0 0
\(157\) 6.74094 + 3.89189i 0.537986 + 0.310606i 0.744262 0.667887i \(-0.232801\pi\)
−0.206276 + 0.978494i \(0.566135\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.88655 + 11.4476i −0.779169 + 0.902194i
\(162\) 0 0
\(163\) 3.80101 6.58354i 0.297718 0.515663i −0.677896 0.735158i \(-0.737108\pi\)
0.975613 + 0.219496i \(0.0704412\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.18568 + 3.78570i 0.169133 + 0.292947i 0.938115 0.346323i \(-0.112570\pi\)
−0.768982 + 0.639270i \(0.779237\pi\)
\(168\) 0 0
\(169\) 7.28368 12.6157i 0.560283 0.970438i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.70140 + 8.14307i 0.357441 + 0.619106i 0.987533 0.157415i \(-0.0503160\pi\)
−0.630092 + 0.776521i \(0.716983\pi\)
\(174\) 0 0
\(175\) −6.41919 5.54386i −0.485245 0.419076i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.06513 + 0.614954i −0.0796116 + 0.0459638i −0.539277 0.842128i \(-0.681303\pi\)
0.459666 + 0.888092i \(0.347969\pi\)
\(180\) 0 0
\(181\) 5.11079i 0.379882i −0.981795 0.189941i \(-0.939170\pi\)
0.981795 0.189941i \(-0.0608297\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −11.0514 + 19.1416i −0.812517 + 1.40732i
\(186\) 0 0
\(187\) 6.68012 3.85677i 0.488498 0.282035i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.04399 + 2.33480i −0.292613 + 0.168940i −0.639120 0.769107i \(-0.720701\pi\)
0.346507 + 0.938047i \(0.387368\pi\)
\(192\) 0 0
\(193\) −12.3765 + 21.4368i −0.890881 + 1.54305i −0.0520610 + 0.998644i \(0.516579\pi\)
−0.838821 + 0.544408i \(0.816754\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.43044i 0.671891i 0.941881 + 0.335946i \(0.109056\pi\)
−0.941881 + 0.335946i \(0.890944\pi\)
\(198\) 0 0
\(199\) 15.6665 9.04503i 1.11057 0.641185i 0.171590 0.985168i \(-0.445110\pi\)
0.938976 + 0.343983i \(0.111776\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.24447 9.32479i −0.227717 0.654472i
\(204\) 0 0
\(205\) −12.9892 22.4980i −0.907207 1.57133i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.89943 + 3.28991i −0.131386 + 0.227568i
\(210\) 0 0
\(211\) −9.16894 15.8811i −0.631216 1.09330i −0.987303 0.158845i \(-0.949223\pi\)
0.356088 0.934453i \(-0.384110\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.4055 21.4870i 0.846051 1.46540i
\(216\) 0 0
\(217\) 5.89419 + 16.9402i 0.400124 + 1.14998i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −27.9512 16.1376i −1.88020 1.08553i
\(222\) 0 0
\(223\) −6.78826 3.91920i −0.454576 0.262449i 0.255185 0.966892i \(-0.417864\pi\)
−0.709761 + 0.704443i \(0.751197\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.1759 −1.07363 −0.536816 0.843699i \(-0.680373\pi\)
−0.536816 + 0.843699i \(0.680373\pi\)
\(228\) 0 0
\(229\) 7.43757i 0.491488i −0.969335 0.245744i \(-0.920968\pi\)
0.969335 0.245744i \(-0.0790323\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.8568 + 11.4643i 1.30086 + 0.751051i 0.980551 0.196262i \(-0.0628803\pi\)
0.320308 + 0.947314i \(0.396214\pi\)
\(234\) 0 0
\(235\) −8.52491 14.7656i −0.556104 0.963200i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.8266 6.82808i 0.764998 0.441672i −0.0660893 0.997814i \(-0.521052\pi\)
0.831087 + 0.556142i \(0.187719\pi\)
\(240\) 0 0
\(241\) 8.13750i 0.524182i 0.965043 + 0.262091i \(0.0844121\pi\)
−0.965043 + 0.262091i \(0.915588\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.91876 19.8385i −0.186473 1.26743i
\(246\) 0 0
\(247\) 15.8953 1.01140
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.95828 −0.628561 −0.314281 0.949330i \(-0.601763\pi\)
−0.314281 + 0.949330i \(0.601763\pi\)
\(252\) 0 0
\(253\) −7.17383 −0.451015
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.4900 1.46526 0.732632 0.680625i \(-0.238292\pi\)
0.732632 + 0.680625i \(0.238292\pi\)
\(258\) 0 0
\(259\) −19.2807 + 6.70852i −1.19804 + 0.416847i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.35144i 0.329984i 0.986295 + 0.164992i \(0.0527598\pi\)
−0.986295 + 0.164992i \(0.947240\pi\)
\(264\) 0 0
\(265\) −20.5665 + 11.8741i −1.26339 + 0.729418i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.554894 + 0.961104i 0.0338325 + 0.0585995i 0.882446 0.470414i \(-0.155895\pi\)
−0.848613 + 0.529014i \(0.822562\pi\)
\(270\) 0 0
\(271\) 11.9571 + 6.90342i 0.726341 + 0.419353i 0.817082 0.576521i \(-0.195590\pi\)
−0.0907411 + 0.995875i \(0.528924\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.02271i 0.242578i
\(276\) 0 0
\(277\) −13.7231 −0.824543 −0.412271 0.911061i \(-0.635264\pi\)
−0.412271 + 0.911061i \(0.635264\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.4612 15.2774i −1.57854 0.911371i −0.995063 0.0992419i \(-0.968358\pi\)
−0.583478 0.812129i \(-0.698308\pi\)
\(282\) 0 0
\(283\) −12.7910 7.38491i −0.760349 0.438988i 0.0690722 0.997612i \(-0.477996\pi\)
−0.829421 + 0.558624i \(0.811329\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.50225 23.5678i 0.265760 1.39116i
\(288\) 0 0
\(289\) −10.3936 + 18.0022i −0.611386 + 1.05895i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.721612 + 1.24987i 0.0421570 + 0.0730181i 0.886334 0.463046i \(-0.153244\pi\)
−0.844177 + 0.536065i \(0.819910\pi\)
\(294\) 0 0
\(295\) −4.25629 + 7.37212i −0.247811 + 0.429221i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.0085 + 25.9955i 0.867964 + 1.50336i
\(300\) 0 0
\(301\) 21.6431 7.53050i 1.24749 0.434051i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.44063 + 3.71850i −0.368789 + 0.212921i
\(306\) 0 0
\(307\) 21.8901i 1.24933i 0.780891 + 0.624667i \(0.214765\pi\)
−0.780891 + 0.624667i \(0.785235\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.25630 + 9.10417i −0.298057 + 0.516250i −0.975691 0.219149i \(-0.929672\pi\)
0.677634 + 0.735399i \(0.263005\pi\)
\(312\) 0 0
\(313\) 2.85633 1.64910i 0.161449 0.0932127i −0.417099 0.908861i \(-0.636953\pi\)
0.578548 + 0.815649i \(0.303620\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.6051 10.7416i 1.04496 0.603311i 0.123729 0.992316i \(-0.460515\pi\)
0.921236 + 0.389005i \(0.127181\pi\)
\(318\) 0 0
\(319\) 2.34130 4.05525i 0.131087 0.227050i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18.6099i 1.03548i
\(324\) 0 0
\(325\) −14.5769 + 8.41598i −0.808581 + 0.466835i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.95486 15.4677i 0.162906 0.852760i
\(330\) 0 0
\(331\) −8.49354 14.7112i −0.466847 0.808603i 0.532436 0.846470i \(-0.321277\pi\)
−0.999283 + 0.0378676i \(0.987943\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.2394 + 26.3954i −0.832617 + 1.44213i
\(336\) 0 0
\(337\) 9.03282 + 15.6453i 0.492049 + 0.852254i 0.999958 0.00915682i \(-0.00291475\pi\)
−0.507909 + 0.861411i \(0.669581\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.25341 + 7.36712i −0.230335 + 0.398952i
\(342\) 0 0
\(343\) 9.93606 15.6293i 0.536497 0.843902i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.7199 + 13.6947i 1.27335 + 0.735169i 0.975617 0.219480i \(-0.0704360\pi\)
0.297734 + 0.954649i \(0.403769\pi\)
\(348\) 0 0
\(349\) 19.9926 + 11.5427i 1.07018 + 0.617869i 0.928231 0.372005i \(-0.121329\pi\)
0.141950 + 0.989874i \(0.454663\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.7318 −1.05022 −0.525110 0.851034i \(-0.675976\pi\)
−0.525110 + 0.851034i \(0.675976\pi\)
\(354\) 0 0
\(355\) 7.53285i 0.399802i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −30.7577 17.7579i −1.62333 0.937228i −0.986022 0.166617i \(-0.946716\pi\)
−0.637305 0.770611i \(-0.719951\pi\)
\(360\) 0 0
\(361\) −4.91738 8.51715i −0.258809 0.448271i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −23.6426 + 13.6500i −1.23751 + 0.714476i
\(366\) 0 0
\(367\) 22.6970i 1.18477i −0.805654 0.592386i \(-0.798186\pi\)
0.805654 0.592386i \(-0.201814\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −21.5444 4.11573i −1.11853 0.213678i
\(372\) 0 0
\(373\) 14.4653 0.748983 0.374492 0.927230i \(-0.377817\pi\)
0.374492 + 0.927230i \(0.377817\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −19.5931 −1.00909
\(378\) 0 0
\(379\) 27.2141 1.39790 0.698948 0.715173i \(-0.253652\pi\)
0.698948 + 0.715173i \(0.253652\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.8278 1.77962 0.889810 0.456331i \(-0.150837\pi\)
0.889810 + 0.456331i \(0.150837\pi\)
\(384\) 0 0
\(385\) 6.21608 7.19755i 0.316801 0.366821i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.04173i 0.103520i 0.998660 + 0.0517600i \(0.0164831\pi\)
−0.998660 + 0.0517600i \(0.983517\pi\)
\(390\) 0 0
\(391\) 30.4349 17.5716i 1.53916 0.888635i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.7314 27.2476i −0.791533 1.37098i
\(396\) 0 0
\(397\) −26.9678 15.5699i −1.35348 0.781430i −0.364742 0.931108i \(-0.618843\pi\)
−0.988735 + 0.149678i \(0.952176\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.0195i 0.650164i −0.945686 0.325082i \(-0.894608\pi\)
0.945686 0.325082i \(-0.105392\pi\)
\(402\) 0 0
\(403\) 35.5945 1.77309
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.38494 4.84105i −0.415626 0.239962i
\(408\) 0 0
\(409\) 10.9054 + 6.29621i 0.539236 + 0.311328i 0.744769 0.667322i \(-0.232560\pi\)
−0.205534 + 0.978650i \(0.565893\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.42566 + 2.58369i −0.365393 + 0.127135i
\(414\) 0 0
\(415\) −20.9377 + 36.2652i −1.02779 + 1.78019i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.76463 + 11.7167i 0.330474 + 0.572398i 0.982605 0.185709i \(-0.0594581\pi\)
−0.652131 + 0.758106i \(0.726125\pi\)
\(420\) 0 0
\(421\) −1.48749 + 2.57641i −0.0724959 + 0.125567i −0.899995 0.435901i \(-0.856430\pi\)
0.827499 + 0.561468i \(0.189763\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.85324 + 17.0663i 0.477952 + 0.827838i
\(426\) 0 0
\(427\) −6.74687 1.28889i −0.326504 0.0623735i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.94179 + 5.16254i −0.430711 + 0.248671i −0.699649 0.714486i \(-0.746660\pi\)
0.268939 + 0.963157i \(0.413327\pi\)
\(432\) 0 0
\(433\) 10.9117i 0.524384i −0.965016 0.262192i \(-0.915555\pi\)
0.965016 0.262192i \(-0.0844453\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.65390 + 14.9890i −0.413972 + 0.717021i
\(438\) 0 0
\(439\) 10.1562 5.86369i 0.484729 0.279859i −0.237656 0.971349i \(-0.576379\pi\)
0.722385 + 0.691491i \(0.243046\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.1605 17.4131i 1.43297 0.827324i 0.435621 0.900130i \(-0.356529\pi\)
0.997346 + 0.0728067i \(0.0231956\pi\)
\(444\) 0 0
\(445\) 17.0595 29.5480i 0.808699 1.40071i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.37875i 0.206646i 0.994648 + 0.103323i \(0.0329475\pi\)
−0.994648 + 0.103323i \(0.967052\pi\)
\(450\) 0 0
\(451\) 9.85518 5.68989i 0.464062 0.267927i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −39.0862 7.46682i −1.83239 0.350050i
\(456\) 0 0
\(457\) −3.63140 6.28977i −0.169870 0.294223i 0.768504 0.639845i \(-0.221001\pi\)
−0.938374 + 0.345622i \(0.887668\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.94968 + 10.3051i −0.277104 + 0.479958i −0.970664 0.240441i \(-0.922708\pi\)
0.693560 + 0.720399i \(0.256041\pi\)
\(462\) 0 0
\(463\) 13.7464 + 23.8094i 0.638847 + 1.10652i 0.985686 + 0.168591i \(0.0539217\pi\)
−0.346839 + 0.937925i \(0.612745\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.57357 2.72550i 0.0728161 0.126121i −0.827318 0.561733i \(-0.810135\pi\)
0.900134 + 0.435612i \(0.143468\pi\)
\(468\) 0 0
\(469\) −26.5871 + 9.25072i −1.22768 + 0.427159i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.41233 + 5.43421i 0.432780 + 0.249865i
\(474\) 0 0
\(475\) −8.40504 4.85265i −0.385650 0.222655i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −39.4926 −1.80446 −0.902231 0.431253i \(-0.858071\pi\)
−0.902231 + 0.431253i \(0.858071\pi\)
\(480\) 0 0
\(481\) 40.5122i 1.84720i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.7380 10.2410i −0.805439 0.465021i
\(486\) 0 0
\(487\) 16.1647 + 27.9980i 0.732490 + 1.26871i 0.955816 + 0.293966i \(0.0949754\pi\)
−0.223326 + 0.974744i \(0.571691\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.4585 + 7.19290i −0.562242 + 0.324611i −0.754045 0.656823i \(-0.771900\pi\)
0.191803 + 0.981434i \(0.438567\pi\)
\(492\) 0 0
\(493\) 22.9391i 1.03313i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.54751 + 5.26552i −0.203984 + 0.236191i
\(498\) 0 0
\(499\) 41.6827 1.86597 0.932987 0.359911i \(-0.117193\pi\)
0.932987 + 0.359911i \(0.117193\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.4755 −0.556256 −0.278128 0.960544i \(-0.589714\pi\)
−0.278128 + 0.960544i \(0.589714\pi\)
\(504\) 0 0
\(505\) −8.29063 −0.368928
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −27.7147 −1.22843 −0.614217 0.789137i \(-0.710528\pi\)
−0.614217 + 0.789137i \(0.710528\pi\)
\(510\) 0 0
\(511\) −24.7668 4.73130i −1.09562 0.209301i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.4674i 0.813771i
\(516\) 0 0
\(517\) 6.46801 3.73431i 0.284463 0.164235i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.0961 20.9510i −0.529938 0.917880i −0.999390 0.0349216i \(-0.988882\pi\)
0.469452 0.882958i \(-0.344451\pi\)
\(522\) 0 0
\(523\) −20.8779 12.0539i −0.912927 0.527078i −0.0315550 0.999502i \(-0.510046\pi\)
−0.881372 + 0.472424i \(0.843379\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 41.6733i 1.81532i
\(528\) 0 0
\(529\) −9.68434 −0.421058
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −41.2364 23.8078i −1.78615 1.03123i
\(534\) 0 0
\(535\) −41.2548 23.8185i −1.78360 1.02976i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.69019 1.27856i 0.374313 0.0550713i
\(540\) 0 0
\(541\) −20.2072 + 34.9999i −0.868775 + 1.50476i −0.00552468 + 0.999985i \(0.501759\pi\)
−0.863250 + 0.504777i \(0.831575\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.43499 + 7.68163i 0.189974 + 0.329045i
\(546\) 0 0
\(547\) −11.1424 + 19.2992i −0.476415 + 0.825175i −0.999635 0.0270226i \(-0.991397\pi\)
0.523220 + 0.852198i \(0.324731\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.64868 9.78380i −0.240642 0.416804i
\(552\) 0 0
\(553\) 5.45273 28.5432i 0.231874 1.21378i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.1768 + 13.3811i −0.982031 + 0.566976i −0.902883 0.429887i \(-0.858553\pi\)
−0.0791483 + 0.996863i \(0.525220\pi\)
\(558\) 0 0
\(559\) 45.4761i 1.92343i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.04743 15.6706i 0.381304 0.660438i −0.609945 0.792444i \(-0.708808\pi\)
0.991249 + 0.132006i \(0.0421418\pi\)
\(564\) 0 0
\(565\) 41.7344 24.0954i 1.75578 1.01370i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.3851 + 11.7693i −0.854588 + 0.493396i −0.862196 0.506575i \(-0.830911\pi\)
0.00760850 + 0.999971i \(0.497578\pi\)
\(570\) 0 0
\(571\) −6.19412 + 10.7285i −0.259216 + 0.448975i −0.966032 0.258422i \(-0.916797\pi\)
0.706816 + 0.707397i \(0.250131\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.3277i 0.764316i
\(576\) 0 0
\(577\) 9.61514 5.55131i 0.400284 0.231104i −0.286323 0.958133i \(-0.592433\pi\)
0.686606 + 0.727029i \(0.259100\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −36.5286 + 12.7098i −1.51546 + 0.527290i
\(582\) 0 0
\(583\) −5.20140 9.00909i −0.215420 0.373119i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.8238 + 34.3358i −0.818215 + 1.41719i 0.0887810 + 0.996051i \(0.471703\pi\)
−0.906996 + 0.421139i \(0.861630\pi\)
\(588\) 0 0
\(589\) 10.2619 + 17.7741i 0.422834 + 0.732370i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.9778 + 24.2102i −0.573998 + 0.994194i 0.422151 + 0.906525i \(0.361275\pi\)
−0.996150 + 0.0876691i \(0.972058\pi\)
\(594\) 0 0
\(595\) −8.74198 + 45.7613i −0.358386 + 1.87603i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.2868 + 14.5993i 1.03319 + 0.596513i 0.917897 0.396818i \(-0.129886\pi\)
0.115294 + 0.993331i \(0.463219\pi\)
\(600\) 0 0
\(601\) −12.9722 7.48950i −0.529147 0.305503i 0.211522 0.977373i \(-0.432158\pi\)
−0.740669 + 0.671870i \(0.765491\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −26.9999 −1.09770
\(606\) 0 0
\(607\) 24.3659i 0.988982i 0.869183 + 0.494491i \(0.164645\pi\)
−0.869183 + 0.494491i \(0.835355\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27.0637 15.6252i −1.09488 0.632129i
\(612\) 0 0
\(613\) 10.9343 + 18.9387i 0.441631 + 0.764927i 0.997811 0.0661347i \(-0.0210667\pi\)
−0.556180 + 0.831062i \(0.687733\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.7489 20.6396i 1.43920 0.830921i 0.441403 0.897309i \(-0.354481\pi\)
0.997794 + 0.0663885i \(0.0211477\pi\)
\(618\) 0 0
\(619\) 40.8583i 1.64223i −0.570760 0.821117i \(-0.693351\pi\)
0.570760 0.821117i \(-0.306649\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 29.7626 10.3556i 1.19241 0.414888i
\(624\) 0 0
\(625\) −30.7518 −1.23007
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.4307 1.89119
\(630\) 0 0
\(631\) 26.4215 1.05182 0.525911 0.850540i \(-0.323725\pi\)
0.525911 + 0.850540i \(0.323725\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 31.2992 1.24207
\(636\) 0 0
\(637\) −22.8139 28.8153i −0.903921 1.14171i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.8689i 1.37724i 0.725124 + 0.688619i \(0.241783\pi\)
−0.725124 + 0.688619i \(0.758217\pi\)
\(642\) 0 0
\(643\) 23.2658 13.4325i 0.917514 0.529727i 0.0346728 0.999399i \(-0.488961\pi\)
0.882841 + 0.469672i \(0.155628\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.988791 + 1.71264i 0.0388734 + 0.0673306i 0.884807 0.465957i \(-0.154290\pi\)
−0.845934 + 0.533287i \(0.820956\pi\)
\(648\) 0 0
\(649\) −3.22933 1.86446i −0.126762 0.0731863i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.1457i 0.788363i −0.919033 0.394182i \(-0.871028\pi\)
0.919033 0.394182i \(-0.128972\pi\)
\(654\) 0 0
\(655\) −31.2747 −1.22201
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.9901 + 11.5413i 0.778706 + 0.449586i 0.835971 0.548773i \(-0.184905\pi\)
−0.0572657 + 0.998359i \(0.518238\pi\)
\(660\) 0 0
\(661\) 2.42515 + 1.40016i 0.0943273 + 0.0544599i 0.546422 0.837510i \(-0.315990\pi\)
−0.452094 + 0.891970i \(0.649323\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.54000 21.6704i −0.292389 0.840342i
\(666\) 0 0
\(667\) 10.6671 18.4759i 0.413030 0.715390i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.62888 2.82130i −0.0628821 0.108915i
\(672\) 0 0
\(673\) 16.3481 28.3158i 0.630173 1.09149i −0.357343 0.933973i \(-0.616317\pi\)
0.987516 0.157519i \(-0.0503496\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.7293 + 39.3684i 0.873559 + 1.51305i 0.858290 + 0.513166i \(0.171527\pi\)
0.0152697 + 0.999883i \(0.495139\pi\)
\(678\) 0 0
\(679\) −6.21658 17.8668i −0.238570 0.685665i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 43.2107 24.9477i 1.65341 0.954598i 0.677757 0.735286i \(-0.262952\pi\)
0.975655 0.219312i \(-0.0703811\pi\)
\(684\) 0 0
\(685\) 21.3192i 0.814565i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.7639 + 37.6962i −0.829138 + 1.43611i
\(690\) 0 0
\(691\) −27.1274 + 15.6620i −1.03198 + 0.595812i −0.917550 0.397620i \(-0.869836\pi\)
−0.114426 + 0.993432i \(0.536503\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 40.8655 23.5937i 1.55012 0.894961i
\(696\) 0 0
\(697\) −27.8737 + 48.2787i −1.05579 + 1.82868i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.3593i 0.504576i −0.967652 0.252288i \(-0.918817\pi\)
0.967652 0.252288i \(-0.0811829\pi\)
\(702\) 0 0
\(703\) −20.2298 + 11.6797i −0.762980 + 0.440506i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.79522 5.00497i −0.217952 0.188231i
\(708\) 0 0
\(709\) −15.9513 27.6284i −0.599062 1.03761i −0.992960 0.118452i \(-0.962207\pi\)
0.393897 0.919154i \(-0.371127\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −19.3787 + 33.5649i −0.725739 + 1.25702i
\(714\) 0 0
\(715\) −9.43647 16.3444i −0.352904 0.611248i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.82338 8.35434i 0.179882 0.311564i −0.761958 0.647626i \(-0.775762\pi\)
0.941840 + 0.336062i \(0.109095\pi\)
\(720\) 0 0
\(721\) 11.1486 12.9089i 0.415195 0.480751i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.3603 + 5.98153i 0.384772 + 0.222148i
\(726\) 0 0
\(727\) 33.3713 + 19.2670i 1.23767 + 0.714572i 0.968618 0.248553i \(-0.0799550\pi\)
0.269056 + 0.963125i \(0.413288\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −53.2424 −1.96924
\(732\) 0 0
\(733\) 17.8259i 0.658414i 0.944258 + 0.329207i \(0.106781\pi\)
−0.944258 + 0.329207i \(0.893219\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.5624 6.67557i −0.425907 0.245898i
\(738\) 0 0
\(739\) 4.27651 + 7.40713i 0.157314 + 0.272476i 0.933899 0.357536i \(-0.116383\pi\)
−0.776585 + 0.630012i \(0.783050\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.5617 8.40718i 0.534216 0.308430i −0.208516 0.978019i \(-0.566863\pi\)
0.742731 + 0.669589i \(0.233530\pi\)
\(744\) 0 0
\(745\) 45.1474i 1.65407i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −14.4585 41.5545i −0.528301 1.51837i
\(750\) 0 0
\(751\) −42.6126 −1.55496 −0.777478 0.628910i \(-0.783501\pi\)
−0.777478 + 0.628910i \(0.783501\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.94427 −0.0707593
\(756\) 0 0
\(757\) 8.97784 0.326305 0.163153 0.986601i \(-0.447834\pi\)
0.163153 + 0.986601i \(0.447834\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.9019 1.44644 0.723222 0.690616i \(-0.242660\pi\)
0.723222 + 0.690616i \(0.242660\pi\)
\(762\) 0 0
\(763\) −1.53723 + 8.04689i −0.0556516 + 0.291317i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.6027i 0.563379i
\(768\) 0 0
\(769\) 8.21315 4.74186i 0.296174 0.170996i −0.344549 0.938768i \(-0.611968\pi\)
0.640723 + 0.767772i \(0.278635\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.60509 + 11.4403i 0.237568 + 0.411481i 0.960016 0.279945i \(-0.0903163\pi\)
−0.722448 + 0.691426i \(0.756983\pi\)
\(774\) 0 0
\(775\) −18.8215 10.8666i −0.676087 0.390339i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.4552i 0.983685i
\(780\) 0 0
\(781\) −3.29974 −0.118074
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −19.3100 11.1486i −0.689202 0.397911i
\(786\) 0 0
\(787\) 6.91018 + 3.98960i 0.246321 + 0.142214i 0.618079 0.786116i \(-0.287911\pi\)
−0.371757 + 0.928330i \(0.621245\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 43.7188 + 8.35180i 1.55446 + 0.296956i
\(792\) 0 0
\(793\) −6.81561 + 11.8050i −0.242029 + 0.419207i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.7204 32.4247i −0.663110 1.14854i −0.979794 0.200009i \(-0.935903\pi\)
0.316684 0.948531i \(-0.397431\pi\)
\(798\) 0 0
\(799\) −18.2937 + 31.6856i −0.647184 + 1.12095i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.97936 10.3566i −0.211007 0.365475i
\(804\) 0 0
\(805\) 28.3208 32.7924i 0.998177 1.15578i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.0001 + 6.92824i −0.421900 + 0.243584i −0.695890 0.718149i \(-0.744990\pi\)
0.273990 + 0.961733i \(0.411656\pi\)
\(810\) 0 0
\(811\) 17.6343i 0.619223i 0.950863 + 0.309611i \(0.100199\pi\)
−0.950863 + 0.309611i \(0.899801\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.8883 + 18.8591i −0.381400 + 0.660604i
\(816\) 0 0
\(817\) 22.7085 13.1107i 0.794469 0.458687i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.6604 24.6300i 1.48886 0.859593i 0.488940 0.872318i \(-0.337384\pi\)
0.999919 + 0.0127244i \(0.00405042\pi\)
\(822\) 0 0
\(823\) 17.2854 29.9392i 0.602530 1.04361i −0.389906 0.920855i \(-0.627493\pi\)
0.992437 0.122759i \(-0.0391741\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.2579i 1.57377i 0.617099 + 0.786886i \(0.288308\pi\)
−0.617099 + 0.786886i \(0.711692\pi\)
\(828\) 0 0
\(829\) 8.17327 4.71884i 0.283869 0.163892i −0.351305 0.936261i \(-0.614262\pi\)
0.635174 + 0.772369i \(0.280928\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −33.7364 + 26.7101i −1.16890 + 0.925449i
\(834\) 0 0
\(835\) −6.26104 10.8444i −0.216672 0.375287i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.30587 + 3.99389i −0.0796075 + 0.137884i −0.903081 0.429471i \(-0.858700\pi\)
0.823473 + 0.567355i \(0.192033\pi\)
\(840\) 0 0
\(841\) −7.53726 13.0549i −0.259905 0.450169i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −20.8647 + 36.1386i −0.717766 + 1.24321i
\(846\) 0 0
\(847\) −18.8731 16.2996i −0.648488 0.560060i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38.2022 22.0561i −1.30955 0.756072i
\(852\) 0 0
\(853\) −39.9304 23.0538i −1.36719 0.789348i −0.376623 0.926367i \(-0.622915\pi\)
−0.990568 + 0.137019i \(0.956248\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 43.5523 1.48772 0.743859 0.668336i \(-0.232993\pi\)
0.743859 + 0.668336i \(0.232993\pi\)
\(858\) 0 0
\(859\) 15.5165i 0.529418i 0.964328 + 0.264709i \(0.0852758\pi\)
−0.964328 + 0.264709i \(0.914724\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.3098 + 8.83910i 0.521151 + 0.300887i 0.737405 0.675450i \(-0.236051\pi\)
−0.216255 + 0.976337i \(0.569384\pi\)
\(864\) 0 0
\(865\) −13.4675 23.3264i −0.457910 0.793123i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.9357 6.89110i 0.404892 0.233764i
\(870\) 0 0
\(871\) 55.8643i 1.89289i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.2914 8.88802i −0.347912 0.300470i
\(876\) 0 0
\(877\) 15.0758 0.509074 0.254537 0.967063i \(-0.418077\pi\)
0.254537 + 0.967063i \(0.418077\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.9248 0.502830 0.251415 0.967879i \(-0.419104\pi\)
0.251415 + 0.967879i \(0.419104\pi\)
\(882\) 0 0
\(883\) 19.8737 0.668802 0.334401 0.942431i \(-0.391466\pi\)
0.334401 + 0.942431i \(0.391466\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.61689 0.322903 0.161452 0.986881i \(-0.448382\pi\)
0.161452 + 0.986881i \(0.448382\pi\)
\(888\) 0 0
\(889\) 21.8784 + 18.8950i 0.733777 + 0.633719i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.0190i 0.602983i
\(894\) 0 0
\(895\) 3.05115 1.76158i 0.101989 0.0588832i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.6491 21.9089i −0.421872 0.730704i
\(900\) 0 0
\(901\) 44.1338 + 25.4807i 1.47031 + 0.848885i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.6403i 0.486659i
\(906\) 0 0
\(907\) 41.4725 1.37707 0.688536 0.725202i \(-0.258254\pi\)
0.688536 + 0.725202i \(0.258254\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −27.3284 15.7781i −0.905431 0.522751i −0.0264725 0.999650i \(-0.508427\pi\)
−0.878958 + 0.476899i \(0.841761\pi\)
\(912\) 0 0
\(913\) −15.8859 9.17171i −0.525746 0.303539i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −21.8613 18.8803i −0.721924 0.623481i
\(918\) 0 0
\(919\) −23.5531 + 40.7951i −0.776944 + 1.34571i 0.156751 + 0.987638i \(0.449898\pi\)
−0.933695 + 0.358069i \(0.883435\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.90345 + 11.9571i 0.227230 + 0.393574i
\(924\) 0 0
\(925\) 12.3679 21.4218i 0.406653 0.704344i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27.0468 + 46.8464i 0.887377 + 1.53698i 0.842965 + 0.537968i \(0.180808\pi\)
0.0444117 + 0.999013i \(0.485859\pi\)
\(930\) 0 0
\(931\) 7.81169 19.6996i 0.256018 0.645628i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −19.1357 + 11.0480i −0.625805 + 0.361308i
\(936\) 0 0
\(937\) 52.2751i 1.70775i −0.520476 0.853876i \(-0.674245\pi\)
0.520476 0.853876i \(-0.325755\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −22.1565 + 38.3761i −0.722280 + 1.25103i 0.237804 + 0.971313i \(0.423572\pi\)
−0.960084 + 0.279712i \(0.909761\pi\)
\(942\) 0 0
\(943\) 44.9007 25.9234i 1.46217 0.844183i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.4036 16.3988i 0.922992 0.532890i 0.0384035 0.999262i \(-0.487773\pi\)
0.884588 + 0.466373i \(0.154439\pi\)
\(948\) 0 0
\(949\) −25.0191 + 43.3343i −0.812153 + 1.40669i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.96162i 0.290295i 0.989410 + 0.145148i \(0.0463657\pi\)
−0.989410 + 0.145148i \(0.953634\pi\)
\(954\) 0 0
\(955\) 11.5843 6.68821i 0.374860 0.216425i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.8702 14.9023i 0.415601 0.481220i
\(960\) 0 0
\(961\) 7.47952 + 12.9549i 0.241275 + 0.417900i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 35.4535 61.4073i 1.14129 1.97677i
\(966\) 0 0
\(967\) 12.0234 + 20.8252i 0.386648 + 0.669694i 0.991996 0.126267i \(-0.0402995\pi\)
−0.605348 + 0.795961i \(0.706966\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.25010 5.62934i 0.104301 0.180654i −0.809152 0.587600i \(-0.800073\pi\)
0.913452 + 0.406946i \(0.133406\pi\)
\(972\) 0 0
\(973\) 42.8087 + 8.17793i 1.37238 + 0.262172i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.63263 + 4.40670i 0.244190 + 0.140983i 0.617101 0.786884i \(-0.288307\pi\)
−0.372911 + 0.927867i \(0.621640\pi\)
\(978\) 0 0
\(979\) 12.9434 + 7.47288i 0.413673 + 0.238834i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.9116 1.04972 0.524859 0.851189i \(-0.324118\pi\)
0.524859 + 0.851189i \(0.324118\pi\)
\(984\) 0 0
\(985\) 27.0142i 0.860745i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 42.8831 + 24.7585i 1.36360 + 0.787276i
\(990\) 0 0
\(991\) −8.84072 15.3126i −0.280835 0.486420i 0.690756 0.723088i \(-0.257278\pi\)
−0.971591 + 0.236668i \(0.923945\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −44.8778 + 25.9102i −1.42272 + 0.821409i
\(996\) 0 0
\(997\) 38.7450i 1.22706i 0.789669 + 0.613532i \(0.210252\pi\)
−0.789669 + 0.613532i \(0.789748\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.j.593.3 32
3.2 odd 2 inner 2268.2.bm.j.593.14 32
7.3 odd 6 2268.2.w.j.269.3 32
9.2 odd 6 2268.2.t.c.2105.3 yes 32
9.4 even 3 2268.2.w.j.1349.14 32
9.5 odd 6 2268.2.w.j.1349.3 32
9.7 even 3 2268.2.t.c.2105.14 yes 32
21.17 even 6 2268.2.w.j.269.14 32
63.31 odd 6 inner 2268.2.bm.j.1025.14 32
63.38 even 6 2268.2.t.c.1781.14 yes 32
63.52 odd 6 2268.2.t.c.1781.3 32
63.59 even 6 inner 2268.2.bm.j.1025.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.3 32 63.52 odd 6
2268.2.t.c.1781.14 yes 32 63.38 even 6
2268.2.t.c.2105.3 yes 32 9.2 odd 6
2268.2.t.c.2105.14 yes 32 9.7 even 3
2268.2.w.j.269.3 32 7.3 odd 6
2268.2.w.j.269.14 32 21.17 even 6
2268.2.w.j.1349.3 32 9.5 odd 6
2268.2.w.j.1349.14 32 9.4 even 3
2268.2.bm.j.593.3 32 1.1 even 1 trivial
2268.2.bm.j.593.14 32 3.2 odd 2 inner
2268.2.bm.j.1025.3 32 63.59 even 6 inner
2268.2.bm.j.1025.14 32 63.31 odd 6 inner