Properties

Label 2254.2.a.x.1.2
Level $2254$
Weight $2$
Character 2254.1
Self dual yes
Analytic conductor $17.998$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 226792884 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2254,2,Mod(1,2254)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2254.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2254, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-3,4,-7,-3,0,4,-1,-7,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.9982806156\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.693822\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.74747 q^{3} +1.00000 q^{4} -4.26608 q^{5} -1.74747 q^{6} +1.00000 q^{8} +0.0536460 q^{9} -4.26608 q^{10} +3.18876 q^{11} -1.74747 q^{12} +4.60948 q^{13} +7.45484 q^{15} +1.00000 q^{16} -3.15879 q^{17} +0.0536460 q^{18} +4.53631 q^{19} -4.26608 q^{20} +3.18876 q^{22} -1.00000 q^{23} -1.74747 q^{24} +13.1994 q^{25} +4.60948 q^{26} +5.14866 q^{27} -3.70737 q^{29} +7.45484 q^{30} -3.23611 q^{31} +1.00000 q^{32} -5.57226 q^{33} -3.15879 q^{34} +0.0536460 q^{36} -7.24655 q^{37} +4.53631 q^{38} -8.05492 q^{39} -4.26608 q^{40} -5.11454 q^{41} -2.29605 q^{43} +3.18876 q^{44} -0.228858 q^{45} -1.00000 q^{46} -5.69797 q^{47} -1.74747 q^{48} +13.1994 q^{50} +5.51988 q^{51} +4.60948 q^{52} -12.1994 q^{53} +5.14866 q^{54} -13.6035 q^{55} -7.92705 q^{57} -3.70737 q^{58} -0.918533 q^{59} +7.45484 q^{60} -13.4890 q^{61} -3.23611 q^{62} +1.00000 q^{64} -19.6644 q^{65} -5.57226 q^{66} +4.75576 q^{67} -3.15879 q^{68} +1.74747 q^{69} +3.61960 q^{71} +0.0536460 q^{72} +13.3705 q^{73} -7.24655 q^{74} -23.0656 q^{75} +4.53631 q^{76} -8.05492 q^{78} -7.42072 q^{79} -4.26608 q^{80} -9.15806 q^{81} -5.11454 q^{82} +9.36524 q^{83} +13.4756 q^{85} -2.29605 q^{86} +6.47851 q^{87} +3.18876 q^{88} +5.22310 q^{89} -0.228858 q^{90} -1.00000 q^{92} +5.65499 q^{93} -5.69797 q^{94} -19.3522 q^{95} -1.74747 q^{96} +5.74459 q^{97} +0.171064 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 3 q^{3} + 4 q^{4} - 7 q^{5} - 3 q^{6} + 4 q^{8} - q^{9} - 7 q^{10} + 2 q^{11} - 3 q^{12} - q^{13} + 9 q^{15} + 4 q^{16} - 5 q^{17} - q^{18} - 11 q^{19} - 7 q^{20} + 2 q^{22} - 4 q^{23}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.74747 −1.00890 −0.504451 0.863441i \(-0.668305\pi\)
−0.504451 + 0.863441i \(0.668305\pi\)
\(4\) 1.00000 0.500000
\(5\) −4.26608 −1.90785 −0.953924 0.300048i \(-0.902997\pi\)
−0.953924 + 0.300048i \(0.902997\pi\)
\(6\) −1.74747 −0.713401
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0.0536460 0.0178820
\(10\) −4.26608 −1.34905
\(11\) 3.18876 0.961447 0.480724 0.876872i \(-0.340374\pi\)
0.480724 + 0.876872i \(0.340374\pi\)
\(12\) −1.74747 −0.504451
\(13\) 4.60948 1.27844 0.639219 0.769024i \(-0.279258\pi\)
0.639219 + 0.769024i \(0.279258\pi\)
\(14\) 0 0
\(15\) 7.45484 1.92483
\(16\) 1.00000 0.250000
\(17\) −3.15879 −0.766118 −0.383059 0.923724i \(-0.625129\pi\)
−0.383059 + 0.923724i \(0.625129\pi\)
\(18\) 0.0536460 0.0126445
\(19\) 4.53631 1.04070 0.520350 0.853953i \(-0.325802\pi\)
0.520350 + 0.853953i \(0.325802\pi\)
\(20\) −4.26608 −0.953924
\(21\) 0 0
\(22\) 3.18876 0.679846
\(23\) −1.00000 −0.208514
\(24\) −1.74747 −0.356701
\(25\) 13.1994 2.63989
\(26\) 4.60948 0.903993
\(27\) 5.14866 0.990860
\(28\) 0 0
\(29\) −3.70737 −0.688441 −0.344221 0.938889i \(-0.611857\pi\)
−0.344221 + 0.938889i \(0.611857\pi\)
\(30\) 7.45484 1.36106
\(31\) −3.23611 −0.581222 −0.290611 0.956841i \(-0.593859\pi\)
−0.290611 + 0.956841i \(0.593859\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.57226 −0.970005
\(34\) −3.15879 −0.541727
\(35\) 0 0
\(36\) 0.0536460 0.00894100
\(37\) −7.24655 −1.19133 −0.595663 0.803234i \(-0.703111\pi\)
−0.595663 + 0.803234i \(0.703111\pi\)
\(38\) 4.53631 0.735886
\(39\) −8.05492 −1.28982
\(40\) −4.26608 −0.674526
\(41\) −5.11454 −0.798757 −0.399378 0.916786i \(-0.630774\pi\)
−0.399378 + 0.916786i \(0.630774\pi\)
\(42\) 0 0
\(43\) −2.29605 −0.350145 −0.175072 0.984556i \(-0.556016\pi\)
−0.175072 + 0.984556i \(0.556016\pi\)
\(44\) 3.18876 0.480724
\(45\) −0.228858 −0.0341161
\(46\) −1.00000 −0.147442
\(47\) −5.69797 −0.831134 −0.415567 0.909562i \(-0.636417\pi\)
−0.415567 + 0.909562i \(0.636417\pi\)
\(48\) −1.74747 −0.252225
\(49\) 0 0
\(50\) 13.1994 1.86668
\(51\) 5.51988 0.772938
\(52\) 4.60948 0.639219
\(53\) −12.1994 −1.67572 −0.837860 0.545885i \(-0.816194\pi\)
−0.837860 + 0.545885i \(0.816194\pi\)
\(54\) 5.14866 0.700644
\(55\) −13.6035 −1.83430
\(56\) 0 0
\(57\) −7.92705 −1.04996
\(58\) −3.70737 −0.486801
\(59\) −0.918533 −0.119583 −0.0597914 0.998211i \(-0.519044\pi\)
−0.0597914 + 0.998211i \(0.519044\pi\)
\(60\) 7.45484 0.962415
\(61\) −13.4890 −1.72708 −0.863542 0.504277i \(-0.831759\pi\)
−0.863542 + 0.504277i \(0.831759\pi\)
\(62\) −3.23611 −0.410986
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −19.6644 −2.43907
\(66\) −5.57226 −0.685897
\(67\) 4.75576 0.581009 0.290505 0.956874i \(-0.406177\pi\)
0.290505 + 0.956874i \(0.406177\pi\)
\(68\) −3.15879 −0.383059
\(69\) 1.74747 0.210370
\(70\) 0 0
\(71\) 3.61960 0.429568 0.214784 0.976662i \(-0.431095\pi\)
0.214784 + 0.976662i \(0.431095\pi\)
\(72\) 0.0536460 0.00632224
\(73\) 13.3705 1.56490 0.782449 0.622715i \(-0.213970\pi\)
0.782449 + 0.622715i \(0.213970\pi\)
\(74\) −7.24655 −0.842395
\(75\) −23.0656 −2.66338
\(76\) 4.53631 0.520350
\(77\) 0 0
\(78\) −8.05492 −0.912040
\(79\) −7.42072 −0.834896 −0.417448 0.908701i \(-0.637075\pi\)
−0.417448 + 0.908701i \(0.637075\pi\)
\(80\) −4.26608 −0.476962
\(81\) −9.15806 −1.01756
\(82\) −5.11454 −0.564806
\(83\) 9.36524 1.02797 0.513984 0.857800i \(-0.328169\pi\)
0.513984 + 0.857800i \(0.328169\pi\)
\(84\) 0 0
\(85\) 13.4756 1.46164
\(86\) −2.29605 −0.247590
\(87\) 6.47851 0.694569
\(88\) 3.18876 0.339923
\(89\) 5.22310 0.553648 0.276824 0.960921i \(-0.410718\pi\)
0.276824 + 0.960921i \(0.410718\pi\)
\(90\) −0.228858 −0.0241238
\(91\) 0 0
\(92\) −1.00000 −0.104257
\(93\) 5.65499 0.586396
\(94\) −5.69797 −0.587701
\(95\) −19.3522 −1.98550
\(96\) −1.74747 −0.178350
\(97\) 5.74459 0.583275 0.291637 0.956529i \(-0.405800\pi\)
0.291637 + 0.956529i \(0.405800\pi\)
\(98\) 0 0
\(99\) 0.171064 0.0171926
\(100\) 13.1994 1.31994
\(101\) −12.9191 −1.28550 −0.642748 0.766078i \(-0.722206\pi\)
−0.642748 + 0.766078i \(0.722206\pi\)
\(102\) 5.51988 0.546550
\(103\) −5.46082 −0.538070 −0.269035 0.963130i \(-0.586705\pi\)
−0.269035 + 0.963130i \(0.586705\pi\)
\(104\) 4.60948 0.451996
\(105\) 0 0
\(106\) −12.1994 −1.18491
\(107\) −10.2312 −0.989091 −0.494545 0.869152i \(-0.664665\pi\)
−0.494545 + 0.869152i \(0.664665\pi\)
\(108\) 5.14866 0.495430
\(109\) 8.83131 0.845886 0.422943 0.906156i \(-0.360997\pi\)
0.422943 + 0.906156i \(0.360997\pi\)
\(110\) −13.6035 −1.29704
\(111\) 12.6631 1.20193
\(112\) 0 0
\(113\) −18.6201 −1.75164 −0.875818 0.482641i \(-0.839677\pi\)
−0.875818 + 0.482641i \(0.839677\pi\)
\(114\) −7.92705 −0.742436
\(115\) 4.26608 0.397814
\(116\) −3.70737 −0.344221
\(117\) 0.247280 0.0228610
\(118\) −0.918533 −0.0845578
\(119\) 0 0
\(120\) 7.45484 0.680531
\(121\) −0.831814 −0.0756194
\(122\) −13.4890 −1.22123
\(123\) 8.93750 0.805867
\(124\) −3.23611 −0.290611
\(125\) −34.9794 −3.12865
\(126\) 0 0
\(127\) 1.03070 0.0914598 0.0457299 0.998954i \(-0.485439\pi\)
0.0457299 + 0.998954i \(0.485439\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.01228 0.353261
\(130\) −19.6644 −1.72468
\(131\) 7.57878 0.662161 0.331080 0.943603i \(-0.392587\pi\)
0.331080 + 0.943603i \(0.392587\pi\)
\(132\) −5.57226 −0.485003
\(133\) 0 0
\(134\) 4.75576 0.410835
\(135\) −21.9646 −1.89041
\(136\) −3.15879 −0.270864
\(137\) 12.4583 1.06438 0.532190 0.846625i \(-0.321369\pi\)
0.532190 + 0.846625i \(0.321369\pi\)
\(138\) 1.74747 0.148754
\(139\) −16.3739 −1.38882 −0.694409 0.719581i \(-0.744334\pi\)
−0.694409 + 0.719581i \(0.744334\pi\)
\(140\) 0 0
\(141\) 9.95702 0.838533
\(142\) 3.61960 0.303750
\(143\) 14.6985 1.22915
\(144\) 0.0536460 0.00447050
\(145\) 15.8159 1.31344
\(146\) 13.3705 1.10655
\(147\) 0 0
\(148\) −7.24655 −0.595663
\(149\) −9.70522 −0.795082 −0.397541 0.917584i \(-0.630136\pi\)
−0.397541 + 0.917584i \(0.630136\pi\)
\(150\) −23.0656 −1.88330
\(151\) −12.0784 −0.982924 −0.491462 0.870899i \(-0.663537\pi\)
−0.491462 + 0.870899i \(0.663537\pi\)
\(152\) 4.53631 0.367943
\(153\) −0.169456 −0.0136997
\(154\) 0 0
\(155\) 13.8055 1.10888
\(156\) −8.05492 −0.644909
\(157\) 1.17809 0.0940218 0.0470109 0.998894i \(-0.485030\pi\)
0.0470109 + 0.998894i \(0.485030\pi\)
\(158\) −7.42072 −0.590361
\(159\) 21.3181 1.69064
\(160\) −4.26608 −0.337263
\(161\) 0 0
\(162\) −9.15806 −0.719525
\(163\) 14.4645 1.13294 0.566472 0.824081i \(-0.308308\pi\)
0.566472 + 0.824081i \(0.308308\pi\)
\(164\) −5.11454 −0.399378
\(165\) 23.7717 1.85062
\(166\) 9.36524 0.726884
\(167\) 6.95702 0.538351 0.269175 0.963091i \(-0.413249\pi\)
0.269175 + 0.963091i \(0.413249\pi\)
\(168\) 0 0
\(169\) 8.24728 0.634406
\(170\) 13.4756 1.03353
\(171\) 0.243355 0.0186098
\(172\) −2.29605 −0.175072
\(173\) 3.35672 0.255207 0.127603 0.991825i \(-0.459272\pi\)
0.127603 + 0.991825i \(0.459272\pi\)
\(174\) 6.47851 0.491135
\(175\) 0 0
\(176\) 3.18876 0.240362
\(177\) 1.60511 0.120647
\(178\) 5.22310 0.391488
\(179\) −19.0417 −1.42324 −0.711621 0.702563i \(-0.752039\pi\)
−0.711621 + 0.702563i \(0.752039\pi\)
\(180\) −0.228858 −0.0170581
\(181\) −9.25380 −0.687830 −0.343915 0.939001i \(-0.611753\pi\)
−0.343915 + 0.939001i \(0.611753\pi\)
\(182\) 0 0
\(183\) 23.5715 1.74246
\(184\) −1.00000 −0.0737210
\(185\) 30.9144 2.27287
\(186\) 5.65499 0.414644
\(187\) −10.0726 −0.736582
\(188\) −5.69797 −0.415567
\(189\) 0 0
\(190\) −19.3522 −1.40396
\(191\) 15.3705 1.11217 0.556085 0.831125i \(-0.312303\pi\)
0.556085 + 0.831125i \(0.312303\pi\)
\(192\) −1.74747 −0.126113
\(193\) 0.565957 0.0407385 0.0203693 0.999793i \(-0.493516\pi\)
0.0203693 + 0.999793i \(0.493516\pi\)
\(194\) 5.74459 0.412438
\(195\) 34.3629 2.46078
\(196\) 0 0
\(197\) −8.71335 −0.620800 −0.310400 0.950606i \(-0.600463\pi\)
−0.310400 + 0.950606i \(0.600463\pi\)
\(198\) 0.171064 0.0121570
\(199\) −13.0995 −0.928602 −0.464301 0.885678i \(-0.653694\pi\)
−0.464301 + 0.885678i \(0.653694\pi\)
\(200\) 13.1994 0.933341
\(201\) −8.31055 −0.586181
\(202\) −12.9191 −0.908983
\(203\) 0 0
\(204\) 5.51988 0.386469
\(205\) 21.8190 1.52391
\(206\) −5.46082 −0.380473
\(207\) −0.0536460 −0.00372865
\(208\) 4.60948 0.319610
\(209\) 14.4652 1.00058
\(210\) 0 0
\(211\) 6.67125 0.459268 0.229634 0.973277i \(-0.426247\pi\)
0.229634 + 0.973277i \(0.426247\pi\)
\(212\) −12.1994 −0.837860
\(213\) −6.32514 −0.433392
\(214\) −10.2312 −0.699393
\(215\) 9.79514 0.668023
\(216\) 5.14866 0.350322
\(217\) 0 0
\(218\) 8.83131 0.598132
\(219\) −23.3645 −1.57883
\(220\) −13.6035 −0.917148
\(221\) −14.5604 −0.979436
\(222\) 12.6631 0.849893
\(223\) −16.9305 −1.13375 −0.566874 0.823804i \(-0.691847\pi\)
−0.566874 + 0.823804i \(0.691847\pi\)
\(224\) 0 0
\(225\) 0.708097 0.0472064
\(226\) −18.6201 −1.23859
\(227\) −18.2753 −1.21298 −0.606488 0.795093i \(-0.707422\pi\)
−0.606488 + 0.795093i \(0.707422\pi\)
\(228\) −7.92705 −0.524982
\(229\) −3.19076 −0.210851 −0.105426 0.994427i \(-0.533620\pi\)
−0.105426 + 0.994427i \(0.533620\pi\)
\(230\) 4.26608 0.281297
\(231\) 0 0
\(232\) −3.70737 −0.243401
\(233\) 3.99890 0.261976 0.130988 0.991384i \(-0.458185\pi\)
0.130988 + 0.991384i \(0.458185\pi\)
\(234\) 0.247280 0.0161652
\(235\) 24.3080 1.58568
\(236\) −0.918533 −0.0597914
\(237\) 12.9675 0.842328
\(238\) 0 0
\(239\) 19.5912 1.26725 0.633625 0.773640i \(-0.281566\pi\)
0.633625 + 0.773640i \(0.281566\pi\)
\(240\) 7.45484 0.481208
\(241\) −8.30435 −0.534930 −0.267465 0.963568i \(-0.586186\pi\)
−0.267465 + 0.963568i \(0.586186\pi\)
\(242\) −0.831814 −0.0534710
\(243\) 0.557439 0.0357597
\(244\) −13.4890 −0.863542
\(245\) 0 0
\(246\) 8.93750 0.569834
\(247\) 20.9100 1.33047
\(248\) −3.23611 −0.205493
\(249\) −16.3655 −1.03712
\(250\) −34.9794 −2.21229
\(251\) −22.1789 −1.39992 −0.699958 0.714184i \(-0.746798\pi\)
−0.699958 + 0.714184i \(0.746798\pi\)
\(252\) 0 0
\(253\) −3.18876 −0.200476
\(254\) 1.03070 0.0646718
\(255\) −23.5482 −1.47465
\(256\) 1.00000 0.0625000
\(257\) 8.97705 0.559973 0.279987 0.960004i \(-0.409670\pi\)
0.279987 + 0.960004i \(0.409670\pi\)
\(258\) 4.01228 0.249793
\(259\) 0 0
\(260\) −19.6644 −1.21953
\(261\) −0.198886 −0.0123107
\(262\) 7.57878 0.468218
\(263\) −15.7829 −0.973213 −0.486606 0.873621i \(-0.661765\pi\)
−0.486606 + 0.873621i \(0.661765\pi\)
\(264\) −5.57226 −0.342949
\(265\) 52.0437 3.19702
\(266\) 0 0
\(267\) −9.12721 −0.558576
\(268\) 4.75576 0.290505
\(269\) 6.24440 0.380728 0.190364 0.981714i \(-0.439033\pi\)
0.190364 + 0.981714i \(0.439033\pi\)
\(270\) −21.9646 −1.33672
\(271\) 28.6485 1.74027 0.870137 0.492811i \(-0.164030\pi\)
0.870137 + 0.492811i \(0.164030\pi\)
\(272\) −3.15879 −0.191530
\(273\) 0 0
\(274\) 12.4583 0.752631
\(275\) 42.0898 2.53811
\(276\) 1.74747 0.105185
\(277\) −14.8563 −0.892626 −0.446313 0.894877i \(-0.647263\pi\)
−0.446313 + 0.894877i \(0.647263\pi\)
\(278\) −16.3739 −0.982042
\(279\) −0.173604 −0.0103934
\(280\) 0 0
\(281\) −1.93983 −0.115721 −0.0578604 0.998325i \(-0.518428\pi\)
−0.0578604 + 0.998325i \(0.518428\pi\)
\(282\) 9.95702 0.592932
\(283\) −25.4194 −1.51103 −0.755514 0.655132i \(-0.772613\pi\)
−0.755514 + 0.655132i \(0.772613\pi\)
\(284\) 3.61960 0.214784
\(285\) 33.8174 2.00317
\(286\) 14.6985 0.869141
\(287\) 0 0
\(288\) 0.0536460 0.00316112
\(289\) −7.02207 −0.413063
\(290\) 15.8159 0.928743
\(291\) −10.0385 −0.588467
\(292\) 13.3705 0.782449
\(293\) 19.8987 1.16249 0.581246 0.813728i \(-0.302565\pi\)
0.581246 + 0.813728i \(0.302565\pi\)
\(294\) 0 0
\(295\) 3.91853 0.228146
\(296\) −7.24655 −0.421197
\(297\) 16.4178 0.952660
\(298\) −9.70522 −0.562208
\(299\) −4.60948 −0.266573
\(300\) −23.0656 −1.33169
\(301\) 0 0
\(302\) −12.0784 −0.695032
\(303\) 22.5757 1.29694
\(304\) 4.53631 0.260175
\(305\) 57.5450 3.29501
\(306\) −0.169456 −0.00968717
\(307\) −7.30872 −0.417131 −0.208565 0.978008i \(-0.566879\pi\)
−0.208565 + 0.978008i \(0.566879\pi\)
\(308\) 0 0
\(309\) 9.54260 0.542860
\(310\) 13.8055 0.784099
\(311\) −28.1727 −1.59752 −0.798762 0.601647i \(-0.794512\pi\)
−0.798762 + 0.601647i \(0.794512\pi\)
\(312\) −8.05492 −0.456020
\(313\) −10.3739 −0.586368 −0.293184 0.956056i \(-0.594715\pi\)
−0.293184 + 0.956056i \(0.594715\pi\)
\(314\) 1.17809 0.0664835
\(315\) 0 0
\(316\) −7.42072 −0.417448
\(317\) 15.1465 0.850713 0.425356 0.905026i \(-0.360149\pi\)
0.425356 + 0.905026i \(0.360149\pi\)
\(318\) 21.3181 1.19546
\(319\) −11.8219 −0.661900
\(320\) −4.26608 −0.238481
\(321\) 17.8788 0.997895
\(322\) 0 0
\(323\) −14.3292 −0.797299
\(324\) −9.15806 −0.508781
\(325\) 60.8425 3.37493
\(326\) 14.4645 0.801112
\(327\) −15.4324 −0.853416
\(328\) −5.11454 −0.282403
\(329\) 0 0
\(330\) 23.7717 1.30859
\(331\) −18.0343 −0.991257 −0.495629 0.868535i \(-0.665062\pi\)
−0.495629 + 0.868535i \(0.665062\pi\)
\(332\) 9.36524 0.513984
\(333\) −0.388749 −0.0213033
\(334\) 6.95702 0.380671
\(335\) −20.2885 −1.10848
\(336\) 0 0
\(337\) 24.1008 1.31285 0.656427 0.754389i \(-0.272067\pi\)
0.656427 + 0.754389i \(0.272067\pi\)
\(338\) 8.24728 0.448593
\(339\) 32.5381 1.76723
\(340\) 13.4756 0.730819
\(341\) −10.3192 −0.558814
\(342\) 0.243355 0.0131591
\(343\) 0 0
\(344\) −2.29605 −0.123795
\(345\) −7.45484 −0.401355
\(346\) 3.35672 0.180459
\(347\) −22.6975 −1.21846 −0.609232 0.792992i \(-0.708522\pi\)
−0.609232 + 0.792992i \(0.708522\pi\)
\(348\) 6.47851 0.347285
\(349\) −22.9733 −1.22973 −0.614865 0.788632i \(-0.710790\pi\)
−0.614865 + 0.788632i \(0.710790\pi\)
\(350\) 0 0
\(351\) 23.7326 1.26675
\(352\) 3.18876 0.169961
\(353\) −17.5852 −0.935968 −0.467984 0.883737i \(-0.655020\pi\)
−0.467984 + 0.883737i \(0.655020\pi\)
\(354\) 1.60511 0.0853105
\(355\) −15.4415 −0.819550
\(356\) 5.22310 0.276824
\(357\) 0 0
\(358\) −19.0417 −1.00638
\(359\) −3.46474 −0.182862 −0.0914310 0.995811i \(-0.529144\pi\)
−0.0914310 + 0.995811i \(0.529144\pi\)
\(360\) −0.228858 −0.0120619
\(361\) 1.57807 0.0830562
\(362\) −9.25380 −0.486369
\(363\) 1.45357 0.0762925
\(364\) 0 0
\(365\) −57.0396 −2.98559
\(366\) 23.5715 1.23210
\(367\) −1.10077 −0.0574598 −0.0287299 0.999587i \(-0.509146\pi\)
−0.0287299 + 0.999587i \(0.509146\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −0.274375 −0.0142834
\(370\) 30.9144 1.60716
\(371\) 0 0
\(372\) 5.65499 0.293198
\(373\) −23.7420 −1.22932 −0.614658 0.788794i \(-0.710706\pi\)
−0.614658 + 0.788794i \(0.710706\pi\)
\(374\) −10.0726 −0.520842
\(375\) 61.1254 3.15650
\(376\) −5.69797 −0.293850
\(377\) −17.0890 −0.880130
\(378\) 0 0
\(379\) −3.03959 −0.156133 −0.0780667 0.996948i \(-0.524875\pi\)
−0.0780667 + 0.996948i \(0.524875\pi\)
\(380\) −19.3522 −0.992749
\(381\) −1.80111 −0.0922739
\(382\) 15.3705 0.786423
\(383\) 14.5407 0.742994 0.371497 0.928434i \(-0.378845\pi\)
0.371497 + 0.928434i \(0.378845\pi\)
\(384\) −1.74747 −0.0891751
\(385\) 0 0
\(386\) 0.565957 0.0288065
\(387\) −0.123174 −0.00626128
\(388\) 5.74459 0.291637
\(389\) 31.3174 1.58785 0.793927 0.608013i \(-0.208033\pi\)
0.793927 + 0.608013i \(0.208033\pi\)
\(390\) 34.3629 1.74003
\(391\) 3.15879 0.159747
\(392\) 0 0
\(393\) −13.2437 −0.668055
\(394\) −8.71335 −0.438972
\(395\) 31.6574 1.59286
\(396\) 0.171064 0.00859630
\(397\) 17.6190 0.884274 0.442137 0.896947i \(-0.354220\pi\)
0.442137 + 0.896947i \(0.354220\pi\)
\(398\) −13.0995 −0.656621
\(399\) 0 0
\(400\) 13.1994 0.659971
\(401\) −0.966200 −0.0482497 −0.0241249 0.999709i \(-0.507680\pi\)
−0.0241249 + 0.999709i \(0.507680\pi\)
\(402\) −8.31055 −0.414492
\(403\) −14.9168 −0.743057
\(404\) −12.9191 −0.642748
\(405\) 39.0690 1.94135
\(406\) 0 0
\(407\) −23.1075 −1.14540
\(408\) 5.51988 0.273275
\(409\) 33.0657 1.63499 0.817496 0.575934i \(-0.195361\pi\)
0.817496 + 0.575934i \(0.195361\pi\)
\(410\) 21.8190 1.07757
\(411\) −21.7704 −1.07386
\(412\) −5.46082 −0.269035
\(413\) 0 0
\(414\) −0.0536460 −0.00263656
\(415\) −39.9529 −1.96121
\(416\) 4.60948 0.225998
\(417\) 28.6129 1.40118
\(418\) 14.4652 0.707515
\(419\) −30.6704 −1.49835 −0.749173 0.662375i \(-0.769549\pi\)
−0.749173 + 0.662375i \(0.769549\pi\)
\(420\) 0 0
\(421\) 3.14483 0.153270 0.0766349 0.997059i \(-0.475582\pi\)
0.0766349 + 0.997059i \(0.475582\pi\)
\(422\) 6.67125 0.324751
\(423\) −0.305673 −0.0148623
\(424\) −12.1994 −0.592457
\(425\) −41.6942 −2.02246
\(426\) −6.32514 −0.306454
\(427\) 0 0
\(428\) −10.2312 −0.494545
\(429\) −25.6852 −1.24009
\(430\) 9.79514 0.472363
\(431\) −6.68265 −0.321892 −0.160946 0.986963i \(-0.551454\pi\)
−0.160946 + 0.986963i \(0.551454\pi\)
\(432\) 5.14866 0.247715
\(433\) 14.1421 0.679628 0.339814 0.940493i \(-0.389636\pi\)
0.339814 + 0.940493i \(0.389636\pi\)
\(434\) 0 0
\(435\) −27.6378 −1.32513
\(436\) 8.83131 0.422943
\(437\) −4.53631 −0.217001
\(438\) −23.3645 −1.11640
\(439\) 1.48554 0.0709008 0.0354504 0.999371i \(-0.488713\pi\)
0.0354504 + 0.999371i \(0.488713\pi\)
\(440\) −13.6035 −0.648521
\(441\) 0 0
\(442\) −14.5604 −0.692566
\(443\) −13.0907 −0.621959 −0.310979 0.950417i \(-0.600657\pi\)
−0.310979 + 0.950417i \(0.600657\pi\)
\(444\) 12.6631 0.600965
\(445\) −22.2822 −1.05628
\(446\) −16.9305 −0.801681
\(447\) 16.9596 0.802160
\(448\) 0 0
\(449\) −28.0004 −1.32142 −0.660710 0.750641i \(-0.729745\pi\)
−0.660710 + 0.750641i \(0.729745\pi\)
\(450\) 0.708097 0.0333800
\(451\) −16.3090 −0.767963
\(452\) −18.6201 −0.875818
\(453\) 21.1066 0.991673
\(454\) −18.2753 −0.857703
\(455\) 0 0
\(456\) −7.92705 −0.371218
\(457\) −3.88479 −0.181723 −0.0908614 0.995864i \(-0.528962\pi\)
−0.0908614 + 0.995864i \(0.528962\pi\)
\(458\) −3.19076 −0.149094
\(459\) −16.2635 −0.759116
\(460\) 4.26608 0.198907
\(461\) 21.7186 1.01154 0.505768 0.862670i \(-0.331209\pi\)
0.505768 + 0.862670i \(0.331209\pi\)
\(462\) 0 0
\(463\) 4.97234 0.231084 0.115542 0.993303i \(-0.463139\pi\)
0.115542 + 0.993303i \(0.463139\pi\)
\(464\) −3.70737 −0.172110
\(465\) −24.1246 −1.11875
\(466\) 3.99890 0.185245
\(467\) 6.84929 0.316947 0.158474 0.987363i \(-0.449343\pi\)
0.158474 + 0.987363i \(0.449343\pi\)
\(468\) 0.247280 0.0114305
\(469\) 0 0
\(470\) 24.3080 1.12124
\(471\) −2.05868 −0.0948587
\(472\) −0.918533 −0.0422789
\(473\) −7.32156 −0.336645
\(474\) 12.9675 0.595616
\(475\) 59.8766 2.74733
\(476\) 0 0
\(477\) −0.654451 −0.0299652
\(478\) 19.5912 0.896082
\(479\) −10.0047 −0.457126 −0.228563 0.973529i \(-0.573403\pi\)
−0.228563 + 0.973529i \(0.573403\pi\)
\(480\) 7.45484 0.340265
\(481\) −33.4028 −1.52304
\(482\) −8.30435 −0.378253
\(483\) 0 0
\(484\) −0.831814 −0.0378097
\(485\) −24.5069 −1.11280
\(486\) 0.557439 0.0252860
\(487\) 26.9160 1.21968 0.609840 0.792525i \(-0.291234\pi\)
0.609840 + 0.792525i \(0.291234\pi\)
\(488\) −13.4890 −0.610616
\(489\) −25.2762 −1.14303
\(490\) 0 0
\(491\) −17.6787 −0.797827 −0.398914 0.916989i \(-0.630613\pi\)
−0.398914 + 0.916989i \(0.630613\pi\)
\(492\) 8.93750 0.402934
\(493\) 11.7108 0.527427
\(494\) 20.9100 0.940785
\(495\) −0.729773 −0.0328009
\(496\) −3.23611 −0.145305
\(497\) 0 0
\(498\) −16.3655 −0.733354
\(499\) 21.5441 0.964446 0.482223 0.876048i \(-0.339829\pi\)
0.482223 + 0.876048i \(0.339829\pi\)
\(500\) −34.9794 −1.56433
\(501\) −12.1572 −0.543143
\(502\) −22.1789 −0.989891
\(503\) 30.0934 1.34180 0.670900 0.741548i \(-0.265908\pi\)
0.670900 + 0.741548i \(0.265908\pi\)
\(504\) 0 0
\(505\) 55.1138 2.45253
\(506\) −3.18876 −0.141758
\(507\) −14.4119 −0.640053
\(508\) 1.03070 0.0457299
\(509\) 17.6680 0.783120 0.391560 0.920153i \(-0.371936\pi\)
0.391560 + 0.920153i \(0.371936\pi\)
\(510\) −23.5482 −1.04273
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 23.3559 1.03119
\(514\) 8.97705 0.395961
\(515\) 23.2963 1.02656
\(516\) 4.01228 0.176631
\(517\) −18.1695 −0.799092
\(518\) 0 0
\(519\) −5.86577 −0.257479
\(520\) −19.6644 −0.862341
\(521\) 14.1499 0.619920 0.309960 0.950750i \(-0.399684\pi\)
0.309960 + 0.950750i \(0.399684\pi\)
\(522\) −0.198886 −0.00870498
\(523\) 30.3429 1.32680 0.663401 0.748264i \(-0.269113\pi\)
0.663401 + 0.748264i \(0.269113\pi\)
\(524\) 7.57878 0.331080
\(525\) 0 0
\(526\) −15.7829 −0.688165
\(527\) 10.2222 0.445285
\(528\) −5.57226 −0.242501
\(529\) 1.00000 0.0434783
\(530\) 52.0437 2.26063
\(531\) −0.0492756 −0.00213838
\(532\) 0 0
\(533\) −23.5754 −1.02116
\(534\) −9.12721 −0.394973
\(535\) 43.6472 1.88703
\(536\) 4.75576 0.205418
\(537\) 33.2748 1.43591
\(538\) 6.24440 0.269215
\(539\) 0 0
\(540\) −21.9646 −0.945206
\(541\) 24.4127 1.04959 0.524793 0.851230i \(-0.324143\pi\)
0.524793 + 0.851230i \(0.324143\pi\)
\(542\) 28.6485 1.23056
\(543\) 16.1707 0.693952
\(544\) −3.15879 −0.135432
\(545\) −37.6751 −1.61382
\(546\) 0 0
\(547\) 19.8203 0.847455 0.423727 0.905790i \(-0.360721\pi\)
0.423727 + 0.905790i \(0.360721\pi\)
\(548\) 12.4583 0.532190
\(549\) −0.723629 −0.0308837
\(550\) 42.0898 1.79472
\(551\) −16.8178 −0.716461
\(552\) 1.74747 0.0743772
\(553\) 0 0
\(554\) −14.8563 −0.631182
\(555\) −54.0219 −2.29310
\(556\) −16.3739 −0.694409
\(557\) 1.78050 0.0754423 0.0377212 0.999288i \(-0.487990\pi\)
0.0377212 + 0.999288i \(0.487990\pi\)
\(558\) −0.173604 −0.00734925
\(559\) −10.5836 −0.447638
\(560\) 0 0
\(561\) 17.6016 0.743139
\(562\) −1.93983 −0.0818269
\(563\) −34.4227 −1.45074 −0.725372 0.688357i \(-0.758332\pi\)
−0.725372 + 0.688357i \(0.758332\pi\)
\(564\) 9.95702 0.419266
\(565\) 79.4350 3.34186
\(566\) −25.4194 −1.06846
\(567\) 0 0
\(568\) 3.61960 0.151875
\(569\) 13.0547 0.547284 0.273642 0.961832i \(-0.411772\pi\)
0.273642 + 0.961832i \(0.411772\pi\)
\(570\) 33.8174 1.41646
\(571\) −25.4010 −1.06300 −0.531500 0.847059i \(-0.678371\pi\)
−0.531500 + 0.847059i \(0.678371\pi\)
\(572\) 14.6985 0.614576
\(573\) −26.8595 −1.12207
\(574\) 0 0
\(575\) −13.1994 −0.550454
\(576\) 0.0536460 0.00223525
\(577\) 41.9277 1.74547 0.872736 0.488192i \(-0.162343\pi\)
0.872736 + 0.488192i \(0.162343\pi\)
\(578\) −7.02207 −0.292079
\(579\) −0.988993 −0.0411011
\(580\) 15.8159 0.656721
\(581\) 0 0
\(582\) −10.0385 −0.416109
\(583\) −38.9010 −1.61112
\(584\) 13.3705 0.553275
\(585\) −1.05492 −0.0436154
\(586\) 19.8987 0.822006
\(587\) −27.1223 −1.11946 −0.559729 0.828676i \(-0.689095\pi\)
−0.559729 + 0.828676i \(0.689095\pi\)
\(588\) 0 0
\(589\) −14.6800 −0.604878
\(590\) 3.91853 0.161323
\(591\) 15.2263 0.626326
\(592\) −7.24655 −0.297832
\(593\) 1.56811 0.0643945 0.0321972 0.999482i \(-0.489750\pi\)
0.0321972 + 0.999482i \(0.489750\pi\)
\(594\) 16.4178 0.673632
\(595\) 0 0
\(596\) −9.70522 −0.397541
\(597\) 22.8910 0.936868
\(598\) −4.60948 −0.188496
\(599\) 42.2777 1.72742 0.863711 0.503988i \(-0.168134\pi\)
0.863711 + 0.503988i \(0.168134\pi\)
\(600\) −23.0656 −0.941649
\(601\) 29.1651 1.18967 0.594834 0.803848i \(-0.297218\pi\)
0.594834 + 0.803848i \(0.297218\pi\)
\(602\) 0 0
\(603\) 0.255128 0.0103896
\(604\) −12.0784 −0.491462
\(605\) 3.54858 0.144270
\(606\) 22.5757 0.917074
\(607\) −10.5927 −0.429943 −0.214972 0.976620i \(-0.568966\pi\)
−0.214972 + 0.976620i \(0.568966\pi\)
\(608\) 4.53631 0.183971
\(609\) 0 0
\(610\) 57.5450 2.32993
\(611\) −26.2647 −1.06255
\(612\) −0.169456 −0.00684986
\(613\) −10.8146 −0.436798 −0.218399 0.975860i \(-0.570083\pi\)
−0.218399 + 0.975860i \(0.570083\pi\)
\(614\) −7.30872 −0.294956
\(615\) −38.1281 −1.53747
\(616\) 0 0
\(617\) −18.2246 −0.733693 −0.366846 0.930281i \(-0.619563\pi\)
−0.366846 + 0.930281i \(0.619563\pi\)
\(618\) 9.54260 0.383860
\(619\) −32.6877 −1.31383 −0.656914 0.753966i \(-0.728139\pi\)
−0.656914 + 0.753966i \(0.728139\pi\)
\(620\) 13.8055 0.554442
\(621\) −5.14866 −0.206609
\(622\) −28.1727 −1.12962
\(623\) 0 0
\(624\) −8.05492 −0.322455
\(625\) 83.2278 3.32911
\(626\) −10.3739 −0.414625
\(627\) −25.2775 −1.00948
\(628\) 1.17809 0.0470109
\(629\) 22.8903 0.912697
\(630\) 0 0
\(631\) −16.7672 −0.667492 −0.333746 0.942663i \(-0.608313\pi\)
−0.333746 + 0.942663i \(0.608313\pi\)
\(632\) −7.42072 −0.295180
\(633\) −11.6578 −0.463356
\(634\) 15.1465 0.601545
\(635\) −4.39704 −0.174491
\(636\) 21.3181 0.845318
\(637\) 0 0
\(638\) −11.8219 −0.468034
\(639\) 0.194177 0.00768153
\(640\) −4.26608 −0.168632
\(641\) −32.5905 −1.28725 −0.643624 0.765342i \(-0.722570\pi\)
−0.643624 + 0.765342i \(0.722570\pi\)
\(642\) 17.8788 0.705618
\(643\) 6.41984 0.253174 0.126587 0.991956i \(-0.459598\pi\)
0.126587 + 0.991956i \(0.459598\pi\)
\(644\) 0 0
\(645\) −17.1167 −0.673969
\(646\) −14.3292 −0.563776
\(647\) 16.2710 0.639677 0.319839 0.947472i \(-0.396371\pi\)
0.319839 + 0.947472i \(0.396371\pi\)
\(648\) −9.15806 −0.359763
\(649\) −2.92898 −0.114973
\(650\) 60.8425 2.38644
\(651\) 0 0
\(652\) 14.4645 0.566472
\(653\) 23.7977 0.931277 0.465639 0.884975i \(-0.345825\pi\)
0.465639 + 0.884975i \(0.345825\pi\)
\(654\) −15.4324 −0.603456
\(655\) −32.3317 −1.26330
\(656\) −5.11454 −0.199689
\(657\) 0.717273 0.0279835
\(658\) 0 0
\(659\) 42.1039 1.64013 0.820067 0.572268i \(-0.193936\pi\)
0.820067 + 0.572268i \(0.193936\pi\)
\(660\) 23.7717 0.925312
\(661\) −50.8363 −1.97730 −0.988652 0.150225i \(-0.952000\pi\)
−0.988652 + 0.150225i \(0.952000\pi\)
\(662\) −18.0343 −0.700925
\(663\) 25.4438 0.988154
\(664\) 9.36524 0.363442
\(665\) 0 0
\(666\) −0.388749 −0.0150637
\(667\) 3.70737 0.143550
\(668\) 6.95702 0.269175
\(669\) 29.5855 1.14384
\(670\) −20.2885 −0.783812
\(671\) −43.0130 −1.66050
\(672\) 0 0
\(673\) 20.5556 0.792360 0.396180 0.918173i \(-0.370336\pi\)
0.396180 + 0.918173i \(0.370336\pi\)
\(674\) 24.1008 0.928328
\(675\) 67.9594 2.61576
\(676\) 8.24728 0.317203
\(677\) 38.1726 1.46709 0.733546 0.679640i \(-0.237864\pi\)
0.733546 + 0.679640i \(0.237864\pi\)
\(678\) 32.5381 1.24962
\(679\) 0 0
\(680\) 13.4756 0.516767
\(681\) 31.9356 1.22377
\(682\) −10.3192 −0.395141
\(683\) 2.64737 0.101299 0.0506494 0.998716i \(-0.483871\pi\)
0.0506494 + 0.998716i \(0.483871\pi\)
\(684\) 0.243355 0.00930490
\(685\) −53.1479 −2.03068
\(686\) 0 0
\(687\) 5.57575 0.212728
\(688\) −2.29605 −0.0875361
\(689\) −56.2330 −2.14231
\(690\) −7.45484 −0.283801
\(691\) −44.8548 −1.70636 −0.853178 0.521619i \(-0.825328\pi\)
−0.853178 + 0.521619i \(0.825328\pi\)
\(692\) 3.35672 0.127603
\(693\) 0 0
\(694\) −22.6975 −0.861584
\(695\) 69.8524 2.64965
\(696\) 6.47851 0.245567
\(697\) 16.1557 0.611942
\(698\) −22.9733 −0.869551
\(699\) −6.98795 −0.264308
\(700\) 0 0
\(701\) −3.67590 −0.138837 −0.0694185 0.997588i \(-0.522114\pi\)
−0.0694185 + 0.997588i \(0.522114\pi\)
\(702\) 23.7326 0.895731
\(703\) −32.8726 −1.23981
\(704\) 3.18876 0.120181
\(705\) −42.4774 −1.59979
\(706\) −17.5852 −0.661829
\(707\) 0 0
\(708\) 1.60511 0.0603236
\(709\) −7.08855 −0.266216 −0.133108 0.991102i \(-0.542496\pi\)
−0.133108 + 0.991102i \(0.542496\pi\)
\(710\) −15.4415 −0.579510
\(711\) −0.398092 −0.0149296
\(712\) 5.22310 0.195744
\(713\) 3.23611 0.121193
\(714\) 0 0
\(715\) −62.7050 −2.34503
\(716\) −19.0417 −0.711621
\(717\) −34.2350 −1.27853
\(718\) −3.46474 −0.129303
\(719\) 14.8732 0.554678 0.277339 0.960772i \(-0.410548\pi\)
0.277339 + 0.960772i \(0.410548\pi\)
\(720\) −0.228858 −0.00852904
\(721\) 0 0
\(722\) 1.57807 0.0587296
\(723\) 14.5116 0.539692
\(724\) −9.25380 −0.343915
\(725\) −48.9352 −1.81741
\(726\) 1.45357 0.0539470
\(727\) −14.9667 −0.555086 −0.277543 0.960713i \(-0.589520\pi\)
−0.277543 + 0.960713i \(0.589520\pi\)
\(728\) 0 0
\(729\) 26.5001 0.981484
\(730\) −57.0396 −2.11113
\(731\) 7.25274 0.268252
\(732\) 23.5715 0.871229
\(733\) −46.4686 −1.71636 −0.858178 0.513352i \(-0.828404\pi\)
−0.858178 + 0.513352i \(0.828404\pi\)
\(734\) −1.10077 −0.0406302
\(735\) 0 0
\(736\) −1.00000 −0.0368605
\(737\) 15.1650 0.558610
\(738\) −0.274375 −0.0100999
\(739\) 34.8786 1.28303 0.641516 0.767110i \(-0.278306\pi\)
0.641516 + 0.767110i \(0.278306\pi\)
\(740\) 30.9144 1.13643
\(741\) −36.5396 −1.34231
\(742\) 0 0
\(743\) 5.81935 0.213491 0.106746 0.994286i \(-0.465957\pi\)
0.106746 + 0.994286i \(0.465957\pi\)
\(744\) 5.65499 0.207322
\(745\) 41.4032 1.51690
\(746\) −23.7420 −0.869258
\(747\) 0.502408 0.0183821
\(748\) −10.0726 −0.368291
\(749\) 0 0
\(750\) 61.1254 2.23198
\(751\) −50.2390 −1.83325 −0.916623 0.399753i \(-0.869096\pi\)
−0.916623 + 0.399753i \(0.869096\pi\)
\(752\) −5.69797 −0.207784
\(753\) 38.7569 1.41238
\(754\) −17.0890 −0.622346
\(755\) 51.5273 1.87527
\(756\) 0 0
\(757\) 45.5514 1.65559 0.827797 0.561028i \(-0.189594\pi\)
0.827797 + 0.561028i \(0.189594\pi\)
\(758\) −3.03959 −0.110403
\(759\) 5.57226 0.202260
\(760\) −19.3522 −0.701979
\(761\) 19.2863 0.699128 0.349564 0.936913i \(-0.386330\pi\)
0.349564 + 0.936913i \(0.386330\pi\)
\(762\) −1.80111 −0.0652475
\(763\) 0 0
\(764\) 15.3705 0.556085
\(765\) 0.722914 0.0261370
\(766\) 14.5407 0.525376
\(767\) −4.23396 −0.152879
\(768\) −1.74747 −0.0630563
\(769\) 37.7235 1.36034 0.680171 0.733053i \(-0.261905\pi\)
0.680171 + 0.733053i \(0.261905\pi\)
\(770\) 0 0
\(771\) −15.6871 −0.564958
\(772\) 0.565957 0.0203693
\(773\) 17.4594 0.627970 0.313985 0.949428i \(-0.398336\pi\)
0.313985 + 0.949428i \(0.398336\pi\)
\(774\) −0.123174 −0.00442740
\(775\) −42.7148 −1.53436
\(776\) 5.74459 0.206219
\(777\) 0 0
\(778\) 31.3174 1.12278
\(779\) −23.2011 −0.831266
\(780\) 34.3629 1.23039
\(781\) 11.5420 0.413007
\(782\) 3.15879 0.112958
\(783\) −19.0880 −0.682149
\(784\) 0 0
\(785\) −5.02582 −0.179379
\(786\) −13.2437 −0.472386
\(787\) 13.4288 0.478686 0.239343 0.970935i \(-0.423068\pi\)
0.239343 + 0.970935i \(0.423068\pi\)
\(788\) −8.71335 −0.310400
\(789\) 27.5800 0.981876
\(790\) 31.6574 1.12632
\(791\) 0 0
\(792\) 0.171064 0.00607850
\(793\) −62.1770 −2.20797
\(794\) 17.6190 0.625276
\(795\) −90.9448 −3.22548
\(796\) −13.0995 −0.464301
\(797\) −21.3322 −0.755624 −0.377812 0.925882i \(-0.623323\pi\)
−0.377812 + 0.925882i \(0.623323\pi\)
\(798\) 0 0
\(799\) 17.9987 0.636747
\(800\) 13.1994 0.466670
\(801\) 0.280199 0.00990033
\(802\) −0.966200 −0.0341177
\(803\) 42.6353 1.50457
\(804\) −8.31055 −0.293090
\(805\) 0 0
\(806\) −14.9168 −0.525420
\(807\) −10.9119 −0.384117
\(808\) −12.9191 −0.454492
\(809\) −42.2976 −1.48710 −0.743552 0.668678i \(-0.766860\pi\)
−0.743552 + 0.668678i \(0.766860\pi\)
\(810\) 39.0690 1.37274
\(811\) 23.5400 0.826603 0.413301 0.910594i \(-0.364376\pi\)
0.413301 + 0.910594i \(0.364376\pi\)
\(812\) 0 0
\(813\) −50.0624 −1.75576
\(814\) −23.1075 −0.809918
\(815\) −61.7065 −2.16149
\(816\) 5.51988 0.193234
\(817\) −10.4156 −0.364395
\(818\) 33.0657 1.15611
\(819\) 0 0
\(820\) 21.8190 0.761954
\(821\) 22.3094 0.778605 0.389302 0.921110i \(-0.372716\pi\)
0.389302 + 0.921110i \(0.372716\pi\)
\(822\) −21.7704 −0.759330
\(823\) 13.6087 0.474371 0.237185 0.971464i \(-0.423775\pi\)
0.237185 + 0.971464i \(0.423775\pi\)
\(824\) −5.46082 −0.190237
\(825\) −73.5506 −2.56070
\(826\) 0 0
\(827\) −15.3089 −0.532344 −0.266172 0.963926i \(-0.585759\pi\)
−0.266172 + 0.963926i \(0.585759\pi\)
\(828\) −0.0536460 −0.00186433
\(829\) −24.9010 −0.864847 −0.432424 0.901671i \(-0.642341\pi\)
−0.432424 + 0.901671i \(0.642341\pi\)
\(830\) −39.9529 −1.38678
\(831\) 25.9608 0.900571
\(832\) 4.60948 0.159805
\(833\) 0 0
\(834\) 28.6129 0.990784
\(835\) −29.6792 −1.02709
\(836\) 14.4652 0.500289
\(837\) −16.6616 −0.575910
\(838\) −30.6704 −1.05949
\(839\) −45.3719 −1.56641 −0.783205 0.621763i \(-0.786417\pi\)
−0.783205 + 0.621763i \(0.786417\pi\)
\(840\) 0 0
\(841\) −15.2554 −0.526049
\(842\) 3.14483 0.108378
\(843\) 3.38980 0.116751
\(844\) 6.67125 0.229634
\(845\) −35.1835 −1.21035
\(846\) −0.305673 −0.0105093
\(847\) 0 0
\(848\) −12.1994 −0.418930
\(849\) 44.4197 1.52448
\(850\) −41.6942 −1.43010
\(851\) 7.24655 0.248409
\(852\) −6.32514 −0.216696
\(853\) −1.29412 −0.0443099 −0.0221550 0.999755i \(-0.507053\pi\)
−0.0221550 + 0.999755i \(0.507053\pi\)
\(854\) 0 0
\(855\) −1.03817 −0.0355047
\(856\) −10.2312 −0.349696
\(857\) 19.0333 0.650166 0.325083 0.945685i \(-0.394608\pi\)
0.325083 + 0.945685i \(0.394608\pi\)
\(858\) −25.6852 −0.876878
\(859\) 29.3201 1.00039 0.500195 0.865913i \(-0.333262\pi\)
0.500195 + 0.865913i \(0.333262\pi\)
\(860\) 9.79514 0.334011
\(861\) 0 0
\(862\) −6.68265 −0.227612
\(863\) 23.9405 0.814943 0.407472 0.913218i \(-0.366411\pi\)
0.407472 + 0.913218i \(0.366411\pi\)
\(864\) 5.14866 0.175161
\(865\) −14.3200 −0.486896
\(866\) 14.1421 0.480569
\(867\) 12.2708 0.416740
\(868\) 0 0
\(869\) −23.6629 −0.802708
\(870\) −27.6378 −0.937011
\(871\) 21.9216 0.742785
\(872\) 8.83131 0.299066
\(873\) 0.308174 0.0104301
\(874\) −4.53631 −0.153443
\(875\) 0 0
\(876\) −23.3645 −0.789414
\(877\) −42.0081 −1.41851 −0.709256 0.704951i \(-0.750969\pi\)
−0.709256 + 0.704951i \(0.750969\pi\)
\(878\) 1.48554 0.0501345
\(879\) −34.7723 −1.17284
\(880\) −13.6035 −0.458574
\(881\) 37.3864 1.25958 0.629790 0.776766i \(-0.283141\pi\)
0.629790 + 0.776766i \(0.283141\pi\)
\(882\) 0 0
\(883\) −38.6925 −1.30211 −0.651053 0.759032i \(-0.725672\pi\)
−0.651053 + 0.759032i \(0.725672\pi\)
\(884\) −14.5604 −0.489718
\(885\) −6.84751 −0.230177
\(886\) −13.0907 −0.439791
\(887\) −23.7538 −0.797573 −0.398786 0.917044i \(-0.630569\pi\)
−0.398786 + 0.917044i \(0.630569\pi\)
\(888\) 12.6631 0.424947
\(889\) 0 0
\(890\) −22.2822 −0.746900
\(891\) −29.2028 −0.978332
\(892\) −16.9305 −0.566874
\(893\) −25.8477 −0.864961
\(894\) 16.9596 0.567213
\(895\) 81.2333 2.71533
\(896\) 0 0
\(897\) 8.05492 0.268946
\(898\) −28.0004 −0.934385
\(899\) 11.9974 0.400137
\(900\) 0.708097 0.0236032
\(901\) 38.5354 1.28380
\(902\) −16.3090 −0.543032
\(903\) 0 0
\(904\) −18.6201 −0.619297
\(905\) 39.4774 1.31227
\(906\) 21.1066 0.701219
\(907\) 25.1859 0.836283 0.418141 0.908382i \(-0.362682\pi\)
0.418141 + 0.908382i \(0.362682\pi\)
\(908\) −18.2753 −0.606488
\(909\) −0.693057 −0.0229872
\(910\) 0 0
\(911\) −33.9550 −1.12498 −0.562490 0.826804i \(-0.690156\pi\)
−0.562490 + 0.826804i \(0.690156\pi\)
\(912\) −7.92705 −0.262491
\(913\) 29.8635 0.988338
\(914\) −3.88479 −0.128497
\(915\) −100.558 −3.32435
\(916\) −3.19076 −0.105426
\(917\) 0 0
\(918\) −16.2635 −0.536776
\(919\) 33.8739 1.11740 0.558699 0.829370i \(-0.311301\pi\)
0.558699 + 0.829370i \(0.311301\pi\)
\(920\) 4.26608 0.140648
\(921\) 12.7718 0.420844
\(922\) 21.7186 0.715263
\(923\) 16.6845 0.549176
\(924\) 0 0
\(925\) −95.6504 −3.14496
\(926\) 4.97234 0.163401
\(927\) −0.292951 −0.00962177
\(928\) −3.70737 −0.121700
\(929\) 14.8890 0.488494 0.244247 0.969713i \(-0.421459\pi\)
0.244247 + 0.969713i \(0.421459\pi\)
\(930\) −24.1246 −0.791078
\(931\) 0 0
\(932\) 3.99890 0.130988
\(933\) 49.2308 1.61174
\(934\) 6.84929 0.224115
\(935\) 42.9706 1.40529
\(936\) 0.247280 0.00808260
\(937\) −10.1786 −0.332520 −0.166260 0.986082i \(-0.553169\pi\)
−0.166260 + 0.986082i \(0.553169\pi\)
\(938\) 0 0
\(939\) 18.1281 0.591588
\(940\) 24.3080 0.792839
\(941\) −29.3398 −0.956449 −0.478224 0.878238i \(-0.658719\pi\)
−0.478224 + 0.878238i \(0.658719\pi\)
\(942\) −2.05868 −0.0670753
\(943\) 5.11454 0.166552
\(944\) −0.918533 −0.0298957
\(945\) 0 0
\(946\) −7.32156 −0.238044
\(947\) 40.0527 1.30154 0.650770 0.759275i \(-0.274446\pi\)
0.650770 + 0.759275i \(0.274446\pi\)
\(948\) 12.9675 0.421164
\(949\) 61.6310 2.00063
\(950\) 59.8766 1.94265
\(951\) −26.4680 −0.858285
\(952\) 0 0
\(953\) 53.5369 1.73423 0.867115 0.498107i \(-0.165971\pi\)
0.867115 + 0.498107i \(0.165971\pi\)
\(954\) −0.654451 −0.0211886
\(955\) −65.5717 −2.12185
\(956\) 19.5912 0.633625
\(957\) 20.6584 0.667792
\(958\) −10.0047 −0.323237
\(959\) 0 0
\(960\) 7.45484 0.240604
\(961\) −20.5276 −0.662181
\(962\) −33.4028 −1.07695
\(963\) −0.548865 −0.0176869
\(964\) −8.30435 −0.267465
\(965\) −2.41442 −0.0777229
\(966\) 0 0
\(967\) −10.1189 −0.325400 −0.162700 0.986676i \(-0.552020\pi\)
−0.162700 + 0.986676i \(0.552020\pi\)
\(968\) −0.831814 −0.0267355
\(969\) 25.0399 0.804396
\(970\) −24.5069 −0.786868
\(971\) −29.0462 −0.932138 −0.466069 0.884748i \(-0.654330\pi\)
−0.466069 + 0.884748i \(0.654330\pi\)
\(972\) 0.557439 0.0178799
\(973\) 0 0
\(974\) 26.9160 0.862443
\(975\) −106.320 −3.40497
\(976\) −13.4890 −0.431771
\(977\) 13.9144 0.445162 0.222581 0.974914i \(-0.428552\pi\)
0.222581 + 0.974914i \(0.428552\pi\)
\(978\) −25.2762 −0.808243
\(979\) 16.6552 0.532303
\(980\) 0 0
\(981\) 0.473764 0.0151261
\(982\) −17.6787 −0.564149
\(983\) −29.9336 −0.954733 −0.477366 0.878704i \(-0.658409\pi\)
−0.477366 + 0.878704i \(0.658409\pi\)
\(984\) 8.93750 0.284917
\(985\) 37.1718 1.18439
\(986\) 11.7108 0.372948
\(987\) 0 0
\(988\) 20.9100 0.665236
\(989\) 2.29605 0.0730102
\(990\) −0.729773 −0.0231937
\(991\) −42.0609 −1.33611 −0.668055 0.744112i \(-0.732873\pi\)
−0.668055 + 0.744112i \(0.732873\pi\)
\(992\) −3.23611 −0.102746
\(993\) 31.5144 1.00008
\(994\) 0 0
\(995\) 55.8837 1.77163
\(996\) −16.3655 −0.518560
\(997\) 9.84084 0.311662 0.155831 0.987784i \(-0.450194\pi\)
0.155831 + 0.987784i \(0.450194\pi\)
\(998\) 21.5441 0.681966
\(999\) −37.3100 −1.18044
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.2.a.x.1.2 4
7.3 odd 6 322.2.e.a.93.2 8
7.5 odd 6 322.2.e.a.277.2 yes 8
7.6 odd 2 2254.2.a.z.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.2.e.a.93.2 8 7.3 odd 6
322.2.e.a.277.2 yes 8 7.5 odd 6
2254.2.a.x.1.2 4 1.1 even 1 trivial
2254.2.a.z.1.3 4 7.6 odd 2