Properties

Label 2254.2.a
Level $2254$
Weight $2$
Character orbit 2254.a
Rep. character $\chi_{2254}(1,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $28$
Sturm bound $672$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(672\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2254))\).

Total New Old
Modular forms 352 76 276
Cusp forms 321 76 245
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(36\)\(8\)\(28\)\(33\)\(8\)\(25\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(52\)\(12\)\(40\)\(48\)\(12\)\(36\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(52\)\(11\)\(41\)\(48\)\(11\)\(37\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(36\)\(8\)\(28\)\(32\)\(8\)\(24\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(40\)\(10\)\(30\)\(36\)\(10\)\(26\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(48\)\(6\)\(42\)\(44\)\(6\)\(38\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(48\)\(9\)\(39\)\(44\)\(9\)\(35\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(40\)\(12\)\(28\)\(36\)\(12\)\(24\)\(4\)\(0\)\(4\)
Plus space\(+\)\(168\)\(31\)\(137\)\(153\)\(31\)\(122\)\(15\)\(0\)\(15\)
Minus space\(-\)\(184\)\(45\)\(139\)\(168\)\(45\)\(123\)\(16\)\(0\)\(16\)

Trace form

\( 76 q - 2 q^{2} + 76 q^{4} - 2 q^{5} - 2 q^{8} + 84 q^{9} - 2 q^{10} + 6 q^{11} + 4 q^{13} + 24 q^{15} + 76 q^{16} + 12 q^{17} - 10 q^{18} + 10 q^{19} - 2 q^{20} + 2 q^{22} + 80 q^{25} + 24 q^{27} + 4 q^{29}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2254))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 23
2254.2.a.a 2254.a 1.a $1$ $17.998$ \(\Q\) None 322.2.a.b \(-1\) \(-2\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}+2q^{6}-q^{8}+q^{9}+\cdots\)
2254.2.a.b 2254.a 1.a $1$ $17.998$ \(\Q\) None 2254.2.a.b \(-1\) \(-2\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}+2q^{5}+2q^{6}-q^{8}+\cdots\)
2254.2.a.c 2254.a 1.a $1$ $17.998$ \(\Q\) None 46.2.a.a \(-1\) \(0\) \(-4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{5}-q^{8}-3q^{9}+4q^{10}+\cdots\)
2254.2.a.d 2254.a 1.a $1$ $17.998$ \(\Q\) None 322.2.a.a \(-1\) \(0\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{8}-3q^{9}-2q^{10}+\cdots\)
2254.2.a.e 2254.a 1.a $1$ $17.998$ \(\Q\) None 2254.2.a.b \(-1\) \(2\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}-2q^{5}-2q^{6}-q^{8}+\cdots\)
2254.2.a.f 2254.a 1.a $1$ $17.998$ \(\Q\) None 322.2.a.d \(1\) \(-2\) \(2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}+2q^{5}-2q^{6}+q^{8}+\cdots\)
2254.2.a.g 2254.a 1.a $1$ $17.998$ \(\Q\) None 322.2.a.c \(1\) \(2\) \(2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{5}+2q^{6}+q^{8}+\cdots\)
2254.2.a.h 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{5}) \) None 2254.2.a.h \(-2\) \(-2\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1-\beta )q^{3}+q^{4}+(-1-\beta )q^{5}+\cdots\)
2254.2.a.i 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{2}) \) None 2254.2.a.i \(-2\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-\beta q^{5}-q^{8}-3q^{9}+\beta q^{10}+\cdots\)
2254.2.a.j 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{2}) \) None 2254.2.a.j \(-2\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+2\beta q^{3}+q^{4}-3\beta q^{5}-2\beta q^{6}+\cdots\)
2254.2.a.k 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{5}) \) None 322.2.a.e \(-2\) \(2\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}+(1-\beta )q^{5}+\cdots\)
2254.2.a.l 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{5}) \) None 2254.2.a.h \(-2\) \(2\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}+(1+\beta )q^{5}+\cdots\)
2254.2.a.m 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{2}) \) None 2254.2.a.m \(2\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta q^{5}+q^{8}-3q^{9}+\beta q^{10}+\cdots\)
2254.2.a.n 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{2}) \) None 2254.2.a.n \(2\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}-\beta q^{5}+\beta q^{6}+q^{8}+\cdots\)
2254.2.a.o 2254.a 1.a $2$ $17.998$ \(\Q(\sqrt{3}) \) None 322.2.a.f \(2\) \(2\) \(-2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}+(-1+\beta )q^{5}+\cdots\)
2254.2.a.p 2254.a 1.a $3$ $17.998$ 3.3.316.1 None 322.2.a.g \(3\) \(-2\) \(-4\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1-\beta _{2})q^{3}+q^{4}+(-1+\beta _{2})q^{5}+\cdots\)
2254.2.a.q 2254.a 1.a $4$ $17.998$ 4.4.14013.1 None 322.2.e.c \(-4\) \(-1\) \(-3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{2}q^{3}+q^{4}+(-1+\beta _{1})q^{5}+\cdots\)
2254.2.a.r 2254.a 1.a $4$ $17.998$ 4.4.8957.1 None 322.2.e.d \(-4\) \(-1\) \(5\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(2+\beta _{2}-\beta _{3})q^{5}+\cdots\)
2254.2.a.s 2254.a 1.a $4$ $17.998$ \(\Q(\sqrt{2}, \sqrt{5})\) None 2254.2.a.s \(-4\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(\beta _{1}-\beta _{2})q^{5}+\cdots\)
2254.2.a.t 2254.a 1.a $4$ $17.998$ \(\Q(\sqrt{2}, \sqrt{13})\) None 2254.2.a.t \(-4\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(\beta _{1}+\beta _{2})q^{3}+q^{4}+\beta _{1}q^{5}+\cdots\)
2254.2.a.u 2254.a 1.a $4$ $17.998$ 4.4.8957.1 None 322.2.e.d \(-4\) \(1\) \(-5\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{3}q^{3}+q^{4}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
2254.2.a.v 2254.a 1.a $4$ $17.998$ 4.4.14013.1 None 322.2.e.c \(-4\) \(1\) \(3\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{2}q^{3}+q^{4}+(1-\beta _{1})q^{5}-\beta _{2}q^{6}+\cdots\)
2254.2.a.w 2254.a 1.a $4$ $17.998$ 4.4.14013.1 None 322.2.e.b \(4\) \(-5\) \(-5\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1-\beta _{1})q^{3}+q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\)
2254.2.a.x 2254.a 1.a $4$ $17.998$ 4.4.1957.1 None 322.2.e.a \(4\) \(-3\) \(-7\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+q^{4}+(-2+\cdots)q^{5}+\cdots\)
2254.2.a.y 2254.a 1.a $4$ $17.998$ 4.4.9248.1 None 2254.2.a.y \(4\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{2}q^{3}+q^{4}-\beta _{1}q^{5}+\beta _{2}q^{6}+\cdots\)
2254.2.a.z 2254.a 1.a $4$ $17.998$ 4.4.1957.1 None 322.2.e.a \(4\) \(3\) \(7\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta _{1}+\beta _{2})q^{3}+q^{4}+(2-\beta _{3})q^{5}+\cdots\)
2254.2.a.ba 2254.a 1.a $4$ $17.998$ 4.4.14013.1 None 322.2.e.b \(4\) \(5\) \(5\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta _{1})q^{3}+q^{4}+(1+\beta _{2}+\beta _{3})q^{5}+\cdots\)
2254.2.a.bb 2254.a 1.a $6$ $17.998$ 6.6.2803712.1 None 2254.2.a.bb \(6\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{4}q^{3}+q^{4}+\beta _{1}q^{5}+\beta _{4}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2254))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2254)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1127))\)\(^{\oplus 2}\)