Defining parameters
Level: | \( N \) | \(=\) | \( 2254 = 2 \cdot 7^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2254.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2254))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 352 | 76 | 276 |
Cusp forms | 321 | 76 | 245 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(36\) | \(8\) | \(28\) | \(33\) | \(8\) | \(25\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(52\) | \(12\) | \(40\) | \(48\) | \(12\) | \(36\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(52\) | \(11\) | \(41\) | \(48\) | \(11\) | \(37\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(36\) | \(8\) | \(28\) | \(32\) | \(8\) | \(24\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(40\) | \(10\) | \(30\) | \(36\) | \(10\) | \(26\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(48\) | \(6\) | \(42\) | \(44\) | \(6\) | \(38\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(48\) | \(9\) | \(39\) | \(44\) | \(9\) | \(35\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(40\) | \(12\) | \(28\) | \(36\) | \(12\) | \(24\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(168\) | \(31\) | \(137\) | \(153\) | \(31\) | \(122\) | \(15\) | \(0\) | \(15\) | |||||
Minus space | \(-\) | \(184\) | \(45\) | \(139\) | \(168\) | \(45\) | \(123\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2254))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2254))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2254)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1127))\)\(^{\oplus 2}\)