Properties

Label 225.9.d.c.224.5
Level $225$
Weight $9$
Character 225.224
Analytic conductor $91.660$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,9,Mod(224,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.224"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 225.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.6601872638\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 224.5
Character \(\chi\) \(=\) 225.224
Dual form 225.9.d.c.224.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-23.2704 q^{2} +285.513 q^{4} -4399.16i q^{7} -686.784 q^{8} -16184.6i q^{11} -2771.50i q^{13} +102370. i q^{14} -57109.6 q^{16} -26479.8 q^{17} -186497. q^{19} +376622. i q^{22} -52174.8 q^{23} +64494.0i q^{26} -1.25602e6i q^{28} +928476. i q^{29} -960982. q^{31} +1.50478e6 q^{32} +616197. q^{34} +2.30066e6i q^{37} +4.33986e6 q^{38} -3.41833e6i q^{41} +4.56761e6i q^{43} -4.62091e6i q^{44} +1.21413e6 q^{46} -3.39999e6 q^{47} -1.35878e7 q^{49} -791299. i q^{52} +6.12740e6 q^{53} +3.02127e6i q^{56} -2.16060e7i q^{58} -1.07944e7i q^{59} -7.04198e6 q^{61} +2.23625e7 q^{62} -2.03969e7 q^{64} -2.46307e7i q^{67} -7.56034e6 q^{68} +3.67232e7i q^{71} -3.11078e7i q^{73} -5.35374e7i q^{74} -5.32472e7 q^{76} -7.11986e7 q^{77} -6.46442e7 q^{79} +7.95461e7i q^{82} +7.65633e7 q^{83} -1.06290e8i q^{86} +1.11153e7i q^{88} -5.07750e7i q^{89} -1.21923e7 q^{91} -1.48966e7 q^{92} +7.91192e7 q^{94} -8.64077e7i q^{97} +3.16194e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 5048 q^{4} + 595144 q^{16} - 249920 q^{19} - 1241936 q^{31} - 14972992 q^{34} - 14323536 q^{46} - 42020312 q^{49} + 56906192 q^{61} + 338779896 q^{64} - 511347840 q^{76} + 127619024 q^{79} - 593698576 q^{91}+ \cdots - 51203776 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −23.2704 −1.45440 −0.727201 0.686424i \(-0.759179\pi\)
−0.727201 + 0.686424i \(0.759179\pi\)
\(3\) 0 0
\(4\) 285.513 1.11529
\(5\) 0 0
\(6\) 0 0
\(7\) − 4399.16i − 1.83222i −0.400927 0.916110i \(-0.631312\pi\)
0.400927 0.916110i \(-0.368688\pi\)
\(8\) −686.784 −0.167672
\(9\) 0 0
\(10\) 0 0
\(11\) − 16184.6i − 1.10543i −0.833371 0.552714i \(-0.813592\pi\)
0.833371 0.552714i \(-0.186408\pi\)
\(12\) 0 0
\(13\) − 2771.50i − 0.0970379i −0.998822 0.0485189i \(-0.984550\pi\)
0.998822 0.0485189i \(-0.0154501\pi\)
\(14\) 102370.i 2.66478i
\(15\) 0 0
\(16\) −57109.6 −0.871424
\(17\) −26479.8 −0.317044 −0.158522 0.987355i \(-0.550673\pi\)
−0.158522 + 0.987355i \(0.550673\pi\)
\(18\) 0 0
\(19\) −186497. −1.43106 −0.715528 0.698584i \(-0.753814\pi\)
−0.715528 + 0.698584i \(0.753814\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 376622.i 1.60774i
\(23\) −52174.8 −0.186445 −0.0932223 0.995645i \(-0.529717\pi\)
−0.0932223 + 0.995645i \(0.529717\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 64494.0i 0.141132i
\(27\) 0 0
\(28\) − 1.25602e6i − 2.04345i
\(29\) 928476.i 1.31274i 0.754439 + 0.656370i \(0.227909\pi\)
−0.754439 + 0.656370i \(0.772091\pi\)
\(30\) 0 0
\(31\) −960982. −1.04056 −0.520282 0.853995i \(-0.674173\pi\)
−0.520282 + 0.853995i \(0.674173\pi\)
\(32\) 1.50478e6 1.43507
\(33\) 0 0
\(34\) 616197. 0.461109
\(35\) 0 0
\(36\) 0 0
\(37\) 2.30066e6i 1.22757i 0.789474 + 0.613784i \(0.210354\pi\)
−0.789474 + 0.613784i \(0.789646\pi\)
\(38\) 4.33986e6 2.08133
\(39\) 0 0
\(40\) 0 0
\(41\) − 3.41833e6i − 1.20970i −0.796338 0.604852i \(-0.793232\pi\)
0.796338 0.604852i \(-0.206768\pi\)
\(42\) 0 0
\(43\) 4.56761e6i 1.33603i 0.744149 + 0.668013i \(0.232855\pi\)
−0.744149 + 0.668013i \(0.767145\pi\)
\(44\) − 4.62091e6i − 1.23287i
\(45\) 0 0
\(46\) 1.21413e6 0.271165
\(47\) −3.39999e6 −0.696764 −0.348382 0.937353i \(-0.613269\pi\)
−0.348382 + 0.937353i \(0.613269\pi\)
\(48\) 0 0
\(49\) −1.35878e7 −2.35703
\(50\) 0 0
\(51\) 0 0
\(52\) − 791299.i − 0.108225i
\(53\) 6.12740e6 0.776556 0.388278 0.921542i \(-0.373070\pi\)
0.388278 + 0.921542i \(0.373070\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.02127e6i 0.307211i
\(57\) 0 0
\(58\) − 2.16060e7i − 1.90925i
\(59\) − 1.07944e7i − 0.890824i −0.895326 0.445412i \(-0.853057\pi\)
0.895326 0.445412i \(-0.146943\pi\)
\(60\) 0 0
\(61\) −7.04198e6 −0.508599 −0.254300 0.967125i \(-0.581845\pi\)
−0.254300 + 0.967125i \(0.581845\pi\)
\(62\) 2.23625e7 1.51340
\(63\) 0 0
\(64\) −2.03969e7 −1.21575
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.46307e7i − 1.22230i −0.791514 0.611151i \(-0.790707\pi\)
0.791514 0.611151i \(-0.209293\pi\)
\(68\) −7.56034e6 −0.353594
\(69\) 0 0
\(70\) 0 0
\(71\) 3.67232e7i 1.44513i 0.691303 + 0.722565i \(0.257037\pi\)
−0.691303 + 0.722565i \(0.742963\pi\)
\(72\) 0 0
\(73\) − 3.11078e7i − 1.09541i −0.836671 0.547706i \(-0.815501\pi\)
0.836671 0.547706i \(-0.184499\pi\)
\(74\) − 5.35374e7i − 1.78538i
\(75\) 0 0
\(76\) −5.32472e7 −1.59604
\(77\) −7.11986e7 −2.02539
\(78\) 0 0
\(79\) −6.46442e7 −1.65967 −0.829834 0.558010i \(-0.811565\pi\)
−0.829834 + 0.558010i \(0.811565\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.95461e7i 1.75940i
\(83\) 7.65633e7 1.61328 0.806638 0.591046i \(-0.201285\pi\)
0.806638 + 0.591046i \(0.201285\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 1.06290e8i − 1.94312i
\(87\) 0 0
\(88\) 1.11153e7i 0.185349i
\(89\) − 5.07750e7i − 0.809264i −0.914480 0.404632i \(-0.867400\pi\)
0.914480 0.404632i \(-0.132600\pi\)
\(90\) 0 0
\(91\) −1.21923e7 −0.177795
\(92\) −1.48966e7 −0.207939
\(93\) 0 0
\(94\) 7.91192e7 1.01338
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.64077e7i − 0.976035i −0.872834 0.488017i \(-0.837720\pi\)
0.872834 0.488017i \(-0.162280\pi\)
\(98\) 3.16194e8 3.42807
\(99\) 0 0
\(100\) 0 0
\(101\) 1.25688e8i 1.20783i 0.797047 + 0.603917i \(0.206394\pi\)
−0.797047 + 0.603917i \(0.793606\pi\)
\(102\) 0 0
\(103\) − 2.63087e7i − 0.233750i −0.993147 0.116875i \(-0.962712\pi\)
0.993147 0.116875i \(-0.0372876\pi\)
\(104\) 1.90342e6i 0.0162705i
\(105\) 0 0
\(106\) −1.42587e8 −1.12942
\(107\) 2.49819e8 1.90586 0.952929 0.303193i \(-0.0980527\pi\)
0.952929 + 0.303193i \(0.0980527\pi\)
\(108\) 0 0
\(109\) 5.80899e6 0.0411523 0.0205762 0.999788i \(-0.493450\pi\)
0.0205762 + 0.999788i \(0.493450\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.51234e8i 1.59664i
\(113\) −1.50367e8 −0.922228 −0.461114 0.887341i \(-0.652550\pi\)
−0.461114 + 0.887341i \(0.652550\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.65092e8i 1.46408i
\(117\) 0 0
\(118\) 2.51191e8i 1.29562i
\(119\) 1.16489e8i 0.580894i
\(120\) 0 0
\(121\) −4.75819e7 −0.221973
\(122\) 1.63870e8 0.739708
\(123\) 0 0
\(124\) −2.74373e8 −1.16053
\(125\) 0 0
\(126\) 0 0
\(127\) 2.68993e8i 1.03401i 0.855982 + 0.517006i \(0.172954\pi\)
−0.855982 + 0.517006i \(0.827046\pi\)
\(128\) 8.94199e7 0.333115
\(129\) 0 0
\(130\) 0 0
\(131\) 2.59837e8i 0.882298i 0.897434 + 0.441149i \(0.145429\pi\)
−0.897434 + 0.441149i \(0.854571\pi\)
\(132\) 0 0
\(133\) 8.20428e8i 2.62201i
\(134\) 5.73168e8i 1.77772i
\(135\) 0 0
\(136\) 1.81859e7 0.0531593
\(137\) 2.23476e8 0.634378 0.317189 0.948362i \(-0.397261\pi\)
0.317189 + 0.948362i \(0.397261\pi\)
\(138\) 0 0
\(139\) 3.10970e8 0.833028 0.416514 0.909129i \(-0.363252\pi\)
0.416514 + 0.909129i \(0.363252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 8.54564e8i − 2.10180i
\(143\) −4.48556e7 −0.107269
\(144\) 0 0
\(145\) 0 0
\(146\) 7.23891e8i 1.59317i
\(147\) 0 0
\(148\) 6.56869e8i 1.36909i
\(149\) 191472.i 0 0.000388473i 1.00000 0.000194236i \(6.18274e-5\pi\)
−1.00000 0.000194236i \(0.999938\pi\)
\(150\) 0 0
\(151\) 5.84355e8 1.12401 0.562004 0.827135i \(-0.310031\pi\)
0.562004 + 0.827135i \(0.310031\pi\)
\(152\) 1.28083e8 0.239948
\(153\) 0 0
\(154\) 1.65682e9 2.94573
\(155\) 0 0
\(156\) 0 0
\(157\) 7.91625e7i 0.130293i 0.997876 + 0.0651464i \(0.0207515\pi\)
−0.997876 + 0.0651464i \(0.979249\pi\)
\(158\) 1.50430e9 2.41383
\(159\) 0 0
\(160\) 0 0
\(161\) 2.29525e8i 0.341607i
\(162\) 0 0
\(163\) 3.52707e8i 0.499648i 0.968291 + 0.249824i \(0.0803727\pi\)
−0.968291 + 0.249824i \(0.919627\pi\)
\(164\) − 9.75979e8i − 1.34917i
\(165\) 0 0
\(166\) −1.78166e9 −2.34635
\(167\) −7.67131e8 −0.986288 −0.493144 0.869948i \(-0.664152\pi\)
−0.493144 + 0.869948i \(0.664152\pi\)
\(168\) 0 0
\(169\) 8.08050e8 0.990584
\(170\) 0 0
\(171\) 0 0
\(172\) 1.30411e9i 1.49005i
\(173\) −3.74444e8 −0.418025 −0.209012 0.977913i \(-0.567025\pi\)
−0.209012 + 0.977913i \(0.567025\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.24295e8i 0.963297i
\(177\) 0 0
\(178\) 1.18156e9i 1.17699i
\(179\) − 5.04945e8i − 0.491849i −0.969289 0.245924i \(-0.920909\pi\)
0.969289 0.245924i \(-0.0790915\pi\)
\(180\) 0 0
\(181\) 1.13823e9 1.06051 0.530255 0.847838i \(-0.322096\pi\)
0.530255 + 0.847838i \(0.322096\pi\)
\(182\) 2.83719e8 0.258585
\(183\) 0 0
\(184\) 3.58328e7 0.0312615
\(185\) 0 0
\(186\) 0 0
\(187\) 4.28565e8i 0.350469i
\(188\) −9.70741e8 −0.777091
\(189\) 0 0
\(190\) 0 0
\(191\) − 5.34154e8i − 0.401359i −0.979657 0.200680i \(-0.935685\pi\)
0.979657 0.200680i \(-0.0643150\pi\)
\(192\) 0 0
\(193\) − 1.65692e9i − 1.19418i −0.802173 0.597092i \(-0.796323\pi\)
0.802173 0.597092i \(-0.203677\pi\)
\(194\) 2.01074e9i 1.41955i
\(195\) 0 0
\(196\) −3.87950e9 −2.62876
\(197\) 1.87487e8 0.124482 0.0622408 0.998061i \(-0.480175\pi\)
0.0622408 + 0.998061i \(0.480175\pi\)
\(198\) 0 0
\(199\) −4.54531e8 −0.289835 −0.144918 0.989444i \(-0.546292\pi\)
−0.144918 + 0.989444i \(0.546292\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 2.92481e9i − 1.75668i
\(203\) 4.08451e9 2.40523
\(204\) 0 0
\(205\) 0 0
\(206\) 6.12215e8i 0.339966i
\(207\) 0 0
\(208\) 1.58279e8i 0.0845611i
\(209\) 3.01837e9i 1.58193i
\(210\) 0 0
\(211\) 2.53860e9 1.28075 0.640376 0.768062i \(-0.278779\pi\)
0.640376 + 0.768062i \(0.278779\pi\)
\(212\) 1.74945e9 0.866082
\(213\) 0 0
\(214\) −5.81340e9 −2.77188
\(215\) 0 0
\(216\) 0 0
\(217\) 4.22751e9i 1.90654i
\(218\) −1.35178e8 −0.0598521
\(219\) 0 0
\(220\) 0 0
\(221\) 7.33888e7i 0.0307653i
\(222\) 0 0
\(223\) − 1.35915e9i − 0.549602i −0.961501 0.274801i \(-0.911388\pi\)
0.961501 0.274801i \(-0.0886120\pi\)
\(224\) − 6.61978e9i − 2.62937i
\(225\) 0 0
\(226\) 3.49910e9 1.34129
\(227\) 9.20041e8 0.346500 0.173250 0.984878i \(-0.444573\pi\)
0.173250 + 0.984878i \(0.444573\pi\)
\(228\) 0 0
\(229\) −4.11927e9 −1.49789 −0.748943 0.662634i \(-0.769438\pi\)
−0.748943 + 0.662634i \(0.769438\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 6.37662e8i − 0.220109i
\(233\) −1.65614e9 −0.561918 −0.280959 0.959720i \(-0.590653\pi\)
−0.280959 + 0.959720i \(0.590653\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 3.08195e9i − 0.993523i
\(237\) 0 0
\(238\) − 2.71075e9i − 0.844853i
\(239\) − 2.82808e9i − 0.866761i −0.901211 0.433380i \(-0.857321\pi\)
0.901211 0.433380i \(-0.142679\pi\)
\(240\) 0 0
\(241\) −5.61470e9 −1.66440 −0.832201 0.554474i \(-0.812920\pi\)
−0.832201 + 0.554474i \(0.812920\pi\)
\(242\) 1.10725e9 0.322838
\(243\) 0 0
\(244\) −2.01058e9 −0.567233
\(245\) 0 0
\(246\) 0 0
\(247\) 5.16875e8i 0.138867i
\(248\) 6.59987e8 0.174473
\(249\) 0 0
\(250\) 0 0
\(251\) 3.82921e9i 0.964749i 0.875965 + 0.482375i \(0.160226\pi\)
−0.875965 + 0.482375i \(0.839774\pi\)
\(252\) 0 0
\(253\) 8.44428e8i 0.206101i
\(254\) − 6.25958e9i − 1.50387i
\(255\) 0 0
\(256\) 3.14076e9 0.731265
\(257\) −5.39550e9 −1.23680 −0.618399 0.785864i \(-0.712219\pi\)
−0.618399 + 0.785864i \(0.712219\pi\)
\(258\) 0 0
\(259\) 1.01210e10 2.24918
\(260\) 0 0
\(261\) 0 0
\(262\) − 6.04651e9i − 1.28322i
\(263\) 2.65139e9 0.554180 0.277090 0.960844i \(-0.410630\pi\)
0.277090 + 0.960844i \(0.410630\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 1.90917e10i − 3.81346i
\(267\) 0 0
\(268\) − 7.03240e9i − 1.36322i
\(269\) 5.01721e9i 0.958193i 0.877762 + 0.479097i \(0.159036\pi\)
−0.877762 + 0.479097i \(0.840964\pi\)
\(270\) 0 0
\(271\) −1.66334e9 −0.308393 −0.154196 0.988040i \(-0.549279\pi\)
−0.154196 + 0.988040i \(0.549279\pi\)
\(272\) 1.51225e9 0.276279
\(273\) 0 0
\(274\) −5.20038e9 −0.922641
\(275\) 0 0
\(276\) 0 0
\(277\) 3.31124e9i 0.562434i 0.959644 + 0.281217i \(0.0907381\pi\)
−0.959644 + 0.281217i \(0.909262\pi\)
\(278\) −7.23641e9 −1.21156
\(279\) 0 0
\(280\) 0 0
\(281\) 6.52601e9i 1.04670i 0.852118 + 0.523350i \(0.175318\pi\)
−0.852118 + 0.523350i \(0.824682\pi\)
\(282\) 0 0
\(283\) − 1.10332e10i − 1.72010i −0.510207 0.860052i \(-0.670431\pi\)
0.510207 0.860052i \(-0.329569\pi\)
\(284\) 1.04849e10i 1.61173i
\(285\) 0 0
\(286\) 1.04381e9 0.156012
\(287\) −1.50378e10 −2.21644
\(288\) 0 0
\(289\) −6.27458e9 −0.899483
\(290\) 0 0
\(291\) 0 0
\(292\) − 8.88167e9i − 1.22170i
\(293\) −1.28273e10 −1.74046 −0.870230 0.492646i \(-0.836030\pi\)
−0.870230 + 0.492646i \(0.836030\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 1.58006e9i − 0.205829i
\(297\) 0 0
\(298\) − 4.45564e6i 0 0.000564996i
\(299\) 1.44603e8i 0.0180922i
\(300\) 0 0
\(301\) 2.00936e10 2.44789
\(302\) −1.35982e10 −1.63476
\(303\) 0 0
\(304\) 1.06508e10 1.24706
\(305\) 0 0
\(306\) 0 0
\(307\) 8.62442e9i 0.970904i 0.874263 + 0.485452i \(0.161345\pi\)
−0.874263 + 0.485452i \(0.838655\pi\)
\(308\) −2.03281e10 −2.25889
\(309\) 0 0
\(310\) 0 0
\(311\) − 2.03281e9i − 0.217298i −0.994080 0.108649i \(-0.965348\pi\)
0.994080 0.108649i \(-0.0346524\pi\)
\(312\) 0 0
\(313\) 7.06926e8i 0.0736541i 0.999322 + 0.0368270i \(0.0117251\pi\)
−0.999322 + 0.0368270i \(0.988275\pi\)
\(314\) − 1.84215e9i − 0.189498i
\(315\) 0 0
\(316\) −1.84568e10 −1.85100
\(317\) 1.51681e10 1.50208 0.751041 0.660255i \(-0.229552\pi\)
0.751041 + 0.660255i \(0.229552\pi\)
\(318\) 0 0
\(319\) 1.50270e10 1.45114
\(320\) 0 0
\(321\) 0 0
\(322\) − 5.34116e9i − 0.496835i
\(323\) 4.93840e9 0.453707
\(324\) 0 0
\(325\) 0 0
\(326\) − 8.20765e9i − 0.726689i
\(327\) 0 0
\(328\) 2.34766e9i 0.202833i
\(329\) 1.49571e10i 1.27663i
\(330\) 0 0
\(331\) 2.23026e10 1.85799 0.928994 0.370095i \(-0.120675\pi\)
0.928994 + 0.370095i \(0.120675\pi\)
\(332\) 2.18598e10 1.79926
\(333\) 0 0
\(334\) 1.78515e10 1.43446
\(335\) 0 0
\(336\) 0 0
\(337\) − 4.40375e9i − 0.341431i −0.985320 0.170716i \(-0.945392\pi\)
0.985320 0.170716i \(-0.0546079\pi\)
\(338\) −1.88037e10 −1.44071
\(339\) 0 0
\(340\) 0 0
\(341\) 1.55531e10i 1.15027i
\(342\) 0 0
\(343\) 3.44146e10i 2.48637i
\(344\) − 3.13696e9i − 0.224014i
\(345\) 0 0
\(346\) 8.71347e9 0.607976
\(347\) 5.58698e9 0.385353 0.192677 0.981262i \(-0.438283\pi\)
0.192677 + 0.981262i \(0.438283\pi\)
\(348\) 0 0
\(349\) −1.47015e10 −0.990969 −0.495485 0.868617i \(-0.665010\pi\)
−0.495485 + 0.868617i \(0.665010\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 2.43543e10i − 1.58637i
\(353\) −5.68423e7 −0.00366078 −0.00183039 0.999998i \(-0.500583\pi\)
−0.00183039 + 0.999998i \(0.500583\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 1.44969e10i − 0.902560i
\(357\) 0 0
\(358\) 1.17503e10i 0.715346i
\(359\) 9.56361e9i 0.575763i 0.957666 + 0.287882i \(0.0929510\pi\)
−0.957666 + 0.287882i \(0.907049\pi\)
\(360\) 0 0
\(361\) 1.77974e10 1.04792
\(362\) −2.64870e10 −1.54241
\(363\) 0 0
\(364\) −3.48105e9 −0.198292
\(365\) 0 0
\(366\) 0 0
\(367\) 2.94912e10i 1.62565i 0.582505 + 0.812827i \(0.302073\pi\)
−0.582505 + 0.812827i \(0.697927\pi\)
\(368\) 2.97968e9 0.162472
\(369\) 0 0
\(370\) 0 0
\(371\) − 2.69554e10i − 1.42282i
\(372\) 0 0
\(373\) − 6.87435e9i − 0.355137i −0.984108 0.177569i \(-0.943177\pi\)
0.984108 0.177569i \(-0.0568232\pi\)
\(374\) − 9.97289e9i − 0.509723i
\(375\) 0 0
\(376\) 2.33506e9 0.116828
\(377\) 2.57327e9 0.127385
\(378\) 0 0
\(379\) −6.23700e9 −0.302287 −0.151143 0.988512i \(-0.548296\pi\)
−0.151143 + 0.988512i \(0.548296\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.24300e10i 0.583738i
\(383\) 2.51985e10 1.17106 0.585530 0.810651i \(-0.300886\pi\)
0.585530 + 0.810651i \(0.300886\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.85572e10i 1.73682i
\(387\) 0 0
\(388\) − 2.46705e10i − 1.08856i
\(389\) 1.81758e10i 0.793771i 0.917868 + 0.396886i \(0.129909\pi\)
−0.917868 + 0.396886i \(0.870091\pi\)
\(390\) 0 0
\(391\) 1.38158e9 0.0591111
\(392\) 9.33188e9 0.395207
\(393\) 0 0
\(394\) −4.36290e9 −0.181046
\(395\) 0 0
\(396\) 0 0
\(397\) − 7.27352e9i − 0.292808i −0.989225 0.146404i \(-0.953230\pi\)
0.989225 0.146404i \(-0.0467699\pi\)
\(398\) 1.05771e10 0.421537
\(399\) 0 0
\(400\) 0 0
\(401\) 2.20001e10i 0.850839i 0.904996 + 0.425420i \(0.139874\pi\)
−0.904996 + 0.425420i \(0.860126\pi\)
\(402\) 0 0
\(403\) 2.66336e9i 0.100974i
\(404\) 3.58855e10i 1.34708i
\(405\) 0 0
\(406\) −9.50484e10 −3.49817
\(407\) 3.72352e10 1.35699
\(408\) 0 0
\(409\) 1.79326e8 0.00640840 0.00320420 0.999995i \(-0.498980\pi\)
0.00320420 + 0.999995i \(0.498980\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 7.51148e9i − 0.260698i
\(413\) −4.74864e10 −1.63218
\(414\) 0 0
\(415\) 0 0
\(416\) − 4.17050e9i − 0.139256i
\(417\) 0 0
\(418\) − 7.02388e10i − 2.30076i
\(419\) − 3.72051e10i − 1.20711i −0.797322 0.603554i \(-0.793751\pi\)
0.797322 0.603554i \(-0.206249\pi\)
\(420\) 0 0
\(421\) −4.38448e9 −0.139569 −0.0697847 0.997562i \(-0.522231\pi\)
−0.0697847 + 0.997562i \(0.522231\pi\)
\(422\) −5.90744e10 −1.86273
\(423\) 0 0
\(424\) −4.20820e9 −0.130206
\(425\) 0 0
\(426\) 0 0
\(427\) 3.09788e10i 0.931866i
\(428\) 7.13266e10 2.12558
\(429\) 0 0
\(430\) 0 0
\(431\) − 2.16425e10i − 0.627190i −0.949557 0.313595i \(-0.898467\pi\)
0.949557 0.313595i \(-0.101533\pi\)
\(432\) 0 0
\(433\) − 6.74698e9i − 0.191937i −0.995384 0.0959683i \(-0.969405\pi\)
0.995384 0.0959683i \(-0.0305948\pi\)
\(434\) − 9.83761e10i − 2.77288i
\(435\) 0 0
\(436\) 1.65854e9 0.0458966
\(437\) 9.73043e9 0.266813
\(438\) 0 0
\(439\) 9.51260e9 0.256119 0.128059 0.991767i \(-0.459125\pi\)
0.128059 + 0.991767i \(0.459125\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 1.70779e9i − 0.0447451i
\(443\) 3.20737e10 0.832788 0.416394 0.909184i \(-0.363294\pi\)
0.416394 + 0.909184i \(0.363294\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.16281e10i 0.799343i
\(447\) 0 0
\(448\) 8.97291e10i 2.22752i
\(449\) − 2.94112e10i − 0.723648i −0.932246 0.361824i \(-0.882154\pi\)
0.932246 0.361824i \(-0.117846\pi\)
\(450\) 0 0
\(451\) −5.53243e10 −1.33724
\(452\) −4.29317e10 −1.02855
\(453\) 0 0
\(454\) −2.14098e10 −0.503951
\(455\) 0 0
\(456\) 0 0
\(457\) − 9.62260e9i − 0.220611i −0.993898 0.110306i \(-0.964817\pi\)
0.993898 0.110306i \(-0.0351830\pi\)
\(458\) 9.58573e10 2.17853
\(459\) 0 0
\(460\) 0 0
\(461\) − 3.66842e9i − 0.0812222i −0.999175 0.0406111i \(-0.987070\pi\)
0.999175 0.0406111i \(-0.0129305\pi\)
\(462\) 0 0
\(463\) − 2.55583e10i − 0.556170i −0.960556 0.278085i \(-0.910300\pi\)
0.960556 0.278085i \(-0.0896997\pi\)
\(464\) − 5.30249e10i − 1.14395i
\(465\) 0 0
\(466\) 3.85391e10 0.817255
\(467\) −3.61615e10 −0.760290 −0.380145 0.924927i \(-0.624126\pi\)
−0.380145 + 0.924927i \(0.624126\pi\)
\(468\) 0 0
\(469\) −1.08355e11 −2.23952
\(470\) 0 0
\(471\) 0 0
\(472\) 7.41344e9i 0.149366i
\(473\) 7.39249e10 1.47688
\(474\) 0 0
\(475\) 0 0
\(476\) 3.32591e10i 0.647863i
\(477\) 0 0
\(478\) 6.58105e10i 1.26062i
\(479\) 4.16338e10i 0.790868i 0.918494 + 0.395434i \(0.129406\pi\)
−0.918494 + 0.395434i \(0.870594\pi\)
\(480\) 0 0
\(481\) 6.37628e9 0.119121
\(482\) 1.30657e11 2.42071
\(483\) 0 0
\(484\) −1.35853e10 −0.247564
\(485\) 0 0
\(486\) 0 0
\(487\) − 9.11488e8i − 0.0162045i −0.999967 0.00810224i \(-0.997421\pi\)
0.999967 0.00810224i \(-0.00257905\pi\)
\(488\) 4.83632e9 0.0852777
\(489\) 0 0
\(490\) 0 0
\(491\) 5.05964e10i 0.870551i 0.900297 + 0.435275i \(0.143349\pi\)
−0.900297 + 0.435275i \(0.856651\pi\)
\(492\) 0 0
\(493\) − 2.45859e10i − 0.416196i
\(494\) − 1.20279e10i − 0.201968i
\(495\) 0 0
\(496\) 5.48813e10 0.906772
\(497\) 1.61551e11 2.64779
\(498\) 0 0
\(499\) 2.13194e10 0.343853 0.171926 0.985110i \(-0.445001\pi\)
0.171926 + 0.985110i \(0.445001\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 8.91074e10i − 1.40313i
\(503\) 8.15896e10 1.27457 0.637284 0.770629i \(-0.280058\pi\)
0.637284 + 0.770629i \(0.280058\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 1.96502e10i − 0.299754i
\(507\) 0 0
\(508\) 7.68010e10i 1.15322i
\(509\) 2.44976e10i 0.364966i 0.983209 + 0.182483i \(0.0584135\pi\)
−0.983209 + 0.182483i \(0.941587\pi\)
\(510\) 0 0
\(511\) −1.36848e11 −2.00703
\(512\) −9.59783e10 −1.39667
\(513\) 0 0
\(514\) 1.25556e11 1.79880
\(515\) 0 0
\(516\) 0 0
\(517\) 5.50274e10i 0.770223i
\(518\) −2.35519e11 −3.27121
\(519\) 0 0
\(520\) 0 0
\(521\) 1.37580e11i 1.86726i 0.358235 + 0.933631i \(0.383379\pi\)
−0.358235 + 0.933631i \(0.616621\pi\)
\(522\) 0 0
\(523\) 1.09839e10i 0.146808i 0.997302 + 0.0734039i \(0.0233862\pi\)
−0.997302 + 0.0734039i \(0.976614\pi\)
\(524\) 7.41868e10i 0.984015i
\(525\) 0 0
\(526\) −6.16990e10 −0.806001
\(527\) 2.54466e10 0.329904
\(528\) 0 0
\(529\) −7.55888e10 −0.965238
\(530\) 0 0
\(531\) 0 0
\(532\) 2.34243e11i 2.92429i
\(533\) −9.47391e9 −0.117387
\(534\) 0 0
\(535\) 0 0
\(536\) 1.69160e10i 0.204945i
\(537\) 0 0
\(538\) − 1.16753e11i − 1.39360i
\(539\) 2.19913e11i 2.60553i
\(540\) 0 0
\(541\) 6.88987e10 0.804307 0.402154 0.915572i \(-0.368262\pi\)
0.402154 + 0.915572i \(0.368262\pi\)
\(542\) 3.87066e10 0.448527
\(543\) 0 0
\(544\) −3.98464e10 −0.454981
\(545\) 0 0
\(546\) 0 0
\(547\) 7.36294e10i 0.822436i 0.911537 + 0.411218i \(0.134897\pi\)
−0.911537 + 0.411218i \(0.865103\pi\)
\(548\) 6.38053e10 0.707513
\(549\) 0 0
\(550\) 0 0
\(551\) − 1.73158e11i − 1.87860i
\(552\) 0 0
\(553\) 2.84380e11i 3.04088i
\(554\) − 7.70540e10i − 0.818005i
\(555\) 0 0
\(556\) 8.87861e10 0.929064
\(557\) −7.86391e10 −0.816992 −0.408496 0.912760i \(-0.633947\pi\)
−0.408496 + 0.912760i \(0.633947\pi\)
\(558\) 0 0
\(559\) 1.26591e10 0.129645
\(560\) 0 0
\(561\) 0 0
\(562\) − 1.51863e11i − 1.52232i
\(563\) −6.63370e10 −0.660271 −0.330135 0.943934i \(-0.607094\pi\)
−0.330135 + 0.943934i \(0.607094\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.56747e11i 2.50172i
\(567\) 0 0
\(568\) − 2.52209e10i − 0.242307i
\(569\) 5.16708e10i 0.492943i 0.969150 + 0.246471i \(0.0792711\pi\)
−0.969150 + 0.246471i \(0.920729\pi\)
\(570\) 0 0
\(571\) −1.04745e11 −0.985343 −0.492672 0.870215i \(-0.663980\pi\)
−0.492672 + 0.870215i \(0.663980\pi\)
\(572\) −1.28069e10 −0.119635
\(573\) 0 0
\(574\) 3.49936e11 3.22360
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.65645e11i − 1.49443i −0.664582 0.747216i \(-0.731390\pi\)
0.664582 0.747216i \(-0.268610\pi\)
\(578\) 1.46012e11 1.30821
\(579\) 0 0
\(580\) 0 0
\(581\) − 3.36814e11i − 2.95587i
\(582\) 0 0
\(583\) − 9.91694e10i − 0.858427i
\(584\) 2.13643e10i 0.183670i
\(585\) 0 0
\(586\) 2.98496e11 2.53133
\(587\) 2.42404e10 0.204168 0.102084 0.994776i \(-0.467449\pi\)
0.102084 + 0.994776i \(0.467449\pi\)
\(588\) 0 0
\(589\) 1.79220e11 1.48910
\(590\) 0 0
\(591\) 0 0
\(592\) − 1.31390e11i − 1.06973i
\(593\) 3.38219e10 0.273514 0.136757 0.990605i \(-0.456332\pi\)
0.136757 + 0.990605i \(0.456332\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.46678e7i 0 0.000433258i
\(597\) 0 0
\(598\) − 3.36496e9i − 0.0263133i
\(599\) − 1.38008e10i − 0.107200i −0.998562 0.0536002i \(-0.982930\pi\)
0.998562 0.0536002i \(-0.0170697\pi\)
\(600\) 0 0
\(601\) −1.27071e11 −0.973978 −0.486989 0.873408i \(-0.661905\pi\)
−0.486989 + 0.873408i \(0.661905\pi\)
\(602\) −4.67588e11 −3.56022
\(603\) 0 0
\(604\) 1.66841e11 1.25359
\(605\) 0 0
\(606\) 0 0
\(607\) − 2.61072e10i − 0.192312i −0.995366 0.0961558i \(-0.969345\pi\)
0.995366 0.0961558i \(-0.0306547\pi\)
\(608\) −2.80637e11 −2.05367
\(609\) 0 0
\(610\) 0 0
\(611\) 9.42306e9i 0.0676125i
\(612\) 0 0
\(613\) 1.31329e10i 0.0930075i 0.998918 + 0.0465037i \(0.0148079\pi\)
−0.998918 + 0.0465037i \(0.985192\pi\)
\(614\) − 2.00694e11i − 1.41208i
\(615\) 0 0
\(616\) 4.88980e10 0.339600
\(617\) 2.62461e11 1.81102 0.905512 0.424321i \(-0.139487\pi\)
0.905512 + 0.424321i \(0.139487\pi\)
\(618\) 0 0
\(619\) −4.91912e10 −0.335062 −0.167531 0.985867i \(-0.553579\pi\)
−0.167531 + 0.985867i \(0.553579\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.73044e10i 0.316039i
\(623\) −2.23367e11 −1.48275
\(624\) 0 0
\(625\) 0 0
\(626\) − 1.64505e10i − 0.107123i
\(627\) 0 0
\(628\) 2.26019e10i 0.145314i
\(629\) − 6.09211e10i − 0.389193i
\(630\) 0 0
\(631\) 2.00621e11 1.26549 0.632745 0.774361i \(-0.281928\pi\)
0.632745 + 0.774361i \(0.281928\pi\)
\(632\) 4.43966e10 0.278280
\(633\) 0 0
\(634\) −3.52968e11 −2.18463
\(635\) 0 0
\(636\) 0 0
\(637\) 3.76586e10i 0.228721i
\(638\) −3.49685e11 −2.11054
\(639\) 0 0
\(640\) 0 0
\(641\) − 8.38334e10i − 0.496575i −0.968686 0.248288i \(-0.920132\pi\)
0.968686 0.248288i \(-0.0798678\pi\)
\(642\) 0 0
\(643\) 5.19580e10i 0.303954i 0.988384 + 0.151977i \(0.0485640\pi\)
−0.988384 + 0.151977i \(0.951436\pi\)
\(644\) 6.55325e10i 0.380990i
\(645\) 0 0
\(646\) −1.14919e11 −0.659873
\(647\) 1.60226e11 0.914358 0.457179 0.889375i \(-0.348860\pi\)
0.457179 + 0.889375i \(0.348860\pi\)
\(648\) 0 0
\(649\) −1.74703e11 −0.984742
\(650\) 0 0
\(651\) 0 0
\(652\) 1.00703e11i 0.557250i
\(653\) 6.01694e10 0.330920 0.165460 0.986217i \(-0.447089\pi\)
0.165460 + 0.986217i \(0.447089\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.95220e11i 1.05416i
\(657\) 0 0
\(658\) − 3.48058e11i − 1.85673i
\(659\) − 5.94975e10i − 0.315469i −0.987482 0.157735i \(-0.949581\pi\)
0.987482 0.157735i \(-0.0504190\pi\)
\(660\) 0 0
\(661\) −2.59920e10 −0.136155 −0.0680775 0.997680i \(-0.521686\pi\)
−0.0680775 + 0.997680i \(0.521686\pi\)
\(662\) −5.18990e11 −2.70226
\(663\) 0 0
\(664\) −5.25824e10 −0.270501
\(665\) 0 0
\(666\) 0 0
\(667\) − 4.84431e10i − 0.244753i
\(668\) −2.19026e11 −1.09999
\(669\) 0 0
\(670\) 0 0
\(671\) 1.13972e11i 0.562220i
\(672\) 0 0
\(673\) − 1.53578e11i − 0.748634i −0.927301 0.374317i \(-0.877877\pi\)
0.927301 0.374317i \(-0.122123\pi\)
\(674\) 1.02477e11i 0.496578i
\(675\) 0 0
\(676\) 2.30709e11 1.10478
\(677\) 3.15811e11 1.50339 0.751697 0.659509i \(-0.229236\pi\)
0.751697 + 0.659509i \(0.229236\pi\)
\(678\) 0 0
\(679\) −3.80121e11 −1.78831
\(680\) 0 0
\(681\) 0 0
\(682\) − 3.61927e11i − 1.67295i
\(683\) 1.63003e11 0.749052 0.374526 0.927216i \(-0.377805\pi\)
0.374526 + 0.927216i \(0.377805\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 8.00843e11i − 3.61619i
\(687\) 0 0
\(688\) − 2.60854e11i − 1.16425i
\(689\) − 1.69821e10i − 0.0753553i
\(690\) 0 0
\(691\) 3.15836e10 0.138532 0.0692659 0.997598i \(-0.477934\pi\)
0.0692659 + 0.997598i \(0.477934\pi\)
\(692\) −1.06909e11 −0.466217
\(693\) 0 0
\(694\) −1.30011e11 −0.560459
\(695\) 0 0
\(696\) 0 0
\(697\) 9.05169e10i 0.383529i
\(698\) 3.42111e11 1.44127
\(699\) 0 0
\(700\) 0 0
\(701\) − 8.43107e10i − 0.349149i −0.984644 0.174574i \(-0.944145\pi\)
0.984644 0.174574i \(-0.0558550\pi\)
\(702\) 0 0
\(703\) − 4.29066e11i − 1.75672i
\(704\) 3.30115e11i 1.34392i
\(705\) 0 0
\(706\) 1.32275e9 0.00532424
\(707\) 5.52920e11 2.21302
\(708\) 0 0
\(709\) −1.36293e11 −0.539374 −0.269687 0.962948i \(-0.586920\pi\)
−0.269687 + 0.962948i \(0.586920\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 3.48714e10i 0.135691i
\(713\) 5.01391e10 0.194007
\(714\) 0 0
\(715\) 0 0
\(716\) − 1.44168e11i − 0.548552i
\(717\) 0 0
\(718\) − 2.22549e11i − 0.837392i
\(719\) 3.82144e11i 1.42992i 0.699165 + 0.714960i \(0.253555\pi\)
−0.699165 + 0.714960i \(0.746445\pi\)
\(720\) 0 0
\(721\) −1.15736e11 −0.428281
\(722\) −4.14154e11 −1.52410
\(723\) 0 0
\(724\) 3.24979e11 1.18277
\(725\) 0 0
\(726\) 0 0
\(727\) 1.37646e11i 0.492751i 0.969174 + 0.246375i \(0.0792396\pi\)
−0.969174 + 0.246375i \(0.920760\pi\)
\(728\) 8.37345e9 0.0298112
\(729\) 0 0
\(730\) 0 0
\(731\) − 1.20949e11i − 0.423579i
\(732\) 0 0
\(733\) 3.87192e11i 1.34125i 0.741796 + 0.670626i \(0.233974\pi\)
−0.741796 + 0.670626i \(0.766026\pi\)
\(734\) − 6.86273e11i − 2.36435i
\(735\) 0 0
\(736\) −7.85117e10 −0.267561
\(737\) −3.98638e11 −1.35117
\(738\) 0 0
\(739\) −5.79542e11 −1.94315 −0.971577 0.236726i \(-0.923926\pi\)
−0.971577 + 0.236726i \(0.923926\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.27264e11i 2.06935i
\(743\) 1.93713e11 0.635630 0.317815 0.948153i \(-0.397051\pi\)
0.317815 + 0.948153i \(0.397051\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.59969e11i 0.516512i
\(747\) 0 0
\(748\) 1.22361e11i 0.390874i
\(749\) − 1.09899e12i − 3.49195i
\(750\) 0 0
\(751\) −1.80812e11 −0.568418 −0.284209 0.958762i \(-0.591731\pi\)
−0.284209 + 0.958762i \(0.591731\pi\)
\(752\) 1.94172e11 0.607177
\(753\) 0 0
\(754\) −5.98811e10 −0.185270
\(755\) 0 0
\(756\) 0 0
\(757\) 3.05384e11i 0.929958i 0.885322 + 0.464979i \(0.153938\pi\)
−0.885322 + 0.464979i \(0.846062\pi\)
\(758\) 1.45138e11 0.439646
\(759\) 0 0
\(760\) 0 0
\(761\) − 2.84245e11i − 0.847529i −0.905772 0.423765i \(-0.860708\pi\)
0.905772 0.423765i \(-0.139292\pi\)
\(762\) 0 0
\(763\) − 2.55547e10i − 0.0754001i
\(764\) − 1.52508e11i − 0.447630i
\(765\) 0 0
\(766\) −5.86380e11 −1.70319
\(767\) −2.99168e10 −0.0864437
\(768\) 0 0
\(769\) 5.48712e11 1.56906 0.784529 0.620092i \(-0.212905\pi\)
0.784529 + 0.620092i \(0.212905\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 4.73071e11i − 1.33186i
\(773\) −2.22203e11 −0.622346 −0.311173 0.950353i \(-0.600722\pi\)
−0.311173 + 0.950353i \(0.600722\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 5.93434e10i 0.163653i
\(777\) 0 0
\(778\) − 4.22959e11i − 1.15446i
\(779\) 6.37508e11i 1.73115i
\(780\) 0 0
\(781\) 5.94349e11 1.59749
\(782\) −3.21500e10 −0.0859713
\(783\) 0 0
\(784\) 7.75994e11 2.05397
\(785\) 0 0
\(786\) 0 0
\(787\) − 5.76769e10i − 0.150350i −0.997170 0.0751749i \(-0.976048\pi\)
0.997170 0.0751749i \(-0.0239515\pi\)
\(788\) 5.35299e10 0.138833
\(789\) 0 0
\(790\) 0 0
\(791\) 6.61488e11i 1.68972i
\(792\) 0 0
\(793\) 1.95169e10i 0.0493534i
\(794\) 1.69258e11i 0.425860i
\(795\) 0 0
\(796\) −1.29775e11 −0.323249
\(797\) −5.38839e11 −1.33544 −0.667722 0.744411i \(-0.732730\pi\)
−0.667722 + 0.744411i \(0.732730\pi\)
\(798\) 0 0
\(799\) 9.00310e10 0.220905
\(800\) 0 0
\(801\) 0 0
\(802\) − 5.11952e11i − 1.23746i
\(803\) −5.03466e11 −1.21090
\(804\) 0 0
\(805\) 0 0
\(806\) − 6.19776e10i − 0.146857i
\(807\) 0 0
\(808\) − 8.63203e10i − 0.202520i
\(809\) 7.75938e11i 1.81148i 0.423837 + 0.905738i \(0.360683\pi\)
−0.423837 + 0.905738i \(0.639317\pi\)
\(810\) 0 0
\(811\) −1.26913e11 −0.293375 −0.146688 0.989183i \(-0.546861\pi\)
−0.146688 + 0.989183i \(0.546861\pi\)
\(812\) 1.16618e12 2.68251
\(813\) 0 0
\(814\) −8.66480e11 −1.97361
\(815\) 0 0
\(816\) 0 0
\(817\) − 8.51844e11i − 1.91193i
\(818\) −4.17299e9 −0.00932039
\(819\) 0 0
\(820\) 0 0
\(821\) 3.93640e11i 0.866417i 0.901294 + 0.433208i \(0.142619\pi\)
−0.901294 + 0.433208i \(0.857381\pi\)
\(822\) 0 0
\(823\) 8.13687e11i 1.77361i 0.462144 + 0.886805i \(0.347080\pi\)
−0.462144 + 0.886805i \(0.652920\pi\)
\(824\) 1.80684e10i 0.0391932i
\(825\) 0 0
\(826\) 1.10503e12 2.37385
\(827\) −4.48558e11 −0.958950 −0.479475 0.877555i \(-0.659173\pi\)
−0.479475 + 0.877555i \(0.659173\pi\)
\(828\) 0 0
\(829\) −3.50125e11 −0.741319 −0.370660 0.928769i \(-0.620868\pi\)
−0.370660 + 0.928769i \(0.620868\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.65299e10i 0.117974i
\(833\) 3.59803e11 0.747281
\(834\) 0 0
\(835\) 0 0
\(836\) 8.61785e11i 1.76430i
\(837\) 0 0
\(838\) 8.65779e11i 1.75562i
\(839\) − 4.80271e10i − 0.0969256i −0.998825 0.0484628i \(-0.984568\pi\)
0.998825 0.0484628i \(-0.0154322\pi\)
\(840\) 0 0
\(841\) −3.61820e11 −0.723284
\(842\) 1.02029e11 0.202990
\(843\) 0 0
\(844\) 7.24804e11 1.42840
\(845\) 0 0
\(846\) 0 0
\(847\) 2.09320e11i 0.406704i
\(848\) −3.49933e11 −0.676709
\(849\) 0 0
\(850\) 0 0
\(851\) − 1.20037e11i − 0.228873i
\(852\) 0 0
\(853\) 2.42085e11i 0.457270i 0.973512 + 0.228635i \(0.0734262\pi\)
−0.973512 + 0.228635i \(0.926574\pi\)
\(854\) − 7.20890e11i − 1.35531i
\(855\) 0 0
\(856\) −1.71572e11 −0.319559
\(857\) −2.23435e11 −0.414218 −0.207109 0.978318i \(-0.566405\pi\)
−0.207109 + 0.978318i \(0.566405\pi\)
\(858\) 0 0
\(859\) 6.68565e11 1.22792 0.613961 0.789336i \(-0.289575\pi\)
0.613961 + 0.789336i \(0.289575\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.03631e11i 0.912186i
\(863\) 3.96860e11 0.715475 0.357738 0.933822i \(-0.383548\pi\)
0.357738 + 0.933822i \(0.383548\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.57005e11i 0.279153i
\(867\) 0 0
\(868\) 1.20701e12i 2.12634i
\(869\) 1.04624e12i 1.83465i
\(870\) 0 0
\(871\) −6.82641e10 −0.118610
\(872\) −3.98952e9 −0.00690009
\(873\) 0 0
\(874\) −2.26431e11 −0.388053
\(875\) 0 0
\(876\) 0 0
\(877\) 1.09419e12i 1.84967i 0.380363 + 0.924837i \(0.375799\pi\)
−0.380363 + 0.924837i \(0.624201\pi\)
\(878\) −2.21362e11 −0.372500
\(879\) 0 0
\(880\) 0 0
\(881\) 7.89783e11i 1.31100i 0.755193 + 0.655502i \(0.227543\pi\)
−0.755193 + 0.655502i \(0.772457\pi\)
\(882\) 0 0
\(883\) 2.41466e11i 0.397203i 0.980080 + 0.198601i \(0.0636399\pi\)
−0.980080 + 0.198601i \(0.936360\pi\)
\(884\) 2.09535e10i 0.0343121i
\(885\) 0 0
\(886\) −7.46369e11 −1.21121
\(887\) 1.16400e11 0.188043 0.0940216 0.995570i \(-0.470028\pi\)
0.0940216 + 0.995570i \(0.470028\pi\)
\(888\) 0 0
\(889\) 1.18334e12 1.89454
\(890\) 0 0
\(891\) 0 0
\(892\) − 3.88056e11i − 0.612964i
\(893\) 6.34086e11 0.997109
\(894\) 0 0
\(895\) 0 0
\(896\) − 3.93372e11i − 0.610340i
\(897\) 0 0
\(898\) 6.84412e11i 1.05248i
\(899\) − 8.92249e11i − 1.36599i
\(900\) 0 0
\(901\) −1.62252e11 −0.246202
\(902\) 1.28742e12 1.94489
\(903\) 0 0
\(904\) 1.03269e11 0.154632
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.88146e11i − 0.278013i −0.990291 0.139007i \(-0.955609\pi\)
0.990291 0.139007i \(-0.0443909\pi\)
\(908\) 2.62684e11 0.386447
\(909\) 0 0
\(910\) 0 0
\(911\) 3.22353e11i 0.468014i 0.972235 + 0.234007i \(0.0751838\pi\)
−0.972235 + 0.234007i \(0.924816\pi\)
\(912\) 0 0
\(913\) − 1.23915e12i − 1.78336i
\(914\) 2.23922e11i 0.320858i
\(915\) 0 0
\(916\) −1.17611e12 −1.67057
\(917\) 1.14306e12 1.61656
\(918\) 0 0
\(919\) 5.59401e11 0.784262 0.392131 0.919909i \(-0.371738\pi\)
0.392131 + 0.919909i \(0.371738\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 8.53656e10i 0.118130i
\(923\) 1.01778e11 0.140232
\(924\) 0 0
\(925\) 0 0
\(926\) 5.94752e11i 0.808895i
\(927\) 0 0
\(928\) 1.39715e12i 1.88388i
\(929\) 1.26527e12i 1.69872i 0.527817 + 0.849358i \(0.323011\pi\)
−0.527817 + 0.849358i \(0.676989\pi\)
\(930\) 0 0
\(931\) 2.53408e12 3.37304
\(932\) −4.72849e11 −0.626699
\(933\) 0 0
\(934\) 8.41495e11 1.10577
\(935\) 0 0
\(936\) 0 0
\(937\) 1.14305e12i 1.48289i 0.671015 + 0.741444i \(0.265859\pi\)
−0.671015 + 0.741444i \(0.734141\pi\)
\(938\) 2.52146e12 3.25717
\(939\) 0 0
\(940\) 0 0
\(941\) − 7.23423e11i − 0.922643i −0.887233 0.461322i \(-0.847375\pi\)
0.887233 0.461322i \(-0.152625\pi\)
\(942\) 0 0
\(943\) 1.78351e11i 0.225543i
\(944\) 6.16466e11i 0.776285i
\(945\) 0 0
\(946\) −1.72026e12 −2.14798
\(947\) 3.09470e11 0.384786 0.192393 0.981318i \(-0.438375\pi\)
0.192393 + 0.981318i \(0.438375\pi\)
\(948\) 0 0
\(949\) −8.62151e10 −0.106296
\(950\) 0 0
\(951\) 0 0
\(952\) − 8.00027e10i − 0.0973995i
\(953\) 3.15952e11 0.383045 0.191522 0.981488i \(-0.438658\pi\)
0.191522 + 0.981488i \(0.438658\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 8.07453e11i − 0.966686i
\(957\) 0 0
\(958\) − 9.68837e11i − 1.15024i
\(959\) − 9.83106e11i − 1.16232i
\(960\) 0 0
\(961\) 7.05960e10 0.0827726
\(962\) −1.48379e11 −0.173249
\(963\) 0 0
\(964\) −1.60307e12 −1.85628
\(965\) 0 0
\(966\) 0 0
\(967\) 2.47951e11i 0.283570i 0.989897 + 0.141785i \(0.0452841\pi\)
−0.989897 + 0.141785i \(0.954716\pi\)
\(968\) 3.26785e10 0.0372186
\(969\) 0 0
\(970\) 0 0
\(971\) 7.68280e11i 0.864256i 0.901812 + 0.432128i \(0.142237\pi\)
−0.901812 + 0.432128i \(0.857763\pi\)
\(972\) 0 0
\(973\) − 1.36801e12i − 1.52629i
\(974\) 2.12107e10i 0.0235678i
\(975\) 0 0
\(976\) 4.02165e11 0.443205
\(977\) −1.31954e12 −1.44825 −0.724127 0.689666i \(-0.757757\pi\)
−0.724127 + 0.689666i \(0.757757\pi\)
\(978\) 0 0
\(979\) −8.21773e11 −0.894584
\(980\) 0 0
\(981\) 0 0
\(982\) − 1.17740e12i − 1.26613i
\(983\) −6.17012e11 −0.660815 −0.330407 0.943838i \(-0.607186\pi\)
−0.330407 + 0.943838i \(0.607186\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.72124e11i 0.605316i
\(987\) 0 0
\(988\) 1.47575e11i 0.154876i
\(989\) − 2.38314e11i − 0.249095i
\(990\) 0 0
\(991\) −8.44484e11 −0.875582 −0.437791 0.899077i \(-0.644239\pi\)
−0.437791 + 0.899077i \(0.644239\pi\)
\(992\) −1.44607e12 −1.49328
\(993\) 0 0
\(994\) −3.75936e12 −3.85096
\(995\) 0 0
\(996\) 0 0
\(997\) 1.27342e12i 1.28881i 0.764683 + 0.644406i \(0.222895\pi\)
−0.764683 + 0.644406i \(0.777105\pi\)
\(998\) −4.96112e11 −0.500100
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.9.d.c.224.5 24
3.2 odd 2 inner 225.9.d.c.224.19 24
5.2 odd 4 45.9.c.a.26.3 12
5.3 odd 4 225.9.c.d.26.10 12
5.4 even 2 inner 225.9.d.c.224.20 24
15.2 even 4 45.9.c.a.26.10 yes 12
15.8 even 4 225.9.c.d.26.3 12
15.14 odd 2 inner 225.9.d.c.224.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.9.c.a.26.3 12 5.2 odd 4
45.9.c.a.26.10 yes 12 15.2 even 4
225.9.c.d.26.3 12 15.8 even 4
225.9.c.d.26.10 12 5.3 odd 4
225.9.d.c.224.5 24 1.1 even 1 trivial
225.9.d.c.224.6 24 15.14 odd 2 inner
225.9.d.c.224.19 24 3.2 odd 2 inner
225.9.d.c.224.20 24 5.4 even 2 inner