Properties

Label 225.9.c.d.26.3
Level $225$
Weight $9$
Character 225.26
Analytic conductor $91.660$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,9,Mod(26,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.26"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 225.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-2524,0,0,6928] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.6601872638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 698x^{10} + 179931x^{8} + 20356724x^{6} + 872357011x^{4} + 2973132090x^{2} + 1458246969 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{25}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.3
Root \(10.5572i\) of defining polynomial
Character \(\chi\) \(=\) 225.26
Dual form 225.9.c.d.26.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-23.2704i q^{2} -285.513 q^{4} -4399.16 q^{7} +686.784i q^{8} +16184.6i q^{11} +2771.50 q^{13} +102370. i q^{14} -57109.6 q^{16} -26479.8i q^{17} +186497. q^{19} +376622. q^{22} +52174.8i q^{23} -64494.0i q^{26} +1.25602e6 q^{28} +928476. i q^{29} -960982. q^{31} +1.50478e6i q^{32} -616197. q^{34} +2.30066e6 q^{37} -4.33986e6i q^{38} +3.41833e6i q^{41} -4.56761e6 q^{43} -4.62091e6i q^{44} +1.21413e6 q^{46} -3.39999e6i q^{47} +1.35878e7 q^{49} -791299. q^{52} -6.12740e6i q^{53} -3.02127e6i q^{56} +2.16060e7 q^{58} -1.07944e7i q^{59} -7.04198e6 q^{61} +2.23625e7i q^{62} +2.03969e7 q^{64} -2.46307e7 q^{67} +7.56034e6i q^{68} -3.67232e7i q^{71} +3.11078e7 q^{73} -5.35374e7i q^{74} -5.32472e7 q^{76} -7.11986e7i q^{77} +6.46442e7 q^{79} +7.95461e7 q^{82} -7.65633e7i q^{83} +1.06290e8i q^{86} -1.11153e7 q^{88} -5.07750e7i q^{89} -1.21923e7 q^{91} -1.48966e7i q^{92} -7.91192e7 q^{94} -8.64077e7 q^{97} -3.16194e8i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2524 q^{4} + 6928 q^{7} - 124408 q^{13} + 297572 q^{16} + 124960 q^{19} + 1370512 q^{22} - 1114496 q^{28} - 620968 q^{31} + 7486496 q^{34} + 11533176 q^{37} - 14405296 q^{43} - 7161768 q^{46} + 21010156 q^{49}+ \cdots + 302816184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 23.2704i − 1.45440i −0.686424 0.727201i \(-0.740821\pi\)
0.686424 0.727201i \(-0.259179\pi\)
\(3\) 0 0
\(4\) −285.513 −1.11529
\(5\) 0 0
\(6\) 0 0
\(7\) −4399.16 −1.83222 −0.916110 0.400927i \(-0.868688\pi\)
−0.916110 + 0.400927i \(0.868688\pi\)
\(8\) 686.784i 0.167672i
\(9\) 0 0
\(10\) 0 0
\(11\) 16184.6i 1.10543i 0.833371 + 0.552714i \(0.186408\pi\)
−0.833371 + 0.552714i \(0.813592\pi\)
\(12\) 0 0
\(13\) 2771.50 0.0970379 0.0485189 0.998822i \(-0.484550\pi\)
0.0485189 + 0.998822i \(0.484550\pi\)
\(14\) 102370.i 2.66478i
\(15\) 0 0
\(16\) −57109.6 −0.871424
\(17\) − 26479.8i − 0.317044i −0.987355 0.158522i \(-0.949327\pi\)
0.987355 0.158522i \(-0.0506728\pi\)
\(18\) 0 0
\(19\) 186497. 1.43106 0.715528 0.698584i \(-0.246186\pi\)
0.715528 + 0.698584i \(0.246186\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 376622. 1.60774
\(23\) 52174.8i 0.186445i 0.995645 + 0.0932223i \(0.0297167\pi\)
−0.995645 + 0.0932223i \(0.970283\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 64494.0i − 0.141132i
\(27\) 0 0
\(28\) 1.25602e6 2.04345
\(29\) 928476.i 1.31274i 0.754439 + 0.656370i \(0.227909\pi\)
−0.754439 + 0.656370i \(0.772091\pi\)
\(30\) 0 0
\(31\) −960982. −1.04056 −0.520282 0.853995i \(-0.674173\pi\)
−0.520282 + 0.853995i \(0.674173\pi\)
\(32\) 1.50478e6i 1.43507i
\(33\) 0 0
\(34\) −616197. −0.461109
\(35\) 0 0
\(36\) 0 0
\(37\) 2.30066e6 1.22757 0.613784 0.789474i \(-0.289646\pi\)
0.613784 + 0.789474i \(0.289646\pi\)
\(38\) − 4.33986e6i − 2.08133i
\(39\) 0 0
\(40\) 0 0
\(41\) 3.41833e6i 1.20970i 0.796338 + 0.604852i \(0.206768\pi\)
−0.796338 + 0.604852i \(0.793232\pi\)
\(42\) 0 0
\(43\) −4.56761e6 −1.33603 −0.668013 0.744149i \(-0.732855\pi\)
−0.668013 + 0.744149i \(0.732855\pi\)
\(44\) − 4.62091e6i − 1.23287i
\(45\) 0 0
\(46\) 1.21413e6 0.271165
\(47\) − 3.39999e6i − 0.696764i −0.937353 0.348382i \(-0.886731\pi\)
0.937353 0.348382i \(-0.113269\pi\)
\(48\) 0 0
\(49\) 1.35878e7 2.35703
\(50\) 0 0
\(51\) 0 0
\(52\) −791299. −0.108225
\(53\) − 6.12740e6i − 0.776556i −0.921542 0.388278i \(-0.873070\pi\)
0.921542 0.388278i \(-0.126930\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 3.02127e6i − 0.307211i
\(57\) 0 0
\(58\) 2.16060e7 1.90925
\(59\) − 1.07944e7i − 0.890824i −0.895326 0.445412i \(-0.853057\pi\)
0.895326 0.445412i \(-0.146943\pi\)
\(60\) 0 0
\(61\) −7.04198e6 −0.508599 −0.254300 0.967125i \(-0.581845\pi\)
−0.254300 + 0.967125i \(0.581845\pi\)
\(62\) 2.23625e7i 1.51340i
\(63\) 0 0
\(64\) 2.03969e7 1.21575
\(65\) 0 0
\(66\) 0 0
\(67\) −2.46307e7 −1.22230 −0.611151 0.791514i \(-0.709293\pi\)
−0.611151 + 0.791514i \(0.709293\pi\)
\(68\) 7.56034e6i 0.353594i
\(69\) 0 0
\(70\) 0 0
\(71\) − 3.67232e7i − 1.44513i −0.691303 0.722565i \(-0.742963\pi\)
0.691303 0.722565i \(-0.257037\pi\)
\(72\) 0 0
\(73\) 3.11078e7 1.09541 0.547706 0.836671i \(-0.315501\pi\)
0.547706 + 0.836671i \(0.315501\pi\)
\(74\) − 5.35374e7i − 1.78538i
\(75\) 0 0
\(76\) −5.32472e7 −1.59604
\(77\) − 7.11986e7i − 2.02539i
\(78\) 0 0
\(79\) 6.46442e7 1.65967 0.829834 0.558010i \(-0.188435\pi\)
0.829834 + 0.558010i \(0.188435\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.95461e7 1.75940
\(83\) − 7.65633e7i − 1.61328i −0.591046 0.806638i \(-0.701285\pi\)
0.591046 0.806638i \(-0.298715\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.06290e8i 1.94312i
\(87\) 0 0
\(88\) −1.11153e7 −0.185349
\(89\) − 5.07750e7i − 0.809264i −0.914480 0.404632i \(-0.867400\pi\)
0.914480 0.404632i \(-0.132600\pi\)
\(90\) 0 0
\(91\) −1.21923e7 −0.177795
\(92\) − 1.48966e7i − 0.207939i
\(93\) 0 0
\(94\) −7.91192e7 −1.01338
\(95\) 0 0
\(96\) 0 0
\(97\) −8.64077e7 −0.976035 −0.488017 0.872834i \(-0.662280\pi\)
−0.488017 + 0.872834i \(0.662280\pi\)
\(98\) − 3.16194e8i − 3.42807i
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.25688e8i − 1.20783i −0.797047 0.603917i \(-0.793606\pi\)
0.797047 0.603917i \(-0.206394\pi\)
\(102\) 0 0
\(103\) 2.63087e7 0.233750 0.116875 0.993147i \(-0.462712\pi\)
0.116875 + 0.993147i \(0.462712\pi\)
\(104\) 1.90342e6i 0.0162705i
\(105\) 0 0
\(106\) −1.42587e8 −1.12942
\(107\) 2.49819e8i 1.90586i 0.303193 + 0.952929i \(0.401947\pi\)
−0.303193 + 0.952929i \(0.598053\pi\)
\(108\) 0 0
\(109\) −5.80899e6 −0.0411523 −0.0205762 0.999788i \(-0.506550\pi\)
−0.0205762 + 0.999788i \(0.506550\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.51234e8 1.59664
\(113\) 1.50367e8i 0.922228i 0.887341 + 0.461114i \(0.152550\pi\)
−0.887341 + 0.461114i \(0.847450\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 2.65092e8i − 1.46408i
\(117\) 0 0
\(118\) −2.51191e8 −1.29562
\(119\) 1.16489e8i 0.580894i
\(120\) 0 0
\(121\) −4.75819e7 −0.221973
\(122\) 1.63870e8i 0.739708i
\(123\) 0 0
\(124\) 2.74373e8 1.16053
\(125\) 0 0
\(126\) 0 0
\(127\) 2.68993e8 1.03401 0.517006 0.855982i \(-0.327046\pi\)
0.517006 + 0.855982i \(0.327046\pi\)
\(128\) − 8.94199e7i − 0.333115i
\(129\) 0 0
\(130\) 0 0
\(131\) − 2.59837e8i − 0.882298i −0.897434 0.441149i \(-0.854571\pi\)
0.897434 0.441149i \(-0.145429\pi\)
\(132\) 0 0
\(133\) −8.20428e8 −2.62201
\(134\) 5.73168e8i 1.77772i
\(135\) 0 0
\(136\) 1.81859e7 0.0531593
\(137\) 2.23476e8i 0.634378i 0.948362 + 0.317189i \(0.102739\pi\)
−0.948362 + 0.317189i \(0.897261\pi\)
\(138\) 0 0
\(139\) −3.10970e8 −0.833028 −0.416514 0.909129i \(-0.636748\pi\)
−0.416514 + 0.909129i \(0.636748\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.54564e8 −2.10180
\(143\) 4.48556e7i 0.107269i
\(144\) 0 0
\(145\) 0 0
\(146\) − 7.23891e8i − 1.59317i
\(147\) 0 0
\(148\) −6.56869e8 −1.36909
\(149\) 191472.i 0 0.000388473i 1.00000 0.000194236i \(6.18274e-5\pi\)
−1.00000 0.000194236i \(0.999938\pi\)
\(150\) 0 0
\(151\) 5.84355e8 1.12401 0.562004 0.827135i \(-0.310031\pi\)
0.562004 + 0.827135i \(0.310031\pi\)
\(152\) 1.28083e8i 0.239948i
\(153\) 0 0
\(154\) −1.65682e9 −2.94573
\(155\) 0 0
\(156\) 0 0
\(157\) 7.91625e7 0.130293 0.0651464 0.997876i \(-0.479249\pi\)
0.0651464 + 0.997876i \(0.479249\pi\)
\(158\) − 1.50430e9i − 2.41383i
\(159\) 0 0
\(160\) 0 0
\(161\) − 2.29525e8i − 0.341607i
\(162\) 0 0
\(163\) −3.52707e8 −0.499648 −0.249824 0.968291i \(-0.580373\pi\)
−0.249824 + 0.968291i \(0.580373\pi\)
\(164\) − 9.75979e8i − 1.34917i
\(165\) 0 0
\(166\) −1.78166e9 −2.34635
\(167\) − 7.67131e8i − 0.986288i −0.869948 0.493144i \(-0.835848\pi\)
0.869948 0.493144i \(-0.164152\pi\)
\(168\) 0 0
\(169\) −8.08050e8 −0.990584
\(170\) 0 0
\(171\) 0 0
\(172\) 1.30411e9 1.49005
\(173\) 3.74444e8i 0.418025i 0.977913 + 0.209012i \(0.0670249\pi\)
−0.977913 + 0.209012i \(0.932975\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 9.24295e8i − 0.963297i
\(177\) 0 0
\(178\) −1.18156e9 −1.17699
\(179\) − 5.04945e8i − 0.491849i −0.969289 0.245924i \(-0.920909\pi\)
0.969289 0.245924i \(-0.0790915\pi\)
\(180\) 0 0
\(181\) 1.13823e9 1.06051 0.530255 0.847838i \(-0.322096\pi\)
0.530255 + 0.847838i \(0.322096\pi\)
\(182\) 2.83719e8i 0.258585i
\(183\) 0 0
\(184\) −3.58328e7 −0.0312615
\(185\) 0 0
\(186\) 0 0
\(187\) 4.28565e8 0.350469
\(188\) 9.70741e8i 0.777091i
\(189\) 0 0
\(190\) 0 0
\(191\) 5.34154e8i 0.401359i 0.979657 + 0.200680i \(0.0643150\pi\)
−0.979657 + 0.200680i \(0.935685\pi\)
\(192\) 0 0
\(193\) 1.65692e9 1.19418 0.597092 0.802173i \(-0.296323\pi\)
0.597092 + 0.802173i \(0.296323\pi\)
\(194\) 2.01074e9i 1.41955i
\(195\) 0 0
\(196\) −3.87950e9 −2.62876
\(197\) 1.87487e8i 0.124482i 0.998061 + 0.0622408i \(0.0198247\pi\)
−0.998061 + 0.0622408i \(0.980175\pi\)
\(198\) 0 0
\(199\) 4.54531e8 0.289835 0.144918 0.989444i \(-0.453708\pi\)
0.144918 + 0.989444i \(0.453708\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2.92481e9 −1.75668
\(203\) − 4.08451e9i − 2.40523i
\(204\) 0 0
\(205\) 0 0
\(206\) − 6.12215e8i − 0.339966i
\(207\) 0 0
\(208\) −1.58279e8 −0.0845611
\(209\) 3.01837e9i 1.58193i
\(210\) 0 0
\(211\) 2.53860e9 1.28075 0.640376 0.768062i \(-0.278779\pi\)
0.640376 + 0.768062i \(0.278779\pi\)
\(212\) 1.74945e9i 0.866082i
\(213\) 0 0
\(214\) 5.81340e9 2.77188
\(215\) 0 0
\(216\) 0 0
\(217\) 4.22751e9 1.90654
\(218\) 1.35178e8i 0.0598521i
\(219\) 0 0
\(220\) 0 0
\(221\) − 7.33888e7i − 0.0307653i
\(222\) 0 0
\(223\) 1.35915e9 0.549602 0.274801 0.961501i \(-0.411388\pi\)
0.274801 + 0.961501i \(0.411388\pi\)
\(224\) − 6.61978e9i − 2.62937i
\(225\) 0 0
\(226\) 3.49910e9 1.34129
\(227\) 9.20041e8i 0.346500i 0.984878 + 0.173250i \(0.0554269\pi\)
−0.984878 + 0.173250i \(0.944573\pi\)
\(228\) 0 0
\(229\) 4.11927e9 1.49789 0.748943 0.662634i \(-0.230562\pi\)
0.748943 + 0.662634i \(0.230562\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.37662e8 −0.220109
\(233\) 1.65614e9i 0.561918i 0.959720 + 0.280959i \(0.0906525\pi\)
−0.959720 + 0.280959i \(0.909347\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.08195e9i 0.993523i
\(237\) 0 0
\(238\) 2.71075e9 0.844853
\(239\) − 2.82808e9i − 0.866761i −0.901211 0.433380i \(-0.857321\pi\)
0.901211 0.433380i \(-0.142679\pi\)
\(240\) 0 0
\(241\) −5.61470e9 −1.66440 −0.832201 0.554474i \(-0.812920\pi\)
−0.832201 + 0.554474i \(0.812920\pi\)
\(242\) 1.10725e9i 0.322838i
\(243\) 0 0
\(244\) 2.01058e9 0.567233
\(245\) 0 0
\(246\) 0 0
\(247\) 5.16875e8 0.138867
\(248\) − 6.59987e8i − 0.174473i
\(249\) 0 0
\(250\) 0 0
\(251\) − 3.82921e9i − 0.964749i −0.875965 0.482375i \(-0.839774\pi\)
0.875965 0.482375i \(-0.160226\pi\)
\(252\) 0 0
\(253\) −8.44428e8 −0.206101
\(254\) − 6.25958e9i − 1.50387i
\(255\) 0 0
\(256\) 3.14076e9 0.731265
\(257\) − 5.39550e9i − 1.23680i −0.785864 0.618399i \(-0.787781\pi\)
0.785864 0.618399i \(-0.212219\pi\)
\(258\) 0 0
\(259\) −1.01210e10 −2.24918
\(260\) 0 0
\(261\) 0 0
\(262\) −6.04651e9 −1.28322
\(263\) − 2.65139e9i − 0.554180i −0.960844 0.277090i \(-0.910630\pi\)
0.960844 0.277090i \(-0.0893700\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.90917e10i 3.81346i
\(267\) 0 0
\(268\) 7.03240e9 1.36322
\(269\) 5.01721e9i 0.958193i 0.877762 + 0.479097i \(0.159036\pi\)
−0.877762 + 0.479097i \(0.840964\pi\)
\(270\) 0 0
\(271\) −1.66334e9 −0.308393 −0.154196 0.988040i \(-0.549279\pi\)
−0.154196 + 0.988040i \(0.549279\pi\)
\(272\) 1.51225e9i 0.276279i
\(273\) 0 0
\(274\) 5.20038e9 0.922641
\(275\) 0 0
\(276\) 0 0
\(277\) 3.31124e9 0.562434 0.281217 0.959644i \(-0.409262\pi\)
0.281217 + 0.959644i \(0.409262\pi\)
\(278\) 7.23641e9i 1.21156i
\(279\) 0 0
\(280\) 0 0
\(281\) − 6.52601e9i − 1.04670i −0.852118 0.523350i \(-0.824682\pi\)
0.852118 0.523350i \(-0.175318\pi\)
\(282\) 0 0
\(283\) 1.10332e10 1.72010 0.860052 0.510207i \(-0.170431\pi\)
0.860052 + 0.510207i \(0.170431\pi\)
\(284\) 1.04849e10i 1.61173i
\(285\) 0 0
\(286\) 1.04381e9 0.156012
\(287\) − 1.50378e10i − 2.21644i
\(288\) 0 0
\(289\) 6.27458e9 0.899483
\(290\) 0 0
\(291\) 0 0
\(292\) −8.88167e9 −1.22170
\(293\) 1.28273e10i 1.74046i 0.492646 + 0.870230i \(0.336030\pi\)
−0.492646 + 0.870230i \(0.663970\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.58006e9i 0.205829i
\(297\) 0 0
\(298\) 4.45564e6 0.000564996 0
\(299\) 1.44603e8i 0.0180922i
\(300\) 0 0
\(301\) 2.00936e10 2.44789
\(302\) − 1.35982e10i − 1.63476i
\(303\) 0 0
\(304\) −1.06508e10 −1.24706
\(305\) 0 0
\(306\) 0 0
\(307\) 8.62442e9 0.970904 0.485452 0.874263i \(-0.338655\pi\)
0.485452 + 0.874263i \(0.338655\pi\)
\(308\) 2.03281e10i 2.25889i
\(309\) 0 0
\(310\) 0 0
\(311\) 2.03281e9i 0.217298i 0.994080 + 0.108649i \(0.0346524\pi\)
−0.994080 + 0.108649i \(0.965348\pi\)
\(312\) 0 0
\(313\) −7.06926e8 −0.0736541 −0.0368270 0.999322i \(-0.511725\pi\)
−0.0368270 + 0.999322i \(0.511725\pi\)
\(314\) − 1.84215e9i − 0.189498i
\(315\) 0 0
\(316\) −1.84568e10 −1.85100
\(317\) 1.51681e10i 1.50208i 0.660255 + 0.751041i \(0.270448\pi\)
−0.660255 + 0.751041i \(0.729552\pi\)
\(318\) 0 0
\(319\) −1.50270e10 −1.45114
\(320\) 0 0
\(321\) 0 0
\(322\) −5.34116e9 −0.496835
\(323\) − 4.93840e9i − 0.453707i
\(324\) 0 0
\(325\) 0 0
\(326\) 8.20765e9i 0.726689i
\(327\) 0 0
\(328\) −2.34766e9 −0.202833
\(329\) 1.49571e10i 1.27663i
\(330\) 0 0
\(331\) 2.23026e10 1.85799 0.928994 0.370095i \(-0.120675\pi\)
0.928994 + 0.370095i \(0.120675\pi\)
\(332\) 2.18598e10i 1.79926i
\(333\) 0 0
\(334\) −1.78515e10 −1.43446
\(335\) 0 0
\(336\) 0 0
\(337\) −4.40375e9 −0.341431 −0.170716 0.985320i \(-0.554608\pi\)
−0.170716 + 0.985320i \(0.554608\pi\)
\(338\) 1.88037e10i 1.44071i
\(339\) 0 0
\(340\) 0 0
\(341\) − 1.55531e10i − 1.15027i
\(342\) 0 0
\(343\) −3.44146e10 −2.48637
\(344\) − 3.13696e9i − 0.224014i
\(345\) 0 0
\(346\) 8.71347e9 0.607976
\(347\) 5.58698e9i 0.385353i 0.981262 + 0.192677i \(0.0617169\pi\)
−0.981262 + 0.192677i \(0.938283\pi\)
\(348\) 0 0
\(349\) 1.47015e10 0.990969 0.495485 0.868617i \(-0.334990\pi\)
0.495485 + 0.868617i \(0.334990\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.43543e10 −1.58637
\(353\) 5.68423e7i 0.00366078i 0.999998 + 0.00183039i \(0.000582631\pi\)
−0.999998 + 0.00183039i \(0.999417\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.44969e10i 0.902560i
\(357\) 0 0
\(358\) −1.17503e10 −0.715346
\(359\) 9.56361e9i 0.575763i 0.957666 + 0.287882i \(0.0929510\pi\)
−0.957666 + 0.287882i \(0.907049\pi\)
\(360\) 0 0
\(361\) 1.77974e10 1.04792
\(362\) − 2.64870e10i − 1.54241i
\(363\) 0 0
\(364\) 3.48105e9 0.198292
\(365\) 0 0
\(366\) 0 0
\(367\) 2.94912e10 1.62565 0.812827 0.582505i \(-0.197927\pi\)
0.812827 + 0.582505i \(0.197927\pi\)
\(368\) − 2.97968e9i − 0.162472i
\(369\) 0 0
\(370\) 0 0
\(371\) 2.69554e10i 1.42282i
\(372\) 0 0
\(373\) 6.87435e9 0.355137 0.177569 0.984108i \(-0.443177\pi\)
0.177569 + 0.984108i \(0.443177\pi\)
\(374\) − 9.97289e9i − 0.509723i
\(375\) 0 0
\(376\) 2.33506e9 0.116828
\(377\) 2.57327e9i 0.127385i
\(378\) 0 0
\(379\) 6.23700e9 0.302287 0.151143 0.988512i \(-0.451704\pi\)
0.151143 + 0.988512i \(0.451704\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.24300e10 0.583738
\(383\) − 2.51985e10i − 1.17106i −0.810651 0.585530i \(-0.800886\pi\)
0.810651 0.585530i \(-0.199114\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 3.85572e10i − 1.73682i
\(387\) 0 0
\(388\) 2.46705e10 1.08856
\(389\) 1.81758e10i 0.793771i 0.917868 + 0.396886i \(0.129909\pi\)
−0.917868 + 0.396886i \(0.870091\pi\)
\(390\) 0 0
\(391\) 1.38158e9 0.0591111
\(392\) 9.33188e9i 0.395207i
\(393\) 0 0
\(394\) 4.36290e9 0.181046
\(395\) 0 0
\(396\) 0 0
\(397\) −7.27352e9 −0.292808 −0.146404 0.989225i \(-0.546770\pi\)
−0.146404 + 0.989225i \(0.546770\pi\)
\(398\) − 1.05771e10i − 0.421537i
\(399\) 0 0
\(400\) 0 0
\(401\) − 2.20001e10i − 0.850839i −0.904996 0.425420i \(-0.860126\pi\)
0.904996 0.425420i \(-0.139874\pi\)
\(402\) 0 0
\(403\) −2.66336e9 −0.100974
\(404\) 3.58855e10i 1.34708i
\(405\) 0 0
\(406\) −9.50484e10 −3.49817
\(407\) 3.72352e10i 1.35699i
\(408\) 0 0
\(409\) −1.79326e8 −0.00640840 −0.00320420 0.999995i \(-0.501020\pi\)
−0.00320420 + 0.999995i \(0.501020\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −7.51148e9 −0.260698
\(413\) 4.74864e10i 1.63218i
\(414\) 0 0
\(415\) 0 0
\(416\) 4.17050e9i 0.139256i
\(417\) 0 0
\(418\) 7.02388e10 2.30076
\(419\) − 3.72051e10i − 1.20711i −0.797322 0.603554i \(-0.793751\pi\)
0.797322 0.603554i \(-0.206249\pi\)
\(420\) 0 0
\(421\) −4.38448e9 −0.139569 −0.0697847 0.997562i \(-0.522231\pi\)
−0.0697847 + 0.997562i \(0.522231\pi\)
\(422\) − 5.90744e10i − 1.86273i
\(423\) 0 0
\(424\) 4.20820e9 0.130206
\(425\) 0 0
\(426\) 0 0
\(427\) 3.09788e10 0.931866
\(428\) − 7.13266e10i − 2.12558i
\(429\) 0 0
\(430\) 0 0
\(431\) 2.16425e10i 0.627190i 0.949557 + 0.313595i \(0.101533\pi\)
−0.949557 + 0.313595i \(0.898467\pi\)
\(432\) 0 0
\(433\) 6.74698e9 0.191937 0.0959683 0.995384i \(-0.469405\pi\)
0.0959683 + 0.995384i \(0.469405\pi\)
\(434\) − 9.83761e10i − 2.77288i
\(435\) 0 0
\(436\) 1.65854e9 0.0458966
\(437\) 9.73043e9i 0.266813i
\(438\) 0 0
\(439\) −9.51260e9 −0.256119 −0.128059 0.991767i \(-0.540875\pi\)
−0.128059 + 0.991767i \(0.540875\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.70779e9 −0.0447451
\(443\) − 3.20737e10i − 0.832788i −0.909184 0.416394i \(-0.863294\pi\)
0.909184 0.416394i \(-0.136706\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 3.16281e10i − 0.799343i
\(447\) 0 0
\(448\) −8.97291e10 −2.22752
\(449\) − 2.94112e10i − 0.723648i −0.932246 0.361824i \(-0.882154\pi\)
0.932246 0.361824i \(-0.117846\pi\)
\(450\) 0 0
\(451\) −5.53243e10 −1.33724
\(452\) − 4.29317e10i − 1.02855i
\(453\) 0 0
\(454\) 2.14098e10 0.503951
\(455\) 0 0
\(456\) 0 0
\(457\) −9.62260e9 −0.220611 −0.110306 0.993898i \(-0.535183\pi\)
−0.110306 + 0.993898i \(0.535183\pi\)
\(458\) − 9.58573e10i − 2.17853i
\(459\) 0 0
\(460\) 0 0
\(461\) 3.66842e9i 0.0812222i 0.999175 + 0.0406111i \(0.0129305\pi\)
−0.999175 + 0.0406111i \(0.987070\pi\)
\(462\) 0 0
\(463\) 2.55583e10 0.556170 0.278085 0.960556i \(-0.410300\pi\)
0.278085 + 0.960556i \(0.410300\pi\)
\(464\) − 5.30249e10i − 1.14395i
\(465\) 0 0
\(466\) 3.85391e10 0.817255
\(467\) − 3.61615e10i − 0.760290i −0.924927 0.380145i \(-0.875874\pi\)
0.924927 0.380145i \(-0.124126\pi\)
\(468\) 0 0
\(469\) 1.08355e11 2.23952
\(470\) 0 0
\(471\) 0 0
\(472\) 7.41344e9 0.149366
\(473\) − 7.39249e10i − 1.47688i
\(474\) 0 0
\(475\) 0 0
\(476\) − 3.32591e10i − 0.647863i
\(477\) 0 0
\(478\) −6.58105e10 −1.26062
\(479\) 4.16338e10i 0.790868i 0.918494 + 0.395434i \(0.129406\pi\)
−0.918494 + 0.395434i \(0.870594\pi\)
\(480\) 0 0
\(481\) 6.37628e9 0.119121
\(482\) 1.30657e11i 2.42071i
\(483\) 0 0
\(484\) 1.35853e10 0.247564
\(485\) 0 0
\(486\) 0 0
\(487\) −9.11488e8 −0.0162045 −0.00810224 0.999967i \(-0.502579\pi\)
−0.00810224 + 0.999967i \(0.502579\pi\)
\(488\) − 4.83632e9i − 0.0852777i
\(489\) 0 0
\(490\) 0 0
\(491\) − 5.05964e10i − 0.870551i −0.900297 0.435275i \(-0.856651\pi\)
0.900297 0.435275i \(-0.143349\pi\)
\(492\) 0 0
\(493\) 2.45859e10 0.416196
\(494\) − 1.20279e10i − 0.201968i
\(495\) 0 0
\(496\) 5.48813e10 0.906772
\(497\) 1.61551e11i 2.64779i
\(498\) 0 0
\(499\) −2.13194e10 −0.343853 −0.171926 0.985110i \(-0.554999\pi\)
−0.171926 + 0.985110i \(0.554999\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −8.91074e10 −1.40313
\(503\) − 8.15896e10i − 1.27457i −0.770629 0.637284i \(-0.780058\pi\)
0.770629 0.637284i \(-0.219942\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.96502e10i 0.299754i
\(507\) 0 0
\(508\) −7.68010e10 −1.15322
\(509\) 2.44976e10i 0.364966i 0.983209 + 0.182483i \(0.0584135\pi\)
−0.983209 + 0.182483i \(0.941587\pi\)
\(510\) 0 0
\(511\) −1.36848e11 −2.00703
\(512\) − 9.59783e10i − 1.39667i
\(513\) 0 0
\(514\) −1.25556e11 −1.79880
\(515\) 0 0
\(516\) 0 0
\(517\) 5.50274e10 0.770223
\(518\) 2.35519e11i 3.27121i
\(519\) 0 0
\(520\) 0 0
\(521\) − 1.37580e11i − 1.86726i −0.358235 0.933631i \(-0.616621\pi\)
0.358235 0.933631i \(-0.383379\pi\)
\(522\) 0 0
\(523\) −1.09839e10 −0.146808 −0.0734039 0.997302i \(-0.523386\pi\)
−0.0734039 + 0.997302i \(0.523386\pi\)
\(524\) 7.41868e10i 0.984015i
\(525\) 0 0
\(526\) −6.16990e10 −0.806001
\(527\) 2.54466e10i 0.329904i
\(528\) 0 0
\(529\) 7.55888e10 0.965238
\(530\) 0 0
\(531\) 0 0
\(532\) 2.34243e11 2.92429
\(533\) 9.47391e9i 0.117387i
\(534\) 0 0
\(535\) 0 0
\(536\) − 1.69160e10i − 0.204945i
\(537\) 0 0
\(538\) 1.16753e11 1.39360
\(539\) 2.19913e11i 2.60553i
\(540\) 0 0
\(541\) 6.88987e10 0.804307 0.402154 0.915572i \(-0.368262\pi\)
0.402154 + 0.915572i \(0.368262\pi\)
\(542\) 3.87066e10i 0.448527i
\(543\) 0 0
\(544\) 3.98464e10 0.454981
\(545\) 0 0
\(546\) 0 0
\(547\) 7.36294e10 0.822436 0.411218 0.911537i \(-0.365103\pi\)
0.411218 + 0.911537i \(0.365103\pi\)
\(548\) − 6.38053e10i − 0.707513i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.73158e11i 1.87860i
\(552\) 0 0
\(553\) −2.84380e11 −3.04088
\(554\) − 7.70540e10i − 0.818005i
\(555\) 0 0
\(556\) 8.87861e10 0.929064
\(557\) − 7.86391e10i − 0.816992i −0.912760 0.408496i \(-0.866053\pi\)
0.912760 0.408496i \(-0.133947\pi\)
\(558\) 0 0
\(559\) −1.26591e10 −0.129645
\(560\) 0 0
\(561\) 0 0
\(562\) −1.51863e11 −1.52232
\(563\) 6.63370e10i 0.660271i 0.943934 + 0.330135i \(0.107094\pi\)
−0.943934 + 0.330135i \(0.892906\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 2.56747e11i − 2.50172i
\(567\) 0 0
\(568\) 2.52209e10 0.242307
\(569\) 5.16708e10i 0.492943i 0.969150 + 0.246471i \(0.0792711\pi\)
−0.969150 + 0.246471i \(0.920729\pi\)
\(570\) 0 0
\(571\) −1.04745e11 −0.985343 −0.492672 0.870215i \(-0.663980\pi\)
−0.492672 + 0.870215i \(0.663980\pi\)
\(572\) − 1.28069e10i − 0.119635i
\(573\) 0 0
\(574\) −3.49936e11 −3.22360
\(575\) 0 0
\(576\) 0 0
\(577\) −1.65645e11 −1.49443 −0.747216 0.664582i \(-0.768610\pi\)
−0.747216 + 0.664582i \(0.768610\pi\)
\(578\) − 1.46012e11i − 1.30821i
\(579\) 0 0
\(580\) 0 0
\(581\) 3.36814e11i 2.95587i
\(582\) 0 0
\(583\) 9.91694e10 0.858427
\(584\) 2.13643e10i 0.183670i
\(585\) 0 0
\(586\) 2.98496e11 2.53133
\(587\) 2.42404e10i 0.204168i 0.994776 + 0.102084i \(0.0325510\pi\)
−0.994776 + 0.102084i \(0.967449\pi\)
\(588\) 0 0
\(589\) −1.79220e11 −1.48910
\(590\) 0 0
\(591\) 0 0
\(592\) −1.31390e11 −1.06973
\(593\) − 3.38219e10i − 0.273514i −0.990605 0.136757i \(-0.956332\pi\)
0.990605 0.136757i \(-0.0436680\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 5.46678e7i 0 0.000433258i
\(597\) 0 0
\(598\) 3.36496e9 0.0263133
\(599\) − 1.38008e10i − 0.107200i −0.998562 0.0536002i \(-0.982930\pi\)
0.998562 0.0536002i \(-0.0170697\pi\)
\(600\) 0 0
\(601\) −1.27071e11 −0.973978 −0.486989 0.873408i \(-0.661905\pi\)
−0.486989 + 0.873408i \(0.661905\pi\)
\(602\) − 4.67588e11i − 3.56022i
\(603\) 0 0
\(604\) −1.66841e11 −1.25359
\(605\) 0 0
\(606\) 0 0
\(607\) −2.61072e10 −0.192312 −0.0961558 0.995366i \(-0.530655\pi\)
−0.0961558 + 0.995366i \(0.530655\pi\)
\(608\) 2.80637e11i 2.05367i
\(609\) 0 0
\(610\) 0 0
\(611\) − 9.42306e9i − 0.0676125i
\(612\) 0 0
\(613\) −1.31329e10 −0.0930075 −0.0465037 0.998918i \(-0.514808\pi\)
−0.0465037 + 0.998918i \(0.514808\pi\)
\(614\) − 2.00694e11i − 1.41208i
\(615\) 0 0
\(616\) 4.88980e10 0.339600
\(617\) 2.62461e11i 1.81102i 0.424321 + 0.905512i \(0.360513\pi\)
−0.424321 + 0.905512i \(0.639487\pi\)
\(618\) 0 0
\(619\) 4.91912e10 0.335062 0.167531 0.985867i \(-0.446421\pi\)
0.167531 + 0.985867i \(0.446421\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.73044e10 0.316039
\(623\) 2.23367e11i 1.48275i
\(624\) 0 0
\(625\) 0 0
\(626\) 1.64505e10i 0.107123i
\(627\) 0 0
\(628\) −2.26019e10 −0.145314
\(629\) − 6.09211e10i − 0.389193i
\(630\) 0 0
\(631\) 2.00621e11 1.26549 0.632745 0.774361i \(-0.281928\pi\)
0.632745 + 0.774361i \(0.281928\pi\)
\(632\) 4.43966e10i 0.278280i
\(633\) 0 0
\(634\) 3.52968e11 2.18463
\(635\) 0 0
\(636\) 0 0
\(637\) 3.76586e10 0.228721
\(638\) 3.49685e11i 2.11054i
\(639\) 0 0
\(640\) 0 0
\(641\) 8.38334e10i 0.496575i 0.968686 + 0.248288i \(0.0798678\pi\)
−0.968686 + 0.248288i \(0.920132\pi\)
\(642\) 0 0
\(643\) −5.19580e10 −0.303954 −0.151977 0.988384i \(-0.548564\pi\)
−0.151977 + 0.988384i \(0.548564\pi\)
\(644\) 6.55325e10i 0.380990i
\(645\) 0 0
\(646\) −1.14919e11 −0.659873
\(647\) 1.60226e11i 0.914358i 0.889375 + 0.457179i \(0.151140\pi\)
−0.889375 + 0.457179i \(0.848860\pi\)
\(648\) 0 0
\(649\) 1.74703e11 0.984742
\(650\) 0 0
\(651\) 0 0
\(652\) 1.00703e11 0.557250
\(653\) − 6.01694e10i − 0.330920i −0.986217 0.165460i \(-0.947089\pi\)
0.986217 0.165460i \(-0.0529109\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 1.95220e11i − 1.05416i
\(657\) 0 0
\(658\) 3.48058e11 1.85673
\(659\) − 5.94975e10i − 0.315469i −0.987482 0.157735i \(-0.949581\pi\)
0.987482 0.157735i \(-0.0504190\pi\)
\(660\) 0 0
\(661\) −2.59920e10 −0.136155 −0.0680775 0.997680i \(-0.521686\pi\)
−0.0680775 + 0.997680i \(0.521686\pi\)
\(662\) − 5.18990e11i − 2.70226i
\(663\) 0 0
\(664\) 5.25824e10 0.270501
\(665\) 0 0
\(666\) 0 0
\(667\) −4.84431e10 −0.244753
\(668\) 2.19026e11i 1.09999i
\(669\) 0 0
\(670\) 0 0
\(671\) − 1.13972e11i − 0.562220i
\(672\) 0 0
\(673\) 1.53578e11 0.748634 0.374317 0.927301i \(-0.377877\pi\)
0.374317 + 0.927301i \(0.377877\pi\)
\(674\) 1.02477e11i 0.496578i
\(675\) 0 0
\(676\) 2.30709e11 1.10478
\(677\) 3.15811e11i 1.50339i 0.659509 + 0.751697i \(0.270764\pi\)
−0.659509 + 0.751697i \(0.729236\pi\)
\(678\) 0 0
\(679\) 3.80121e11 1.78831
\(680\) 0 0
\(681\) 0 0
\(682\) −3.61927e11 −1.67295
\(683\) − 1.63003e11i − 0.749052i −0.927216 0.374526i \(-0.877805\pi\)
0.927216 0.374526i \(-0.122195\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 8.00843e11i 3.61619i
\(687\) 0 0
\(688\) 2.60854e11 1.16425
\(689\) − 1.69821e10i − 0.0753553i
\(690\) 0 0
\(691\) 3.15836e10 0.138532 0.0692659 0.997598i \(-0.477934\pi\)
0.0692659 + 0.997598i \(0.477934\pi\)
\(692\) − 1.06909e11i − 0.466217i
\(693\) 0 0
\(694\) 1.30011e11 0.560459
\(695\) 0 0
\(696\) 0 0
\(697\) 9.05169e10 0.383529
\(698\) − 3.42111e11i − 1.44127i
\(699\) 0 0
\(700\) 0 0
\(701\) 8.43107e10i 0.349149i 0.984644 + 0.174574i \(0.0558550\pi\)
−0.984644 + 0.174574i \(0.944145\pi\)
\(702\) 0 0
\(703\) 4.29066e11 1.75672
\(704\) 3.30115e11i 1.34392i
\(705\) 0 0
\(706\) 1.32275e9 0.00532424
\(707\) 5.52920e11i 2.21302i
\(708\) 0 0
\(709\) 1.36293e11 0.539374 0.269687 0.962948i \(-0.413080\pi\)
0.269687 + 0.962948i \(0.413080\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 3.48714e10 0.135691
\(713\) − 5.01391e10i − 0.194007i
\(714\) 0 0
\(715\) 0 0
\(716\) 1.44168e11i 0.548552i
\(717\) 0 0
\(718\) 2.22549e11 0.837392
\(719\) 3.82144e11i 1.42992i 0.699165 + 0.714960i \(0.253555\pi\)
−0.699165 + 0.714960i \(0.746445\pi\)
\(720\) 0 0
\(721\) −1.15736e11 −0.428281
\(722\) − 4.14154e11i − 1.52410i
\(723\) 0 0
\(724\) −3.24979e11 −1.18277
\(725\) 0 0
\(726\) 0 0
\(727\) 1.37646e11 0.492751 0.246375 0.969174i \(-0.420760\pi\)
0.246375 + 0.969174i \(0.420760\pi\)
\(728\) − 8.37345e9i − 0.0298112i
\(729\) 0 0
\(730\) 0 0
\(731\) 1.20949e11i 0.423579i
\(732\) 0 0
\(733\) −3.87192e11 −1.34125 −0.670626 0.741796i \(-0.733974\pi\)
−0.670626 + 0.741796i \(0.733974\pi\)
\(734\) − 6.86273e11i − 2.36435i
\(735\) 0 0
\(736\) −7.85117e10 −0.267561
\(737\) − 3.98638e11i − 1.35117i
\(738\) 0 0
\(739\) 5.79542e11 1.94315 0.971577 0.236726i \(-0.0760742\pi\)
0.971577 + 0.236726i \(0.0760742\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.27264e11 2.06935
\(743\) − 1.93713e11i − 0.635630i −0.948153 0.317815i \(-0.897051\pi\)
0.948153 0.317815i \(-0.102949\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 1.59969e11i − 0.516512i
\(747\) 0 0
\(748\) −1.22361e11 −0.390874
\(749\) − 1.09899e12i − 3.49195i
\(750\) 0 0
\(751\) −1.80812e11 −0.568418 −0.284209 0.958762i \(-0.591731\pi\)
−0.284209 + 0.958762i \(0.591731\pi\)
\(752\) 1.94172e11i 0.607177i
\(753\) 0 0
\(754\) 5.98811e10 0.185270
\(755\) 0 0
\(756\) 0 0
\(757\) 3.05384e11 0.929958 0.464979 0.885322i \(-0.346062\pi\)
0.464979 + 0.885322i \(0.346062\pi\)
\(758\) − 1.45138e11i − 0.439646i
\(759\) 0 0
\(760\) 0 0
\(761\) 2.84245e11i 0.847529i 0.905772 + 0.423765i \(0.139292\pi\)
−0.905772 + 0.423765i \(0.860708\pi\)
\(762\) 0 0
\(763\) 2.55547e10 0.0754001
\(764\) − 1.52508e11i − 0.447630i
\(765\) 0 0
\(766\) −5.86380e11 −1.70319
\(767\) − 2.99168e10i − 0.0864437i
\(768\) 0 0
\(769\) −5.48712e11 −1.56906 −0.784529 0.620092i \(-0.787095\pi\)
−0.784529 + 0.620092i \(0.787095\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.73071e11 −1.33186
\(773\) 2.22203e11i 0.622346i 0.950353 + 0.311173i \(0.100722\pi\)
−0.950353 + 0.311173i \(0.899278\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 5.93434e10i − 0.163653i
\(777\) 0 0
\(778\) 4.22959e11 1.15446
\(779\) 6.37508e11i 1.73115i
\(780\) 0 0
\(781\) 5.94349e11 1.59749
\(782\) − 3.21500e10i − 0.0859713i
\(783\) 0 0
\(784\) −7.75994e11 −2.05397
\(785\) 0 0
\(786\) 0 0
\(787\) −5.76769e10 −0.150350 −0.0751749 0.997170i \(-0.523952\pi\)
−0.0751749 + 0.997170i \(0.523952\pi\)
\(788\) − 5.35299e10i − 0.138833i
\(789\) 0 0
\(790\) 0 0
\(791\) − 6.61488e11i − 1.68972i
\(792\) 0 0
\(793\) −1.95169e10 −0.0493534
\(794\) 1.69258e11i 0.425860i
\(795\) 0 0
\(796\) −1.29775e11 −0.323249
\(797\) − 5.38839e11i − 1.33544i −0.744411 0.667722i \(-0.767270\pi\)
0.744411 0.667722i \(-0.232730\pi\)
\(798\) 0 0
\(799\) −9.00310e10 −0.220905
\(800\) 0 0
\(801\) 0 0
\(802\) −5.11952e11 −1.23746
\(803\) 5.03466e11i 1.21090i
\(804\) 0 0
\(805\) 0 0
\(806\) 6.19776e10i 0.146857i
\(807\) 0 0
\(808\) 8.63203e10 0.202520
\(809\) 7.75938e11i 1.81148i 0.423837 + 0.905738i \(0.360683\pi\)
−0.423837 + 0.905738i \(0.639317\pi\)
\(810\) 0 0
\(811\) −1.26913e11 −0.293375 −0.146688 0.989183i \(-0.546861\pi\)
−0.146688 + 0.989183i \(0.546861\pi\)
\(812\) 1.16618e12i 2.68251i
\(813\) 0 0
\(814\) 8.66480e11 1.97361
\(815\) 0 0
\(816\) 0 0
\(817\) −8.51844e11 −1.91193
\(818\) 4.17299e9i 0.00932039i
\(819\) 0 0
\(820\) 0 0
\(821\) − 3.93640e11i − 0.866417i −0.901294 0.433208i \(-0.857381\pi\)
0.901294 0.433208i \(-0.142619\pi\)
\(822\) 0 0
\(823\) −8.13687e11 −1.77361 −0.886805 0.462144i \(-0.847080\pi\)
−0.886805 + 0.462144i \(0.847080\pi\)
\(824\) 1.80684e10i 0.0391932i
\(825\) 0 0
\(826\) 1.10503e12 2.37385
\(827\) − 4.48558e11i − 0.958950i −0.877555 0.479475i \(-0.840827\pi\)
0.877555 0.479475i \(-0.159173\pi\)
\(828\) 0 0
\(829\) 3.50125e11 0.741319 0.370660 0.928769i \(-0.379132\pi\)
0.370660 + 0.928769i \(0.379132\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.65299e10 0.117974
\(833\) − 3.59803e11i − 0.747281i
\(834\) 0 0
\(835\) 0 0
\(836\) − 8.61785e11i − 1.76430i
\(837\) 0 0
\(838\) −8.65779e11 −1.75562
\(839\) − 4.80271e10i − 0.0969256i −0.998825 0.0484628i \(-0.984568\pi\)
0.998825 0.0484628i \(-0.0154322\pi\)
\(840\) 0 0
\(841\) −3.61820e11 −0.723284
\(842\) 1.02029e11i 0.202990i
\(843\) 0 0
\(844\) −7.24804e11 −1.42840
\(845\) 0 0
\(846\) 0 0
\(847\) 2.09320e11 0.406704
\(848\) 3.49933e11i 0.676709i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.20037e11i 0.228873i
\(852\) 0 0
\(853\) −2.42085e11 −0.457270 −0.228635 0.973512i \(-0.573426\pi\)
−0.228635 + 0.973512i \(0.573426\pi\)
\(854\) − 7.20890e11i − 1.35531i
\(855\) 0 0
\(856\) −1.71572e11 −0.319559
\(857\) − 2.23435e11i − 0.414218i −0.978318 0.207109i \(-0.933595\pi\)
0.978318 0.207109i \(-0.0664054\pi\)
\(858\) 0 0
\(859\) −6.68565e11 −1.22792 −0.613961 0.789336i \(-0.710425\pi\)
−0.613961 + 0.789336i \(0.710425\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.03631e11 0.912186
\(863\) − 3.96860e11i − 0.715475i −0.933822 0.357738i \(-0.883548\pi\)
0.933822 0.357738i \(-0.116452\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 1.57005e11i − 0.279153i
\(867\) 0 0
\(868\) −1.20701e12 −2.12634
\(869\) 1.04624e12i 1.83465i
\(870\) 0 0
\(871\) −6.82641e10 −0.118610
\(872\) − 3.98952e9i − 0.00690009i
\(873\) 0 0
\(874\) 2.26431e11 0.388053
\(875\) 0 0
\(876\) 0 0
\(877\) 1.09419e12 1.84967 0.924837 0.380363i \(-0.124201\pi\)
0.924837 + 0.380363i \(0.124201\pi\)
\(878\) 2.21362e11i 0.372500i
\(879\) 0 0
\(880\) 0 0
\(881\) − 7.89783e11i − 1.31100i −0.755193 0.655502i \(-0.772457\pi\)
0.755193 0.655502i \(-0.227543\pi\)
\(882\) 0 0
\(883\) −2.41466e11 −0.397203 −0.198601 0.980080i \(-0.563640\pi\)
−0.198601 + 0.980080i \(0.563640\pi\)
\(884\) 2.09535e10i 0.0343121i
\(885\) 0 0
\(886\) −7.46369e11 −1.21121
\(887\) 1.16400e11i 0.188043i 0.995570 + 0.0940216i \(0.0299723\pi\)
−0.995570 + 0.0940216i \(0.970028\pi\)
\(888\) 0 0
\(889\) −1.18334e12 −1.89454
\(890\) 0 0
\(891\) 0 0
\(892\) −3.88056e11 −0.612964
\(893\) − 6.34086e11i − 0.997109i
\(894\) 0 0
\(895\) 0 0
\(896\) 3.93372e11i 0.610340i
\(897\) 0 0
\(898\) −6.84412e11 −1.05248
\(899\) − 8.92249e11i − 1.36599i
\(900\) 0 0
\(901\) −1.62252e11 −0.246202
\(902\) 1.28742e12i 1.94489i
\(903\) 0 0
\(904\) −1.03269e11 −0.154632
\(905\) 0 0
\(906\) 0 0
\(907\) −1.88146e11 −0.278013 −0.139007 0.990291i \(-0.544391\pi\)
−0.139007 + 0.990291i \(0.544391\pi\)
\(908\) − 2.62684e11i − 0.386447i
\(909\) 0 0
\(910\) 0 0
\(911\) − 3.22353e11i − 0.468014i −0.972235 0.234007i \(-0.924816\pi\)
0.972235 0.234007i \(-0.0751838\pi\)
\(912\) 0 0
\(913\) 1.23915e12 1.78336
\(914\) 2.23922e11i 0.320858i
\(915\) 0 0
\(916\) −1.17611e12 −1.67057
\(917\) 1.14306e12i 1.61656i
\(918\) 0 0
\(919\) −5.59401e11 −0.784262 −0.392131 0.919909i \(-0.628262\pi\)
−0.392131 + 0.919909i \(0.628262\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 8.53656e10 0.118130
\(923\) − 1.01778e11i − 0.140232i
\(924\) 0 0
\(925\) 0 0
\(926\) − 5.94752e11i − 0.808895i
\(927\) 0 0
\(928\) −1.39715e12 −1.88388
\(929\) 1.26527e12i 1.69872i 0.527817 + 0.849358i \(0.323011\pi\)
−0.527817 + 0.849358i \(0.676989\pi\)
\(930\) 0 0
\(931\) 2.53408e12 3.37304
\(932\) − 4.72849e11i − 0.626699i
\(933\) 0 0
\(934\) −8.41495e11 −1.10577
\(935\) 0 0
\(936\) 0 0
\(937\) 1.14305e12 1.48289 0.741444 0.671015i \(-0.234141\pi\)
0.741444 + 0.671015i \(0.234141\pi\)
\(938\) − 2.52146e12i − 3.25717i
\(939\) 0 0
\(940\) 0 0
\(941\) 7.23423e11i 0.922643i 0.887233 + 0.461322i \(0.152625\pi\)
−0.887233 + 0.461322i \(0.847375\pi\)
\(942\) 0 0
\(943\) −1.78351e11 −0.225543
\(944\) 6.16466e11i 0.776285i
\(945\) 0 0
\(946\) −1.72026e12 −2.14798
\(947\) 3.09470e11i 0.384786i 0.981318 + 0.192393i \(0.0616248\pi\)
−0.981318 + 0.192393i \(0.938375\pi\)
\(948\) 0 0
\(949\) 8.62151e10 0.106296
\(950\) 0 0
\(951\) 0 0
\(952\) −8.00027e10 −0.0973995
\(953\) − 3.15952e11i − 0.383045i −0.981488 0.191522i \(-0.938658\pi\)
0.981488 0.191522i \(-0.0613425\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 8.07453e11i 0.966686i
\(957\) 0 0
\(958\) 9.68837e11 1.15024
\(959\) − 9.83106e11i − 1.16232i
\(960\) 0 0
\(961\) 7.05960e10 0.0827726
\(962\) − 1.48379e11i − 0.173249i
\(963\) 0 0
\(964\) 1.60307e12 1.85628
\(965\) 0 0
\(966\) 0 0
\(967\) 2.47951e11 0.283570 0.141785 0.989897i \(-0.454716\pi\)
0.141785 + 0.989897i \(0.454716\pi\)
\(968\) − 3.26785e10i − 0.0372186i
\(969\) 0 0
\(970\) 0 0
\(971\) − 7.68280e11i − 0.864256i −0.901812 0.432128i \(-0.857763\pi\)
0.901812 0.432128i \(-0.142237\pi\)
\(972\) 0 0
\(973\) 1.36801e12 1.52629
\(974\) 2.12107e10i 0.0235678i
\(975\) 0 0
\(976\) 4.02165e11 0.443205
\(977\) − 1.31954e12i − 1.44825i −0.689666 0.724127i \(-0.742243\pi\)
0.689666 0.724127i \(-0.257757\pi\)
\(978\) 0 0
\(979\) 8.21773e11 0.894584
\(980\) 0 0
\(981\) 0 0
\(982\) −1.17740e12 −1.26613
\(983\) 6.17012e11i 0.660815i 0.943838 + 0.330407i \(0.107186\pi\)
−0.943838 + 0.330407i \(0.892814\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 5.72124e11i − 0.605316i
\(987\) 0 0
\(988\) −1.47575e11 −0.154876
\(989\) − 2.38314e11i − 0.249095i
\(990\) 0 0
\(991\) −8.44484e11 −0.875582 −0.437791 0.899077i \(-0.644239\pi\)
−0.437791 + 0.899077i \(0.644239\pi\)
\(992\) − 1.44607e12i − 1.49328i
\(993\) 0 0
\(994\) 3.75936e12 3.85096
\(995\) 0 0
\(996\) 0 0
\(997\) 1.27342e12 1.28881 0.644406 0.764683i \(-0.277105\pi\)
0.644406 + 0.764683i \(0.277105\pi\)
\(998\) 4.96112e11i 0.500100i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.9.c.d.26.3 12
3.2 odd 2 inner 225.9.c.d.26.10 12
5.2 odd 4 225.9.d.c.224.19 24
5.3 odd 4 225.9.d.c.224.6 24
5.4 even 2 45.9.c.a.26.10 yes 12
15.2 even 4 225.9.d.c.224.5 24
15.8 even 4 225.9.d.c.224.20 24
15.14 odd 2 45.9.c.a.26.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.9.c.a.26.3 12 15.14 odd 2
45.9.c.a.26.10 yes 12 5.4 even 2
225.9.c.d.26.3 12 1.1 even 1 trivial
225.9.c.d.26.10 12 3.2 odd 2 inner
225.9.d.c.224.5 24 15.2 even 4
225.9.d.c.224.6 24 5.3 odd 4
225.9.d.c.224.19 24 5.2 odd 4
225.9.d.c.224.20 24 15.8 even 4