Properties

Label 225.8.a.ba.1.2
Level $225$
Weight $8$
Character 225.1
Self dual yes
Analytic conductor $70.287$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,8,Mod(1,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,528,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2866307339\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{65}, \sqrt{85})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 46x^{2} - 115x - 35 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.75584\) of defining polynomial
Character \(\chi\) \(=\) 225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.1245 q^{2} +132.000 q^{4} +891.964 q^{7} -64.4981 q^{8} +3872.21 q^{11} -9811.61 q^{13} -14382.5 q^{14} -15856.0 q^{16} +10916.3 q^{17} -14924.0 q^{19} -62437.5 q^{22} -225.743 q^{23} +158207. q^{26} +117739. q^{28} -136634. q^{29} -244192. q^{31} +263926. q^{32} -176020. q^{34} +511095. q^{37} +240642. q^{38} -616234. q^{41} -656486. q^{43} +511132. q^{44} +3640.00 q^{46} +1.32102e6 q^{47} -27943.0 q^{49} -1.29513e6 q^{52} +1.10593e6 q^{53} -57530.0 q^{56} +2.20315e6 q^{58} +1.96210e6 q^{59} +1.76244e6 q^{61} +3.93748e6 q^{62} -2.22611e6 q^{64} -993648. q^{67} +1.44095e6 q^{68} -454708. q^{71} -4.05665e6 q^{73} -8.24117e6 q^{74} -1.96997e6 q^{76} +3.45387e6 q^{77} -2.16822e6 q^{79} +9.93648e6 q^{82} -748371. q^{83} +1.05855e7 q^{86} -249750. q^{88} +5.31046e6 q^{89} -8.75160e6 q^{91} -29798.1 q^{92} -2.13008e7 q^{94} -1.13048e7 q^{97} +450567. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 528 q^{4} - 63424 q^{16} - 59696 q^{19} - 976768 q^{31} - 704080 q^{34} + 14560 q^{46} - 111772 q^{49} + 7049768 q^{61} - 8904448 q^{64} - 7879872 q^{76} - 8672864 q^{79} - 35006400 q^{91} - 85203040 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.1245 −1.42522 −0.712610 0.701561i \(-0.752487\pi\)
−0.712610 + 0.701561i \(0.752487\pi\)
\(3\) 0 0
\(4\) 132.000 1.03125
\(5\) 0 0
\(6\) 0 0
\(7\) 891.964 0.982888 0.491444 0.870909i \(-0.336469\pi\)
0.491444 + 0.870909i \(0.336469\pi\)
\(8\) −64.4981 −0.0445381
\(9\) 0 0
\(10\) 0 0
\(11\) 3872.21 0.877171 0.438586 0.898689i \(-0.355480\pi\)
0.438586 + 0.898689i \(0.355480\pi\)
\(12\) 0 0
\(13\) −9811.61 −1.23862 −0.619310 0.785146i \(-0.712588\pi\)
−0.619310 + 0.785146i \(0.712588\pi\)
\(14\) −14382.5 −1.40083
\(15\) 0 0
\(16\) −15856.0 −0.967773
\(17\) 10916.3 0.538895 0.269447 0.963015i \(-0.413159\pi\)
0.269447 + 0.963015i \(0.413159\pi\)
\(18\) 0 0
\(19\) −14924.0 −0.499169 −0.249585 0.968353i \(-0.580294\pi\)
−0.249585 + 0.968353i \(0.580294\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −62437.5 −1.25016
\(23\) −225.743 −0.00386872 −0.00193436 0.999998i \(-0.500616\pi\)
−0.00193436 + 0.999998i \(0.500616\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 158207. 1.76531
\(27\) 0 0
\(28\) 117739. 1.01360
\(29\) −136634. −1.04031 −0.520157 0.854070i \(-0.674127\pi\)
−0.520157 + 0.854070i \(0.674127\pi\)
\(30\) 0 0
\(31\) −244192. −1.47220 −0.736098 0.676875i \(-0.763334\pi\)
−0.736098 + 0.676875i \(0.763334\pi\)
\(32\) 263926. 1.42383
\(33\) 0 0
\(34\) −176020. −0.768043
\(35\) 0 0
\(36\) 0 0
\(37\) 511095. 1.65881 0.829404 0.558650i \(-0.188680\pi\)
0.829404 + 0.558650i \(0.188680\pi\)
\(38\) 240642. 0.711425
\(39\) 0 0
\(40\) 0 0
\(41\) −616234. −1.39638 −0.698188 0.715914i \(-0.746010\pi\)
−0.698188 + 0.715914i \(0.746010\pi\)
\(42\) 0 0
\(43\) −656486. −1.25917 −0.629587 0.776930i \(-0.716776\pi\)
−0.629587 + 0.776930i \(0.716776\pi\)
\(44\) 511132. 0.904583
\(45\) 0 0
\(46\) 3640.00 0.00551377
\(47\) 1.32102e6 1.85595 0.927974 0.372644i \(-0.121549\pi\)
0.927974 + 0.372644i \(0.121549\pi\)
\(48\) 0 0
\(49\) −27943.0 −0.0339302
\(50\) 0 0
\(51\) 0 0
\(52\) −1.29513e6 −1.27733
\(53\) 1.10593e6 1.02038 0.510191 0.860061i \(-0.329575\pi\)
0.510191 + 0.860061i \(0.329575\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −57530.0 −0.0437760
\(57\) 0 0
\(58\) 2.20315e6 1.48268
\(59\) 1.96210e6 1.24377 0.621885 0.783109i \(-0.286367\pi\)
0.621885 + 0.783109i \(0.286367\pi\)
\(60\) 0 0
\(61\) 1.76244e6 0.994169 0.497085 0.867702i \(-0.334404\pi\)
0.497085 + 0.867702i \(0.334404\pi\)
\(62\) 3.93748e6 2.09820
\(63\) 0 0
\(64\) −2.22611e6 −1.06149
\(65\) 0 0
\(66\) 0 0
\(67\) −993648. −0.403618 −0.201809 0.979425i \(-0.564682\pi\)
−0.201809 + 0.979425i \(0.564682\pi\)
\(68\) 1.44095e6 0.555735
\(69\) 0 0
\(70\) 0 0
\(71\) −454708. −0.150775 −0.0753873 0.997154i \(-0.524019\pi\)
−0.0753873 + 0.997154i \(0.524019\pi\)
\(72\) 0 0
\(73\) −4.05665e6 −1.22050 −0.610250 0.792209i \(-0.708931\pi\)
−0.610250 + 0.792209i \(0.708931\pi\)
\(74\) −8.24117e6 −2.36416
\(75\) 0 0
\(76\) −1.96997e6 −0.514768
\(77\) 3.45387e6 0.862161
\(78\) 0 0
\(79\) −2.16822e6 −0.494775 −0.247387 0.968917i \(-0.579572\pi\)
−0.247387 + 0.968917i \(0.579572\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.93648e6 1.99014
\(83\) −748371. −0.143663 −0.0718313 0.997417i \(-0.522884\pi\)
−0.0718313 + 0.997417i \(0.522884\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.05855e7 1.79460
\(87\) 0 0
\(88\) −249750. −0.0390675
\(89\) 5.31046e6 0.798485 0.399243 0.916845i \(-0.369273\pi\)
0.399243 + 0.916845i \(0.369273\pi\)
\(90\) 0 0
\(91\) −8.75160e6 −1.21743
\(92\) −29798.1 −0.00398962
\(93\) 0 0
\(94\) −2.13008e7 −2.64513
\(95\) 0 0
\(96\) 0 0
\(97\) −1.13048e7 −1.25765 −0.628825 0.777547i \(-0.716464\pi\)
−0.628825 + 0.777547i \(0.716464\pi\)
\(98\) 450567. 0.0483580
\(99\) 0 0
\(100\) 0 0
\(101\) −9.78728e6 −0.945230 −0.472615 0.881269i \(-0.656690\pi\)
−0.472615 + 0.881269i \(0.656690\pi\)
\(102\) 0 0
\(103\) 1.92673e7 1.73736 0.868682 0.495370i \(-0.164967\pi\)
0.868682 + 0.495370i \(0.164967\pi\)
\(104\) 632830. 0.0551658
\(105\) 0 0
\(106\) −1.78326e7 −1.45427
\(107\) −2.24713e7 −1.77331 −0.886656 0.462429i \(-0.846978\pi\)
−0.886656 + 0.462429i \(0.846978\pi\)
\(108\) 0 0
\(109\) −1.70298e7 −1.25955 −0.629776 0.776777i \(-0.716853\pi\)
−0.629776 + 0.776777i \(0.716853\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.41430e7 −0.951213
\(113\) −1.37331e7 −0.895355 −0.447677 0.894195i \(-0.647749\pi\)
−0.447677 + 0.894195i \(0.647749\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.80356e7 −1.07282
\(117\) 0 0
\(118\) −3.16380e7 −1.77264
\(119\) 9.73695e6 0.529674
\(120\) 0 0
\(121\) −4.49317e6 −0.230571
\(122\) −2.84185e7 −1.41691
\(123\) 0 0
\(124\) −3.22333e7 −1.51820
\(125\) 0 0
\(126\) 0 0
\(127\) 2.85330e7 1.23605 0.618024 0.786160i \(-0.287934\pi\)
0.618024 + 0.786160i \(0.287934\pi\)
\(128\) 2.11244e6 0.0890327
\(129\) 0 0
\(130\) 0 0
\(131\) −9.19760e6 −0.357458 −0.178729 0.983898i \(-0.557199\pi\)
−0.178729 + 0.983898i \(0.557199\pi\)
\(132\) 0 0
\(133\) −1.33117e7 −0.490627
\(134\) 1.60221e7 0.575244
\(135\) 0 0
\(136\) −704080. −0.0240014
\(137\) −3.64799e7 −1.21208 −0.606040 0.795434i \(-0.707243\pi\)
−0.606040 + 0.795434i \(0.707243\pi\)
\(138\) 0 0
\(139\) −1.05728e7 −0.333916 −0.166958 0.985964i \(-0.553394\pi\)
−0.166958 + 0.985964i \(0.553394\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 7.33195e6 0.214887
\(143\) −3.79926e7 −1.08648
\(144\) 0 0
\(145\) 0 0
\(146\) 6.54116e7 1.73948
\(147\) 0 0
\(148\) 6.74646e7 1.71065
\(149\) −2.63327e7 −0.652143 −0.326072 0.945345i \(-0.605725\pi\)
−0.326072 + 0.945345i \(0.605725\pi\)
\(150\) 0 0
\(151\) 2.87125e7 0.678660 0.339330 0.940667i \(-0.389800\pi\)
0.339330 + 0.940667i \(0.389800\pi\)
\(152\) 962569. 0.0222320
\(153\) 0 0
\(154\) −5.56920e7 −1.22877
\(155\) 0 0
\(156\) 0 0
\(157\) 994540. 0.0205104 0.0102552 0.999947i \(-0.496736\pi\)
0.0102552 + 0.999947i \(0.496736\pi\)
\(158\) 3.49614e7 0.705163
\(159\) 0 0
\(160\) 0 0
\(161\) −201355. −0.00380252
\(162\) 0 0
\(163\) 8.91072e6 0.161160 0.0805798 0.996748i \(-0.474323\pi\)
0.0805798 + 0.996748i \(0.474323\pi\)
\(164\) −8.13429e7 −1.44001
\(165\) 0 0
\(166\) 1.20671e7 0.204751
\(167\) 1.85304e7 0.307877 0.153938 0.988080i \(-0.450804\pi\)
0.153938 + 0.988080i \(0.450804\pi\)
\(168\) 0 0
\(169\) 3.35191e7 0.534181
\(170\) 0 0
\(171\) 0 0
\(172\) −8.66561e7 −1.29852
\(173\) −4.68600e7 −0.688083 −0.344042 0.938954i \(-0.611796\pi\)
−0.344042 + 0.938954i \(0.611796\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −6.13977e7 −0.848903
\(177\) 0 0
\(178\) −8.56286e7 −1.13802
\(179\) 3.64596e6 0.0475145 0.0237573 0.999718i \(-0.492437\pi\)
0.0237573 + 0.999718i \(0.492437\pi\)
\(180\) 0 0
\(181\) −8.98324e7 −1.12605 −0.563025 0.826440i \(-0.690363\pi\)
−0.563025 + 0.826440i \(0.690363\pi\)
\(182\) 1.41115e8 1.73510
\(183\) 0 0
\(184\) 14560.0 0.000172305 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.22702e7 0.472703
\(188\) 1.74374e8 1.91395
\(189\) 0 0
\(190\) 0 0
\(191\) 1.69641e8 1.76163 0.880816 0.473459i \(-0.156995\pi\)
0.880816 + 0.473459i \(0.156995\pi\)
\(192\) 0 0
\(193\) −8.59407e7 −0.860495 −0.430248 0.902711i \(-0.641574\pi\)
−0.430248 + 0.902711i \(0.641574\pi\)
\(194\) 1.82284e8 1.79243
\(195\) 0 0
\(196\) −3.68848e6 −0.0349905
\(197\) 7.48293e7 0.697333 0.348666 0.937247i \(-0.386635\pi\)
0.348666 + 0.937247i \(0.386635\pi\)
\(198\) 0 0
\(199\) −8.39132e7 −0.754822 −0.377411 0.926046i \(-0.623186\pi\)
−0.377411 + 0.926046i \(0.623186\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.57815e8 1.34716
\(203\) −1.21872e8 −1.02251
\(204\) 0 0
\(205\) 0 0
\(206\) −3.10676e8 −2.47613
\(207\) 0 0
\(208\) 1.55573e8 1.19870
\(209\) −5.77888e7 −0.437857
\(210\) 0 0
\(211\) −9.68059e7 −0.709436 −0.354718 0.934973i \(-0.615423\pi\)
−0.354718 + 0.934973i \(0.615423\pi\)
\(212\) 1.45983e8 1.05227
\(213\) 0 0
\(214\) 3.62339e8 2.52736
\(215\) 0 0
\(216\) 0 0
\(217\) −2.17811e8 −1.44700
\(218\) 2.74597e8 1.79514
\(219\) 0 0
\(220\) 0 0
\(221\) −1.07106e8 −0.667486
\(222\) 0 0
\(223\) 1.32857e8 0.802265 0.401133 0.916020i \(-0.368617\pi\)
0.401133 + 0.916020i \(0.368617\pi\)
\(224\) 2.35413e8 1.39946
\(225\) 0 0
\(226\) 2.21440e8 1.27608
\(227\) 9.72571e7 0.551862 0.275931 0.961177i \(-0.411014\pi\)
0.275931 + 0.961177i \(0.411014\pi\)
\(228\) 0 0
\(229\) 2.84016e7 0.156286 0.0781429 0.996942i \(-0.475101\pi\)
0.0781429 + 0.996942i \(0.475101\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.81261e6 0.0463336
\(233\) −1.36738e8 −0.708180 −0.354090 0.935211i \(-0.615209\pi\)
−0.354090 + 0.935211i \(0.615209\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.58998e8 1.28264
\(237\) 0 0
\(238\) −1.57004e8 −0.754901
\(239\) −2.93583e8 −1.39104 −0.695518 0.718509i \(-0.744825\pi\)
−0.695518 + 0.718509i \(0.744825\pi\)
\(240\) 0 0
\(241\) 2.01709e8 0.928251 0.464126 0.885769i \(-0.346369\pi\)
0.464126 + 0.885769i \(0.346369\pi\)
\(242\) 7.24502e7 0.328614
\(243\) 0 0
\(244\) 2.32642e8 1.02524
\(245\) 0 0
\(246\) 0 0
\(247\) 1.46428e8 0.618281
\(248\) 1.57499e7 0.0655688
\(249\) 0 0
\(250\) 0 0
\(251\) 2.23310e8 0.891353 0.445676 0.895194i \(-0.352963\pi\)
0.445676 + 0.895194i \(0.352963\pi\)
\(252\) 0 0
\(253\) −874125. −0.00339353
\(254\) −4.60081e8 −1.76164
\(255\) 0 0
\(256\) 2.50880e8 0.934602
\(257\) −3.81922e8 −1.40349 −0.701744 0.712430i \(-0.747595\pi\)
−0.701744 + 0.712430i \(0.747595\pi\)
\(258\) 0 0
\(259\) 4.55879e8 1.63042
\(260\) 0 0
\(261\) 0 0
\(262\) 1.48307e8 0.509456
\(263\) −2.76045e8 −0.935695 −0.467848 0.883809i \(-0.654970\pi\)
−0.467848 + 0.883809i \(0.654970\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.14644e8 0.699252
\(267\) 0 0
\(268\) −1.31162e8 −0.416231
\(269\) 4.22435e8 1.32321 0.661603 0.749855i \(-0.269877\pi\)
0.661603 + 0.749855i \(0.269877\pi\)
\(270\) 0 0
\(271\) −1.71153e6 −0.00522386 −0.00261193 0.999997i \(-0.500831\pi\)
−0.00261193 + 0.999997i \(0.500831\pi\)
\(272\) −1.73089e8 −0.521528
\(273\) 0 0
\(274\) 5.88220e8 1.72748
\(275\) 0 0
\(276\) 0 0
\(277\) −1.61917e8 −0.457735 −0.228868 0.973458i \(-0.573502\pi\)
−0.228868 + 0.973458i \(0.573502\pi\)
\(278\) 1.70481e8 0.475903
\(279\) 0 0
\(280\) 0 0
\(281\) −3.59164e8 −0.965652 −0.482826 0.875716i \(-0.660390\pi\)
−0.482826 + 0.875716i \(0.660390\pi\)
\(282\) 0 0
\(283\) −2.05767e8 −0.539664 −0.269832 0.962907i \(-0.586968\pi\)
−0.269832 + 0.962907i \(0.586968\pi\)
\(284\) −6.00214e7 −0.155486
\(285\) 0 0
\(286\) 6.12612e8 1.54848
\(287\) −5.49659e8 −1.37248
\(288\) 0 0
\(289\) −2.91173e8 −0.709592
\(290\) 0 0
\(291\) 0 0
\(292\) −5.35478e8 −1.25864
\(293\) −7.21304e8 −1.67526 −0.837629 0.546240i \(-0.816059\pi\)
−0.837629 + 0.546240i \(0.816059\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.29647e7 −0.0738801
\(297\) 0 0
\(298\) 4.24602e8 0.929447
\(299\) 2.21490e6 0.00479188
\(300\) 0 0
\(301\) −5.85562e8 −1.23763
\(302\) −4.62976e8 −0.967239
\(303\) 0 0
\(304\) 2.36635e8 0.483083
\(305\) 0 0
\(306\) 0 0
\(307\) 2.99711e8 0.591177 0.295589 0.955315i \(-0.404484\pi\)
0.295589 + 0.955315i \(0.404484\pi\)
\(308\) 4.55911e8 0.889104
\(309\) 0 0
\(310\) 0 0
\(311\) −1.72058e8 −0.324349 −0.162175 0.986762i \(-0.551851\pi\)
−0.162175 + 0.986762i \(0.551851\pi\)
\(312\) 0 0
\(313\) 3.05567e8 0.563251 0.281625 0.959524i \(-0.409126\pi\)
0.281625 + 0.959524i \(0.409126\pi\)
\(314\) −1.60365e7 −0.0292318
\(315\) 0 0
\(316\) −2.86205e8 −0.510237
\(317\) −4.39480e8 −0.774875 −0.387437 0.921896i \(-0.626640\pi\)
−0.387437 + 0.921896i \(0.626640\pi\)
\(318\) 0 0
\(319\) −5.29074e8 −0.912534
\(320\) 0 0
\(321\) 0 0
\(322\) 3.24675e6 0.00541943
\(323\) −1.62915e8 −0.269000
\(324\) 0 0
\(325\) 0 0
\(326\) −1.43681e8 −0.229688
\(327\) 0 0
\(328\) 3.97459e7 0.0621919
\(329\) 1.17830e9 1.82419
\(330\) 0 0
\(331\) −9.61785e8 −1.45774 −0.728870 0.684652i \(-0.759954\pi\)
−0.728870 + 0.684652i \(0.759954\pi\)
\(332\) −9.87850e7 −0.148152
\(333\) 0 0
\(334\) −2.98794e8 −0.438792
\(335\) 0 0
\(336\) 0 0
\(337\) 5.23454e8 0.745031 0.372515 0.928026i \(-0.378495\pi\)
0.372515 + 0.928026i \(0.378495\pi\)
\(338\) −5.40479e8 −0.761325
\(339\) 0 0
\(340\) 0 0
\(341\) −9.45562e8 −1.29137
\(342\) 0 0
\(343\) −7.59495e8 −1.01624
\(344\) 4.23420e7 0.0560812
\(345\) 0 0
\(346\) 7.55595e8 0.980670
\(347\) 1.36908e8 0.175905 0.0879523 0.996125i \(-0.471968\pi\)
0.0879523 + 0.996125i \(0.471968\pi\)
\(348\) 0 0
\(349\) 1.82702e8 0.230067 0.115034 0.993362i \(-0.463302\pi\)
0.115034 + 0.993362i \(0.463302\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.02198e9 1.24894
\(353\) 1.14182e9 1.38161 0.690804 0.723042i \(-0.257257\pi\)
0.690804 + 0.723042i \(0.257257\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.00980e8 0.823438
\(357\) 0 0
\(358\) −5.87894e7 −0.0677186
\(359\) −1.46808e9 −1.67463 −0.837317 0.546718i \(-0.815877\pi\)
−0.837317 + 0.546718i \(0.815877\pi\)
\(360\) 0 0
\(361\) −6.71146e8 −0.750830
\(362\) 1.44850e9 1.60487
\(363\) 0 0
\(364\) −1.15521e9 −1.25547
\(365\) 0 0
\(366\) 0 0
\(367\) −3.71113e8 −0.391900 −0.195950 0.980614i \(-0.562779\pi\)
−0.195950 + 0.980614i \(0.562779\pi\)
\(368\) 3.57938e6 0.00374404
\(369\) 0 0
\(370\) 0 0
\(371\) 9.86452e8 1.00292
\(372\) 0 0
\(373\) 4.24232e8 0.423274 0.211637 0.977348i \(-0.432120\pi\)
0.211637 + 0.977348i \(0.432120\pi\)
\(374\) −6.81586e8 −0.673706
\(375\) 0 0
\(376\) −8.52030e7 −0.0826604
\(377\) 1.34060e9 1.28856
\(378\) 0 0
\(379\) −1.03619e9 −0.977688 −0.488844 0.872371i \(-0.662581\pi\)
−0.488844 + 0.872371i \(0.662581\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2.73539e9 −2.51071
\(383\) −7.40719e8 −0.673687 −0.336843 0.941561i \(-0.609359\pi\)
−0.336843 + 0.941561i \(0.609359\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.38575e9 1.22639
\(387\) 0 0
\(388\) −1.49223e9 −1.29695
\(389\) 1.22689e9 1.05677 0.528387 0.849003i \(-0.322797\pi\)
0.528387 + 0.849003i \(0.322797\pi\)
\(390\) 0 0
\(391\) −2.46428e6 −0.00208483
\(392\) 1.80227e6 0.00151119
\(393\) 0 0
\(394\) −1.20659e9 −0.993852
\(395\) 0 0
\(396\) 0 0
\(397\) −1.16332e9 −0.933109 −0.466555 0.884492i \(-0.654505\pi\)
−0.466555 + 0.884492i \(0.654505\pi\)
\(398\) 1.35306e9 1.07579
\(399\) 0 0
\(400\) 0 0
\(401\) 7.05638e7 0.0546483 0.0273242 0.999627i \(-0.491301\pi\)
0.0273242 + 0.999627i \(0.491301\pi\)
\(402\) 0 0
\(403\) 2.39592e9 1.82349
\(404\) −1.29192e9 −0.974768
\(405\) 0 0
\(406\) 1.96513e9 1.45731
\(407\) 1.97907e9 1.45506
\(408\) 0 0
\(409\) −4.84419e8 −0.350098 −0.175049 0.984560i \(-0.556008\pi\)
−0.175049 + 0.984560i \(0.556008\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.54329e9 1.79166
\(413\) 1.75013e9 1.22249
\(414\) 0 0
\(415\) 0 0
\(416\) −2.58954e9 −1.76358
\(417\) 0 0
\(418\) 9.31817e8 0.624042
\(419\) −2.05312e9 −1.36353 −0.681767 0.731570i \(-0.738788\pi\)
−0.681767 + 0.731570i \(0.738788\pi\)
\(420\) 0 0
\(421\) −4.64439e8 −0.303348 −0.151674 0.988431i \(-0.548466\pi\)
−0.151674 + 0.988431i \(0.548466\pi\)
\(422\) 1.56095e9 1.01110
\(423\) 0 0
\(424\) −7.13305e7 −0.0454459
\(425\) 0 0
\(426\) 0 0
\(427\) 1.57204e9 0.977158
\(428\) −2.96621e9 −1.82873
\(429\) 0 0
\(430\) 0 0
\(431\) 1.66845e9 1.00379 0.501896 0.864928i \(-0.332636\pi\)
0.501896 + 0.864928i \(0.332636\pi\)
\(432\) 0 0
\(433\) −1.08260e9 −0.640854 −0.320427 0.947273i \(-0.603826\pi\)
−0.320427 + 0.947273i \(0.603826\pi\)
\(434\) 3.51209e9 2.06230
\(435\) 0 0
\(436\) −2.24793e9 −1.29891
\(437\) 3.36899e6 0.00193115
\(438\) 0 0
\(439\) −1.94290e9 −1.09603 −0.548016 0.836468i \(-0.684617\pi\)
−0.548016 + 0.836468i \(0.684617\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.72704e9 0.951315
\(443\) 3.25401e9 1.77830 0.889150 0.457615i \(-0.151296\pi\)
0.889150 + 0.457615i \(0.151296\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2.14226e9 −1.14340
\(447\) 0 0
\(448\) −1.98561e9 −1.04333
\(449\) 1.59381e9 0.830950 0.415475 0.909605i \(-0.363615\pi\)
0.415475 + 0.909605i \(0.363615\pi\)
\(450\) 0 0
\(451\) −2.38619e9 −1.22486
\(452\) −1.81277e9 −0.923335
\(453\) 0 0
\(454\) −1.56822e9 −0.786525
\(455\) 0 0
\(456\) 0 0
\(457\) −1.03584e9 −0.507675 −0.253838 0.967247i \(-0.581693\pi\)
−0.253838 + 0.967247i \(0.581693\pi\)
\(458\) −4.57963e8 −0.222741
\(459\) 0 0
\(460\) 0 0
\(461\) −2.37166e9 −1.12745 −0.563727 0.825961i \(-0.690633\pi\)
−0.563727 + 0.825961i \(0.690633\pi\)
\(462\) 0 0
\(463\) −2.47025e9 −1.15666 −0.578332 0.815801i \(-0.696296\pi\)
−0.578332 + 0.815801i \(0.696296\pi\)
\(464\) 2.16646e9 1.00679
\(465\) 0 0
\(466\) 2.20484e9 1.00931
\(467\) −6.83727e8 −0.310652 −0.155326 0.987863i \(-0.549643\pi\)
−0.155326 + 0.987863i \(0.549643\pi\)
\(468\) 0 0
\(469\) −8.86298e8 −0.396712
\(470\) 0 0
\(471\) 0 0
\(472\) −1.26552e8 −0.0553951
\(473\) −2.54205e9 −1.10451
\(474\) 0 0
\(475\) 0 0
\(476\) 1.28528e9 0.546226
\(477\) 0 0
\(478\) 4.73389e9 1.98253
\(479\) −7.36812e8 −0.306325 −0.153162 0.988201i \(-0.548946\pi\)
−0.153162 + 0.988201i \(0.548946\pi\)
\(480\) 0 0
\(481\) −5.01467e9 −2.05463
\(482\) −3.25246e9 −1.32296
\(483\) 0 0
\(484\) −5.93099e8 −0.237776
\(485\) 0 0
\(486\) 0 0
\(487\) −4.17299e9 −1.63718 −0.818589 0.574380i \(-0.805243\pi\)
−0.818589 + 0.574380i \(0.805243\pi\)
\(488\) −1.13674e8 −0.0442784
\(489\) 0 0
\(490\) 0 0
\(491\) 2.52822e9 0.963894 0.481947 0.876200i \(-0.339930\pi\)
0.481947 + 0.876200i \(0.339930\pi\)
\(492\) 0 0
\(493\) −1.49153e9 −0.560620
\(494\) −2.36109e9 −0.881186
\(495\) 0 0
\(496\) 3.87191e9 1.42475
\(497\) −4.05583e8 −0.148195
\(498\) 0 0
\(499\) 1.08872e9 0.392252 0.196126 0.980579i \(-0.437164\pi\)
0.196126 + 0.980579i \(0.437164\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −3.60076e9 −1.27037
\(503\) 1.07775e9 0.377600 0.188800 0.982016i \(-0.439540\pi\)
0.188800 + 0.982016i \(0.439540\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.40948e7 0.00483652
\(507\) 0 0
\(508\) 3.76636e9 1.27467
\(509\) −3.85873e9 −1.29698 −0.648488 0.761225i \(-0.724599\pi\)
−0.648488 + 0.761225i \(0.724599\pi\)
\(510\) 0 0
\(511\) −3.61839e9 −1.19962
\(512\) −4.31571e9 −1.42105
\(513\) 0 0
\(514\) 6.15830e9 2.00028
\(515\) 0 0
\(516\) 0 0
\(517\) 5.11525e9 1.62798
\(518\) −7.35082e9 −2.32371
\(519\) 0 0
\(520\) 0 0
\(521\) 6.39661e8 0.198161 0.0990805 0.995079i \(-0.468410\pi\)
0.0990805 + 0.995079i \(0.468410\pi\)
\(522\) 0 0
\(523\) 9.53972e8 0.291595 0.145797 0.989314i \(-0.453425\pi\)
0.145797 + 0.989314i \(0.453425\pi\)
\(524\) −1.21408e9 −0.368629
\(525\) 0 0
\(526\) 4.45109e9 1.33357
\(527\) −2.66567e9 −0.793359
\(528\) 0 0
\(529\) −3.40477e9 −0.999985
\(530\) 0 0
\(531\) 0 0
\(532\) −1.75714e9 −0.505960
\(533\) 6.04625e9 1.72958
\(534\) 0 0
\(535\) 0 0
\(536\) 6.40884e7 0.0179764
\(537\) 0 0
\(538\) −6.81156e9 −1.88586
\(539\) −1.08201e8 −0.0297626
\(540\) 0 0
\(541\) 4.12373e9 1.11969 0.559847 0.828596i \(-0.310860\pi\)
0.559847 + 0.828596i \(0.310860\pi\)
\(542\) 2.75976e7 0.00744515
\(543\) 0 0
\(544\) 2.88110e9 0.767293
\(545\) 0 0
\(546\) 0 0
\(547\) 3.87126e9 1.01134 0.505669 0.862727i \(-0.331246\pi\)
0.505669 + 0.862727i \(0.331246\pi\)
\(548\) −4.81534e9 −1.24996
\(549\) 0 0
\(550\) 0 0
\(551\) 2.03912e9 0.519293
\(552\) 0 0
\(553\) −1.93397e9 −0.486309
\(554\) 2.61084e9 0.652373
\(555\) 0 0
\(556\) −1.39560e9 −0.344350
\(557\) −1.38658e9 −0.339978 −0.169989 0.985446i \(-0.554373\pi\)
−0.169989 + 0.985446i \(0.554373\pi\)
\(558\) 0 0
\(559\) 6.44118e9 1.55964
\(560\) 0 0
\(561\) 0 0
\(562\) 5.79134e9 1.37627
\(563\) −2.02834e9 −0.479028 −0.239514 0.970893i \(-0.576988\pi\)
−0.239514 + 0.970893i \(0.576988\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3.31790e9 0.769140
\(567\) 0 0
\(568\) 2.93278e7 0.00671522
\(569\) 7.16780e8 0.163115 0.0815573 0.996669i \(-0.474011\pi\)
0.0815573 + 0.996669i \(0.474011\pi\)
\(570\) 0 0
\(571\) 3.19832e9 0.718944 0.359472 0.933156i \(-0.382957\pi\)
0.359472 + 0.933156i \(0.382957\pi\)
\(572\) −5.01502e9 −1.12043
\(573\) 0 0
\(574\) 8.86298e9 1.95609
\(575\) 0 0
\(576\) 0 0
\(577\) 2.14993e9 0.465917 0.232959 0.972487i \(-0.425159\pi\)
0.232959 + 0.972487i \(0.425159\pi\)
\(578\) 4.69503e9 1.01132
\(579\) 0 0
\(580\) 0 0
\(581\) −6.67520e8 −0.141204
\(582\) 0 0
\(583\) 4.28240e9 0.895050
\(584\) 2.61646e8 0.0543588
\(585\) 0 0
\(586\) 1.16307e10 2.38761
\(587\) 6.42578e9 1.31127 0.655635 0.755078i \(-0.272401\pi\)
0.655635 + 0.755078i \(0.272401\pi\)
\(588\) 0 0
\(589\) 3.64432e9 0.734874
\(590\) 0 0
\(591\) 0 0
\(592\) −8.10393e9 −1.60535
\(593\) 3.04761e9 0.600162 0.300081 0.953914i \(-0.402986\pi\)
0.300081 + 0.953914i \(0.402986\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.47591e9 −0.672523
\(597\) 0 0
\(598\) −3.57142e7 −0.00682947
\(599\) 4.90779e9 0.933023 0.466512 0.884515i \(-0.345511\pi\)
0.466512 + 0.884515i \(0.345511\pi\)
\(600\) 0 0
\(601\) −3.13473e9 −0.589033 −0.294516 0.955646i \(-0.595159\pi\)
−0.294516 + 0.955646i \(0.595159\pi\)
\(602\) 9.44190e9 1.76389
\(603\) 0 0
\(604\) 3.79005e9 0.699868
\(605\) 0 0
\(606\) 0 0
\(607\) −8.96199e9 −1.62646 −0.813231 0.581940i \(-0.802294\pi\)
−0.813231 + 0.581940i \(0.802294\pi\)
\(608\) −3.93883e9 −0.710731
\(609\) 0 0
\(610\) 0 0
\(611\) −1.29613e10 −2.29882
\(612\) 0 0
\(613\) 9.33008e9 1.63596 0.817982 0.575243i \(-0.195093\pi\)
0.817982 + 0.575243i \(0.195093\pi\)
\(614\) −4.83269e9 −0.842558
\(615\) 0 0
\(616\) −2.22768e8 −0.0383990
\(617\) −6.31024e7 −0.0108155 −0.00540777 0.999985i \(-0.501721\pi\)
−0.00540777 + 0.999985i \(0.501721\pi\)
\(618\) 0 0
\(619\) −9.58488e9 −1.62431 −0.812156 0.583440i \(-0.801706\pi\)
−0.812156 + 0.583440i \(0.801706\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2.77435e9 0.462269
\(623\) 4.73674e9 0.784822
\(624\) 0 0
\(625\) 0 0
\(626\) −4.92712e9 −0.802756
\(627\) 0 0
\(628\) 1.31279e8 0.0211513
\(629\) 5.57927e9 0.893923
\(630\) 0 0
\(631\) −6.88427e9 −1.09083 −0.545413 0.838168i \(-0.683627\pi\)
−0.545413 + 0.838168i \(0.683627\pi\)
\(632\) 1.39846e8 0.0220363
\(633\) 0 0
\(634\) 7.08640e9 1.10437
\(635\) 0 0
\(636\) 0 0
\(637\) 2.74166e8 0.0420267
\(638\) 8.53106e9 1.30056
\(639\) 0 0
\(640\) 0 0
\(641\) 4.62211e9 0.693167 0.346583 0.938019i \(-0.387342\pi\)
0.346583 + 0.938019i \(0.387342\pi\)
\(642\) 0 0
\(643\) −4.44867e9 −0.659921 −0.329961 0.943995i \(-0.607035\pi\)
−0.329961 + 0.943995i \(0.607035\pi\)
\(644\) −2.65788e7 −0.00392135
\(645\) 0 0
\(646\) 2.62692e9 0.383384
\(647\) 5.26642e9 0.764453 0.382226 0.924069i \(-0.375157\pi\)
0.382226 + 0.924069i \(0.375157\pi\)
\(648\) 0 0
\(649\) 7.59767e9 1.09100
\(650\) 0 0
\(651\) 0 0
\(652\) 1.17622e9 0.166196
\(653\) −6.40447e9 −0.900092 −0.450046 0.893005i \(-0.648592\pi\)
−0.450046 + 0.893005i \(0.648592\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9.77101e9 1.35138
\(657\) 0 0
\(658\) −1.89995e10 −2.59987
\(659\) 7.30551e9 0.994378 0.497189 0.867642i \(-0.334366\pi\)
0.497189 + 0.867642i \(0.334366\pi\)
\(660\) 0 0
\(661\) −1.00223e10 −1.34978 −0.674889 0.737919i \(-0.735809\pi\)
−0.674889 + 0.737919i \(0.735809\pi\)
\(662\) 1.55083e10 2.07760
\(663\) 0 0
\(664\) 4.82685e7 0.00639846
\(665\) 0 0
\(666\) 0 0
\(667\) 3.08441e7 0.00402469
\(668\) 2.44601e9 0.317498
\(669\) 0 0
\(670\) 0 0
\(671\) 6.82454e9 0.872057
\(672\) 0 0
\(673\) 3.65625e8 0.0462363 0.0231182 0.999733i \(-0.492641\pi\)
0.0231182 + 0.999733i \(0.492641\pi\)
\(674\) −8.44045e9 −1.06183
\(675\) 0 0
\(676\) 4.42452e9 0.550874
\(677\) 9.06259e9 1.12251 0.561257 0.827641i \(-0.310318\pi\)
0.561257 + 0.827641i \(0.310318\pi\)
\(678\) 0 0
\(679\) −1.00834e10 −1.23613
\(680\) 0 0
\(681\) 0 0
\(682\) 1.52467e10 1.84048
\(683\) 5.51289e9 0.662075 0.331038 0.943618i \(-0.392601\pi\)
0.331038 + 0.943618i \(0.392601\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.22465e10 1.44836
\(687\) 0 0
\(688\) 1.04092e10 1.21859
\(689\) −1.08510e10 −1.26387
\(690\) 0 0
\(691\) 1.71515e9 0.197755 0.0988777 0.995100i \(-0.468475\pi\)
0.0988777 + 0.995100i \(0.468475\pi\)
\(692\) −6.18552e9 −0.709586
\(693\) 0 0
\(694\) −2.20758e9 −0.250703
\(695\) 0 0
\(696\) 0 0
\(697\) −6.72700e9 −0.752500
\(698\) −2.94598e9 −0.327896
\(699\) 0 0
\(700\) 0 0
\(701\) −1.10662e10 −1.21335 −0.606675 0.794950i \(-0.707497\pi\)
−0.606675 + 0.794950i \(0.707497\pi\)
\(702\) 0 0
\(703\) −7.62759e9 −0.828025
\(704\) −8.61997e9 −0.931111
\(705\) 0 0
\(706\) −1.84112e10 −1.96909
\(707\) −8.72991e9 −0.929055
\(708\) 0 0
\(709\) 3.69647e9 0.389516 0.194758 0.980851i \(-0.437608\pi\)
0.194758 + 0.980851i \(0.437608\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −3.42514e8 −0.0355630
\(713\) 5.51247e7 0.00569551
\(714\) 0 0
\(715\) 0 0
\(716\) 4.81267e8 0.0489994
\(717\) 0 0
\(718\) 2.36721e10 2.38672
\(719\) 4.99915e9 0.501586 0.250793 0.968041i \(-0.419309\pi\)
0.250793 + 0.968041i \(0.419309\pi\)
\(720\) 0 0
\(721\) 1.71858e10 1.70764
\(722\) 1.08219e10 1.07010
\(723\) 0 0
\(724\) −1.18579e10 −1.16124
\(725\) 0 0
\(726\) 0 0
\(727\) 2.91969e9 0.281817 0.140908 0.990023i \(-0.454998\pi\)
0.140908 + 0.990023i \(0.454998\pi\)
\(728\) 5.64461e8 0.0542218
\(729\) 0 0
\(730\) 0 0
\(731\) −7.16639e9 −0.678562
\(732\) 0 0
\(733\) 5.21237e9 0.488845 0.244422 0.969669i \(-0.421402\pi\)
0.244422 + 0.969669i \(0.421402\pi\)
\(734\) 5.98402e9 0.558543
\(735\) 0 0
\(736\) −5.95795e7 −0.00550839
\(737\) −3.84761e9 −0.354042
\(738\) 0 0
\(739\) 5.26869e8 0.0480227 0.0240114 0.999712i \(-0.492356\pi\)
0.0240114 + 0.999712i \(0.492356\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.59061e10 −1.42938
\(743\) −1.67008e10 −1.49375 −0.746875 0.664965i \(-0.768447\pi\)
−0.746875 + 0.664965i \(0.768447\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −6.84053e9 −0.603259
\(747\) 0 0
\(748\) 5.57966e9 0.487475
\(749\) −2.00436e10 −1.74297
\(750\) 0 0
\(751\) −9.03609e8 −0.0778468 −0.0389234 0.999242i \(-0.512393\pi\)
−0.0389234 + 0.999242i \(0.512393\pi\)
\(752\) −2.09460e10 −1.79614
\(753\) 0 0
\(754\) −2.16165e10 −1.83647
\(755\) 0 0
\(756\) 0 0
\(757\) 1.02084e10 0.855307 0.427654 0.903943i \(-0.359340\pi\)
0.427654 + 0.903943i \(0.359340\pi\)
\(758\) 1.67080e10 1.39342
\(759\) 0 0
\(760\) 0 0
\(761\) 1.81052e10 1.48922 0.744608 0.667502i \(-0.232637\pi\)
0.744608 + 0.667502i \(0.232637\pi\)
\(762\) 0 0
\(763\) −1.51899e10 −1.23800
\(764\) 2.23927e10 1.81668
\(765\) 0 0
\(766\) 1.19437e10 0.960151
\(767\) −1.92514e10 −1.54056
\(768\) 0 0
\(769\) −4.21234e9 −0.334026 −0.167013 0.985955i \(-0.553412\pi\)
−0.167013 + 0.985955i \(0.553412\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.13442e10 −0.887386
\(773\) −1.99796e10 −1.55582 −0.777908 0.628379i \(-0.783719\pi\)
−0.777908 + 0.628379i \(0.783719\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 7.29135e8 0.0560134
\(777\) 0 0
\(778\) −1.97830e10 −1.50614
\(779\) 9.19668e9 0.697028
\(780\) 0 0
\(781\) −1.76072e9 −0.132255
\(782\) 3.97353e7 0.00297135
\(783\) 0 0
\(784\) 4.43064e8 0.0328368
\(785\) 0 0
\(786\) 0 0
\(787\) 1.58792e9 0.116123 0.0580613 0.998313i \(-0.481508\pi\)
0.0580613 + 0.998313i \(0.481508\pi\)
\(788\) 9.87747e9 0.719124
\(789\) 0 0
\(790\) 0 0
\(791\) −1.22495e10 −0.880034
\(792\) 0 0
\(793\) −1.72924e10 −1.23140
\(794\) 1.87580e10 1.32989
\(795\) 0 0
\(796\) −1.10765e10 −0.778410
\(797\) −6.84247e9 −0.478750 −0.239375 0.970927i \(-0.576942\pi\)
−0.239375 + 0.970927i \(0.576942\pi\)
\(798\) 0 0
\(799\) 1.44206e10 1.00016
\(800\) 0 0
\(801\) 0 0
\(802\) −1.13781e9 −0.0778858
\(803\) −1.57082e10 −1.07059
\(804\) 0 0
\(805\) 0 0
\(806\) −3.86330e10 −2.59888
\(807\) 0 0
\(808\) 6.31261e8 0.0420987
\(809\) 9.65265e9 0.640954 0.320477 0.947256i \(-0.396157\pi\)
0.320477 + 0.947256i \(0.396157\pi\)
\(810\) 0 0
\(811\) −1.52539e9 −0.100417 −0.0502086 0.998739i \(-0.515989\pi\)
−0.0502086 + 0.998739i \(0.515989\pi\)
\(812\) −1.60871e10 −1.05447
\(813\) 0 0
\(814\) −3.19115e10 −2.07378
\(815\) 0 0
\(816\) 0 0
\(817\) 9.79739e9 0.628540
\(818\) 7.81102e9 0.498966
\(819\) 0 0
\(820\) 0 0
\(821\) 2.60390e10 1.64219 0.821096 0.570790i \(-0.193363\pi\)
0.821096 + 0.570790i \(0.193363\pi\)
\(822\) 0 0
\(823\) 1.13082e10 0.707120 0.353560 0.935412i \(-0.384971\pi\)
0.353560 + 0.935412i \(0.384971\pi\)
\(824\) −1.24270e9 −0.0773789
\(825\) 0 0
\(826\) −2.82199e10 −1.74231
\(827\) −1.80755e10 −1.11127 −0.555637 0.831425i \(-0.687526\pi\)
−0.555637 + 0.831425i \(0.687526\pi\)
\(828\) 0 0
\(829\) −2.51806e10 −1.53506 −0.767531 0.641012i \(-0.778515\pi\)
−0.767531 + 0.641012i \(0.778515\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.18417e10 1.31479
\(833\) −3.05034e8 −0.0182848
\(834\) 0 0
\(835\) 0 0
\(836\) −7.62813e9 −0.451540
\(837\) 0 0
\(838\) 3.31056e10 1.94333
\(839\) −2.72950e10 −1.59557 −0.797787 0.602939i \(-0.793996\pi\)
−0.797787 + 0.602939i \(0.793996\pi\)
\(840\) 0 0
\(841\) 1.41888e9 0.0822544
\(842\) 7.48885e9 0.432338
\(843\) 0 0
\(844\) −1.27784e10 −0.731606
\(845\) 0 0
\(846\) 0 0
\(847\) −4.00775e9 −0.226625
\(848\) −1.75357e10 −0.987499
\(849\) 0 0
\(850\) 0 0
\(851\) −1.15376e8 −0.00641746
\(852\) 0 0
\(853\) 1.29870e10 0.716453 0.358226 0.933635i \(-0.383382\pi\)
0.358226 + 0.933635i \(0.383382\pi\)
\(854\) −2.53483e10 −1.39266
\(855\) 0 0
\(856\) 1.44936e9 0.0789800
\(857\) −8.31784e9 −0.451417 −0.225708 0.974195i \(-0.572470\pi\)
−0.225708 + 0.974195i \(0.572470\pi\)
\(858\) 0 0
\(859\) −8.94316e9 −0.481410 −0.240705 0.970598i \(-0.577379\pi\)
−0.240705 + 0.970598i \(0.577379\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.69030e10 −1.43062
\(863\) −4.59600e9 −0.243412 −0.121706 0.992566i \(-0.538837\pi\)
−0.121706 + 0.992566i \(0.538837\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.74563e10 0.913357
\(867\) 0 0
\(868\) −2.87510e10 −1.49222
\(869\) −8.39578e9 −0.434002
\(870\) 0 0
\(871\) 9.74928e9 0.499930
\(872\) 1.09839e9 0.0560980
\(873\) 0 0
\(874\) −5.43234e7 −0.00275231
\(875\) 0 0
\(876\) 0 0
\(877\) −2.17651e10 −1.08959 −0.544795 0.838569i \(-0.683392\pi\)
−0.544795 + 0.838569i \(0.683392\pi\)
\(878\) 3.13282e10 1.56209
\(879\) 0 0
\(880\) 0 0
\(881\) 3.32060e10 1.63607 0.818034 0.575170i \(-0.195064\pi\)
0.818034 + 0.575170i \(0.195064\pi\)
\(882\) 0 0
\(883\) 3.47892e10 1.70052 0.850261 0.526361i \(-0.176444\pi\)
0.850261 + 0.526361i \(0.176444\pi\)
\(884\) −1.41380e10 −0.688345
\(885\) 0 0
\(886\) −5.24693e10 −2.53447
\(887\) 3.48616e10 1.67731 0.838657 0.544660i \(-0.183341\pi\)
0.838657 + 0.544660i \(0.183341\pi\)
\(888\) 0 0
\(889\) 2.54504e10 1.21490
\(890\) 0 0
\(891\) 0 0
\(892\) 1.75371e10 0.827336
\(893\) −1.97149e10 −0.926432
\(894\) 0 0
\(895\) 0 0
\(896\) 1.88422e9 0.0875092
\(897\) 0 0
\(898\) −2.56994e10 −1.18429
\(899\) 3.33648e10 1.53155
\(900\) 0 0
\(901\) 1.20727e10 0.549879
\(902\) 3.84761e10 1.74570
\(903\) 0 0
\(904\) 8.85761e8 0.0398774
\(905\) 0 0
\(906\) 0 0
\(907\) 1.82643e10 0.812788 0.406394 0.913698i \(-0.366786\pi\)
0.406394 + 0.913698i \(0.366786\pi\)
\(908\) 1.28379e10 0.569108
\(909\) 0 0
\(910\) 0 0
\(911\) −1.62009e10 −0.709945 −0.354973 0.934877i \(-0.615510\pi\)
−0.354973 + 0.934877i \(0.615510\pi\)
\(912\) 0 0
\(913\) −2.89785e9 −0.126017
\(914\) 1.67024e10 0.723548
\(915\) 0 0
\(916\) 3.74902e9 0.161170
\(917\) −8.20393e9 −0.351341
\(918\) 0 0
\(919\) −2.47808e10 −1.05320 −0.526599 0.850114i \(-0.676533\pi\)
−0.526599 + 0.850114i \(0.676533\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 3.82418e10 1.60687
\(923\) 4.46141e9 0.186753
\(924\) 0 0
\(925\) 0 0
\(926\) 3.98316e10 1.64850
\(927\) 0 0
\(928\) −3.60612e10 −1.48123
\(929\) −1.75952e9 −0.0720011 −0.0360005 0.999352i \(-0.511462\pi\)
−0.0360005 + 0.999352i \(0.511462\pi\)
\(930\) 0 0
\(931\) 4.17021e8 0.0169369
\(932\) −1.80494e10 −0.730311
\(933\) 0 0
\(934\) 1.10248e10 0.442747
\(935\) 0 0
\(936\) 0 0
\(937\) −4.17587e10 −1.65828 −0.829141 0.559040i \(-0.811170\pi\)
−0.829141 + 0.559040i \(0.811170\pi\)
\(938\) 1.42911e10 0.565401
\(939\) 0 0
\(940\) 0 0
\(941\) −2.01970e10 −0.790173 −0.395087 0.918644i \(-0.629285\pi\)
−0.395087 + 0.918644i \(0.629285\pi\)
\(942\) 0 0
\(943\) 1.39111e8 0.00540219
\(944\) −3.11111e10 −1.20369
\(945\) 0 0
\(946\) 4.09893e10 1.57417
\(947\) 2.65395e10 1.01547 0.507736 0.861513i \(-0.330483\pi\)
0.507736 + 0.861513i \(0.330483\pi\)
\(948\) 0 0
\(949\) 3.98023e10 1.51174
\(950\) 0 0
\(951\) 0 0
\(952\) −6.28014e8 −0.0235907
\(953\) 3.15558e9 0.118101 0.0590505 0.998255i \(-0.481193\pi\)
0.0590505 + 0.998255i \(0.481193\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3.87530e10 −1.43451
\(957\) 0 0
\(958\) 1.18807e10 0.436580
\(959\) −3.25387e10 −1.19134
\(960\) 0 0
\(961\) 3.21171e10 1.16736
\(962\) 8.08591e10 2.92830
\(963\) 0 0
\(964\) 2.66256e10 0.957259
\(965\) 0 0
\(966\) 0 0
\(967\) 1.84578e10 0.656428 0.328214 0.944603i \(-0.393553\pi\)
0.328214 + 0.944603i \(0.393553\pi\)
\(968\) 2.89801e8 0.0102692
\(969\) 0 0
\(970\) 0 0
\(971\) −3.98868e10 −1.39818 −0.699089 0.715035i \(-0.746411\pi\)
−0.699089 + 0.715035i \(0.746411\pi\)
\(972\) 0 0
\(973\) −9.43053e9 −0.328202
\(974\) 6.72874e10 2.33334
\(975\) 0 0
\(976\) −2.79453e10 −0.962131
\(977\) 3.05548e10 1.04821 0.524106 0.851653i \(-0.324400\pi\)
0.524106 + 0.851653i \(0.324400\pi\)
\(978\) 0 0
\(979\) 2.05632e10 0.700408
\(980\) 0 0
\(981\) 0 0
\(982\) −4.07663e10 −1.37376
\(983\) 3.06865e10 1.03041 0.515206 0.857067i \(-0.327716\pi\)
0.515206 + 0.857067i \(0.327716\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2.40503e10 0.799007
\(987\) 0 0
\(988\) 1.93285e10 0.637602
\(989\) 1.48197e8 0.00487139
\(990\) 0 0
\(991\) 5.44706e10 1.77789 0.888944 0.458016i \(-0.151440\pi\)
0.888944 + 0.458016i \(0.151440\pi\)
\(992\) −6.44486e10 −2.09615
\(993\) 0 0
\(994\) 6.53983e9 0.211210
\(995\) 0 0
\(996\) 0 0
\(997\) −1.17569e10 −0.375717 −0.187858 0.982196i \(-0.560155\pi\)
−0.187858 + 0.982196i \(0.560155\pi\)
\(998\) −1.75551e10 −0.559045
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.8.a.ba.1.2 4
3.2 odd 2 inner 225.8.a.ba.1.4 4
5.2 odd 4 45.8.b.c.19.1 4
5.3 odd 4 45.8.b.c.19.3 yes 4
5.4 even 2 inner 225.8.a.ba.1.3 4
15.2 even 4 45.8.b.c.19.4 yes 4
15.8 even 4 45.8.b.c.19.2 yes 4
15.14 odd 2 inner 225.8.a.ba.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.8.b.c.19.1 4 5.2 odd 4
45.8.b.c.19.2 yes 4 15.8 even 4
45.8.b.c.19.3 yes 4 5.3 odd 4
45.8.b.c.19.4 yes 4 15.2 even 4
225.8.a.ba.1.1 4 15.14 odd 2 inner
225.8.a.ba.1.2 4 1.1 even 1 trivial
225.8.a.ba.1.3 4 5.4 even 2 inner
225.8.a.ba.1.4 4 3.2 odd 2 inner