Properties

Label 225.8.a.ba
Level $225$
Weight $8$
Character orbit 225.a
Self dual yes
Analytic conductor $70.287$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,8,Mod(1,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,528,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2866307339\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{65}, \sqrt{85})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 46x^{2} - 115x - 35 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + 132 q^{4} - \beta_{2} q^{7} - 4 \beta_1 q^{8} - 7 \beta_{3} q^{11} + 11 \beta_{2} q^{13} + 26 \beta_{3} q^{14} - 15856 q^{16} + 677 \beta_1 q^{17} - 14924 q^{19} + 70 \beta_{2} q^{22}+ \cdots + 27943 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 528 q^{4} - 63424 q^{16} - 59696 q^{19} - 976768 q^{31} - 704080 q^{34} + 14560 q^{46} - 111772 q^{49} + 7049768 q^{61} - 8904448 q^{64} - 7879872 q^{76} - 8672864 q^{79} - 35006400 q^{91} - 85203040 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 46x^{2} - 115x - 35 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -4\nu^{3} + 20\nu^{2} + 116\nu - 10 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -20\nu^{3} + 40\nu^{2} + 1000\nu + 1240 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 60\nu^{3} - 240\nu^{2} - 1920\nu - 1200 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + 30\beta _1 + 60 ) / 240 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 7\beta_{3} + 3\beta_{2} + 270\beta _1 + 5580 ) / 240 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 16\beta_{3} + 11\beta_{2} + 510\beta _1 + 7260 ) / 60 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.28697
−3.75584
−0.353933
−3.17720
−16.1245 0 132.000 0 0 −891.964 −64.4981 0 0
1.2 −16.1245 0 132.000 0 0 891.964 −64.4981 0 0
1.3 16.1245 0 132.000 0 0 −891.964 64.4981 0 0
1.4 16.1245 0 132.000 0 0 891.964 64.4981 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 225.8.a.ba 4
3.b odd 2 1 inner 225.8.a.ba 4
5.b even 2 1 inner 225.8.a.ba 4
5.c odd 4 2 45.8.b.c 4
15.d odd 2 1 inner 225.8.a.ba 4
15.e even 4 2 45.8.b.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.8.b.c 4 5.c odd 4 2
45.8.b.c 4 15.e even 4 2
225.8.a.ba 4 1.a even 1 1 trivial
225.8.a.ba 4 3.b odd 2 1 inner
225.8.a.ba 4 5.b even 2 1 inner
225.8.a.ba 4 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(225))\):

\( T_{2}^{2} - 260 \) Copy content Toggle raw display
\( T_{7}^{2} - 795600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 260)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 795600)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 14994000)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 96267600)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 119165540)^{2} \) Copy content Toggle raw display
$19$ \( (T + 14924)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 50960)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 18668754000)^{2} \) Copy content Toggle raw display
$31$ \( (T + 244192)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 261218552400)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 379744776000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 430973337600)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 1745086063760)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 1223085907940)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 3849849954000)^{2} \) Copy content Toggle raw display
$61$ \( (T - 1762442)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 987336417600)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 206759304000)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 16456432262400)^{2} \) Copy content Toggle raw display
$79$ \( (T + 2168216)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 560059173440)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 28200960000000)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 127797447585600)^{2} \) Copy content Toggle raw display
show more
show less