Properties

Label 45.8.b.c
Level $45$
Weight $8$
Character orbit 45.b
Analytic conductor $14.057$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,8,Mod(19,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.19"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 45.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-528] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0573261468\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-65}, \sqrt{85})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 143x^{2} + 1521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 132 q^{4} + (\beta_{3} - 2 \beta_1) q^{5} - \beta_{2} q^{7} - 4 \beta_1 q^{8} + ( - 5 \beta_{2} + 650) q^{10} + ( - 14 \beta_{3} - 7 \beta_1) q^{11} - 11 \beta_{2} q^{13} + ( - 52 \beta_{3} - 26 \beta_1) q^{14}+ \cdots + 27943 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 528 q^{4} + 2600 q^{10} - 63424 q^{16} + 59696 q^{19} + 299500 q^{25} - 976768 q^{31} + 704080 q^{34} - 10400 q^{40} + 14560 q^{46} + 111772 q^{49} - 4284000 q^{55} + 7049768 q^{61} + 8904448 q^{64}+ \cdots + 85203040 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 143x^{2} + 1521 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} - 208\nu ) / 39 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 20\nu^{3} + 3640\nu ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 180\nu^{2} + 104\nu + 12870 ) / 39 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 30\beta_1 ) / 120 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 26\beta_{3} + 13\beta _1 - 8580 ) / 120 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -26\beta_{2} - 1365\beta_1 ) / 30 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
11.4642i
3.40191i
11.4642i
3.40191i
16.1245i 0 −132.000 −276.586 + 40.3113i 0 891.964i 64.4981i 0 650.000 + 4459.82i
19.2 16.1245i 0 −132.000 276.586 + 40.3113i 0 891.964i 64.4981i 0 650.000 4459.82i
19.3 16.1245i 0 −132.000 −276.586 40.3113i 0 891.964i 64.4981i 0 650.000 4459.82i
19.4 16.1245i 0 −132.000 276.586 40.3113i 0 891.964i 64.4981i 0 650.000 + 4459.82i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.8.b.c 4
3.b odd 2 1 inner 45.8.b.c 4
5.b even 2 1 inner 45.8.b.c 4
5.c odd 4 2 225.8.a.ba 4
15.d odd 2 1 inner 45.8.b.c 4
15.e even 4 2 225.8.a.ba 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.8.b.c 4 1.a even 1 1 trivial
45.8.b.c 4 3.b odd 2 1 inner
45.8.b.c 4 5.b even 2 1 inner
45.8.b.c 4 15.d odd 2 1 inner
225.8.a.ba 4 5.c odd 4 2
225.8.a.ba 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 260 \) acting on \(S_{8}^{\mathrm{new}}(45, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 260)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 6103515625 \) Copy content Toggle raw display
$7$ \( (T^{2} + 795600)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 14994000)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 96267600)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 119165540)^{2} \) Copy content Toggle raw display
$19$ \( (T - 14924)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 50960)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 18668754000)^{2} \) Copy content Toggle raw display
$31$ \( (T + 244192)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 261218552400)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 379744776000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 430973337600)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 1745086063760)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 1223085907940)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 3849849954000)^{2} \) Copy content Toggle raw display
$61$ \( (T - 1762442)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 987336417600)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 206759304000)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 16456432262400)^{2} \) Copy content Toggle raw display
$79$ \( (T - 2168216)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 560059173440)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 28200960000000)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 127797447585600)^{2} \) Copy content Toggle raw display
show more
show less