Properties

Label 221.2.m.c.69.8
Level $221$
Weight $2$
Character 221.69
Analytic conductor $1.765$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [221,2,Mod(69,221)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("221.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(221, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 221 = 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 221.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.76469388467\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 69.8
Character \(\chi\) \(=\) 221.69
Dual form 221.2.m.c.205.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.720682 + 0.416086i) q^{2} +(-0.251133 + 0.434974i) q^{3} +(-0.653745 - 1.13232i) q^{4} -1.03543i q^{5} +(-0.361974 + 0.208986i) q^{6} +(2.58322 - 1.49142i) q^{7} -2.75240i q^{8} +(1.37386 + 2.37960i) q^{9} +(0.430827 - 0.746214i) q^{10} +(1.81620 + 1.04858i) q^{11} +0.656706 q^{12} +(1.13303 - 3.42290i) q^{13} +2.48224 q^{14} +(0.450384 + 0.260029i) q^{15} +(-0.162253 + 0.281030i) q^{16} +(-0.500000 - 0.866025i) q^{17} +2.28658i q^{18} +(-4.93472 + 2.84906i) q^{19} +(-1.17243 + 0.676904i) q^{20} +1.49818i q^{21} +(0.872603 + 1.51139i) q^{22} +(-0.255486 + 0.442515i) q^{23} +(1.19722 + 0.691217i) q^{24} +3.92789 q^{25} +(2.24077 - 1.99539i) q^{26} -2.88688 q^{27} +(-3.37754 - 1.95002i) q^{28} +(-4.13432 + 7.16085i) q^{29} +(0.216389 + 0.374797i) q^{30} -3.19297i q^{31} +(-5.00116 + 2.88742i) q^{32} +(-0.912215 + 0.526667i) q^{33} -0.832172i q^{34} +(-1.54426 - 2.67474i) q^{35} +(1.79631 - 3.11131i) q^{36} +(-8.44410 - 4.87520i) q^{37} -4.74182 q^{38} +(1.20433 + 1.35244i) q^{39} -2.84991 q^{40} +(6.78916 + 3.91972i) q^{41} +(-0.623372 + 1.07971i) q^{42} +(4.19618 + 7.26799i) q^{43} -2.74203i q^{44} +(2.46390 - 1.42254i) q^{45} +(-0.368249 + 0.212609i) q^{46} -1.15368i q^{47} +(-0.0814940 - 0.141152i) q^{48} +(0.948695 - 1.64319i) q^{49} +(2.83076 + 1.63434i) q^{50} +0.502265 q^{51} +(-4.61652 + 0.954756i) q^{52} +0.563021 q^{53} +(-2.08053 - 1.20119i) q^{54} +(1.08573 - 1.88054i) q^{55} +(-4.10500 - 7.11007i) q^{56} -2.86197i q^{57} +(-5.95906 + 3.44047i) q^{58} +(-5.15910 + 2.97861i) q^{59} -0.679971i q^{60} +(-1.86661 - 3.23307i) q^{61} +(1.32855 - 2.30112i) q^{62} +(7.09800 + 4.09803i) q^{63} -4.15666 q^{64} +(-3.54416 - 1.17317i) q^{65} -0.876556 q^{66} +(12.6635 + 7.31125i) q^{67} +(-0.653745 + 1.13232i) q^{68} +(-0.128322 - 0.222260i) q^{69} -2.57018i q^{70} +(-5.86968 + 3.38886i) q^{71} +(6.54962 - 3.78143i) q^{72} -6.54897i q^{73} +(-4.05701 - 7.02695i) q^{74} +(-0.986421 + 1.70853i) q^{75} +(6.45209 + 3.72512i) q^{76} +6.25554 q^{77} +(0.305211 + 1.47579i) q^{78} -12.5129 q^{79} +(0.290986 + 0.168001i) q^{80} +(-3.39660 + 5.88309i) q^{81} +(3.26189 + 5.64975i) q^{82} +13.0974i q^{83} +(1.69642 - 0.979428i) q^{84} +(-0.896706 + 0.517713i) q^{85} +6.98389i q^{86} +(-2.07652 - 3.59665i) q^{87} +(2.88613 - 4.99892i) q^{88} +(11.6217 + 6.70979i) q^{89} +2.36759 q^{90} +(-2.17814 - 10.5319i) q^{91} +0.668091 q^{92} +(1.38886 + 0.801858i) q^{93} +(0.480028 - 0.831434i) q^{94} +(2.94999 + 5.10954i) q^{95} -2.90050i q^{96} +(6.71621 - 3.87760i) q^{97} +(1.36742 - 0.789477i) q^{98} +5.76246i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{3} + 14 q^{4} - 9 q^{6} - 3 q^{7} - 14 q^{9} + q^{10} + 6 q^{11} - 18 q^{12} + q^{13} - 12 q^{14} + 3 q^{15} - 24 q^{16} - 11 q^{17} + 3 q^{19} + 12 q^{20} - 11 q^{22} + 3 q^{23} + 57 q^{24}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/221\mathbb{Z}\right)^\times\).

\(n\) \(105\) \(171\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.720682 + 0.416086i 0.509599 + 0.294217i 0.732669 0.680585i \(-0.238274\pi\)
−0.223070 + 0.974803i \(0.571608\pi\)
\(3\) −0.251133 + 0.434974i −0.144991 + 0.251133i −0.929370 0.369150i \(-0.879649\pi\)
0.784378 + 0.620283i \(0.212982\pi\)
\(4\) −0.653745 1.13232i −0.326872 0.566159i
\(5\) 1.03543i 0.463057i −0.972828 0.231528i \(-0.925627\pi\)
0.972828 0.231528i \(-0.0743726\pi\)
\(6\) −0.361974 + 0.208986i −0.147775 + 0.0853180i
\(7\) 2.58322 1.49142i 0.976367 0.563706i 0.0751954 0.997169i \(-0.476042\pi\)
0.901171 + 0.433463i \(0.142709\pi\)
\(8\) 2.75240i 0.973121i
\(9\) 1.37386 + 2.37960i 0.457955 + 0.793201i
\(10\) 0.430827 0.746214i 0.136239 0.235973i
\(11\) 1.81620 + 1.04858i 0.547606 + 0.316160i 0.748156 0.663523i \(-0.230940\pi\)
−0.200550 + 0.979683i \(0.564273\pi\)
\(12\) 0.656706 0.189575
\(13\) 1.13303 3.42290i 0.314245 0.949342i
\(14\) 2.48224 0.663408
\(15\) 0.450384 + 0.260029i 0.116289 + 0.0671393i
\(16\) −0.162253 + 0.281030i −0.0405633 + 0.0702576i
\(17\) −0.500000 0.866025i −0.121268 0.210042i
\(18\) 2.28658i 0.538953i
\(19\) −4.93472 + 2.84906i −1.13210 + 0.653620i −0.944463 0.328618i \(-0.893417\pi\)
−0.187640 + 0.982238i \(0.560084\pi\)
\(20\) −1.17243 + 0.676904i −0.262164 + 0.151360i
\(21\) 1.49818i 0.326930i
\(22\) 0.872603 + 1.51139i 0.186040 + 0.322230i
\(23\) −0.255486 + 0.442515i −0.0532726 + 0.0922708i −0.891432 0.453155i \(-0.850299\pi\)
0.838159 + 0.545425i \(0.183632\pi\)
\(24\) 1.19722 + 0.691217i 0.244382 + 0.141094i
\(25\) 3.92789 0.785578
\(26\) 2.24077 1.99539i 0.439452 0.391328i
\(27\) −2.88688 −0.555581
\(28\) −3.37754 1.95002i −0.638294 0.368519i
\(29\) −4.13432 + 7.16085i −0.767724 + 1.32974i 0.171071 + 0.985259i \(0.445277\pi\)
−0.938794 + 0.344478i \(0.888056\pi\)
\(30\) 0.216389 + 0.374797i 0.0395071 + 0.0684283i
\(31\) 3.19297i 0.573474i −0.958009 0.286737i \(-0.907429\pi\)
0.958009 0.286737i \(-0.0925706\pi\)
\(32\) −5.00116 + 2.88742i −0.884089 + 0.510429i
\(33\) −0.912215 + 0.526667i −0.158796 + 0.0916810i
\(34\) 0.832172i 0.142716i
\(35\) −1.54426 2.67474i −0.261028 0.452113i
\(36\) 1.79631 3.11131i 0.299386 0.518551i
\(37\) −8.44410 4.87520i −1.38820 0.801478i −0.395089 0.918643i \(-0.629286\pi\)
−0.993113 + 0.117165i \(0.962619\pi\)
\(38\) −4.74182 −0.769225
\(39\) 1.20433 + 1.35244i 0.192848 + 0.216564i
\(40\) −2.84991 −0.450610
\(41\) 6.78916 + 3.91972i 1.06029 + 0.612158i 0.925512 0.378718i \(-0.123635\pi\)
0.134777 + 0.990876i \(0.456968\pi\)
\(42\) −0.623372 + 1.07971i −0.0961884 + 0.166603i
\(43\) 4.19618 + 7.26799i 0.639911 + 1.10836i 0.985452 + 0.169955i \(0.0543622\pi\)
−0.345541 + 0.938404i \(0.612305\pi\)
\(44\) 2.74203i 0.413376i
\(45\) 2.46390 1.42254i 0.367297 0.212059i
\(46\) −0.368249 + 0.212609i −0.0542954 + 0.0313474i
\(47\) 1.15368i 0.168281i −0.996454 0.0841404i \(-0.973186\pi\)
0.996454 0.0841404i \(-0.0268144\pi\)
\(48\) −0.0814940 0.141152i −0.0117626 0.0203735i
\(49\) 0.948695 1.64319i 0.135528 0.234741i
\(50\) 2.83076 + 1.63434i 0.400330 + 0.231131i
\(51\) 0.502265 0.0703312
\(52\) −4.61652 + 0.954756i −0.640197 + 0.132401i
\(53\) 0.563021 0.0773369 0.0386685 0.999252i \(-0.487688\pi\)
0.0386685 + 0.999252i \(0.487688\pi\)
\(54\) −2.08053 1.20119i −0.283124 0.163462i
\(55\) 1.08573 1.88054i 0.146400 0.253572i
\(56\) −4.10500 7.11007i −0.548554 0.950123i
\(57\) 2.86197i 0.379077i
\(58\) −5.95906 + 3.44047i −0.782463 + 0.451755i
\(59\) −5.15910 + 2.97861i −0.671657 + 0.387782i −0.796704 0.604369i \(-0.793425\pi\)
0.125047 + 0.992151i \(0.460092\pi\)
\(60\) 0.679971i 0.0877838i
\(61\) −1.86661 3.23307i −0.238995 0.413952i 0.721431 0.692486i \(-0.243485\pi\)
−0.960426 + 0.278534i \(0.910151\pi\)
\(62\) 1.32855 2.30112i 0.168726 0.292242i
\(63\) 7.09800 + 4.09803i 0.894264 + 0.516303i
\(64\) −4.15666 −0.519582
\(65\) −3.54416 1.17317i −0.439599 0.145513i
\(66\) −0.876556 −0.107897
\(67\) 12.6635 + 7.31125i 1.54709 + 0.893212i 0.998362 + 0.0572095i \(0.0182203\pi\)
0.548726 + 0.836002i \(0.315113\pi\)
\(68\) −0.653745 + 1.13232i −0.0792782 + 0.137314i
\(69\) −0.128322 0.222260i −0.0154481 0.0267570i
\(70\) 2.57018i 0.307195i
\(71\) −5.86968 + 3.38886i −0.696603 + 0.402184i −0.806081 0.591805i \(-0.798415\pi\)
0.109478 + 0.993989i \(0.465082\pi\)
\(72\) 6.54962 3.78143i 0.771881 0.445645i
\(73\) 6.54897i 0.766499i −0.923645 0.383250i \(-0.874805\pi\)
0.923645 0.383250i \(-0.125195\pi\)
\(74\) −4.05701 7.02695i −0.471618 0.816866i
\(75\) −0.986421 + 1.70853i −0.113902 + 0.197284i
\(76\) 6.45209 + 3.72512i 0.740106 + 0.427300i
\(77\) 6.25554 0.712885
\(78\) 0.305211 + 1.47579i 0.0345584 + 0.167100i
\(79\) −12.5129 −1.40781 −0.703907 0.710293i \(-0.748563\pi\)
−0.703907 + 0.710293i \(0.748563\pi\)
\(80\) 0.290986 + 0.168001i 0.0325333 + 0.0187831i
\(81\) −3.39660 + 5.88309i −0.377400 + 0.653677i
\(82\) 3.26189 + 5.64975i 0.360215 + 0.623911i
\(83\) 13.0974i 1.43763i 0.695202 + 0.718815i \(0.255315\pi\)
−0.695202 + 0.718815i \(0.744685\pi\)
\(84\) 1.69642 0.979428i 0.185094 0.106864i
\(85\) −0.896706 + 0.517713i −0.0972614 + 0.0561539i
\(86\) 6.98389i 0.753092i
\(87\) −2.07652 3.59665i −0.222627 0.385601i
\(88\) 2.88613 4.99892i 0.307662 0.532886i
\(89\) 11.6217 + 6.70979i 1.23190 + 0.711236i 0.967425 0.253157i \(-0.0814689\pi\)
0.264472 + 0.964393i \(0.414802\pi\)
\(90\) 2.36759 0.249566
\(91\) −2.17814 10.5319i −0.228331 1.10405i
\(92\) 0.668091 0.0696533
\(93\) 1.38886 + 0.801858i 0.144018 + 0.0831488i
\(94\) 0.480028 0.831434i 0.0495112 0.0857558i
\(95\) 2.94999 + 5.10954i 0.302663 + 0.524228i
\(96\) 2.90050i 0.296031i
\(97\) 6.71621 3.87760i 0.681927 0.393711i −0.118654 0.992936i \(-0.537858\pi\)
0.800581 + 0.599225i \(0.204524\pi\)
\(98\) 1.36742 0.789477i 0.138130 0.0797493i
\(99\) 5.76246i 0.579149i
\(100\) −2.56784 4.44763i −0.256784 0.444763i
\(101\) 7.32803 12.6925i 0.729167 1.26295i −0.228069 0.973645i \(-0.573241\pi\)
0.957236 0.289309i \(-0.0934254\pi\)
\(102\) 0.361974 + 0.208986i 0.0358407 + 0.0206927i
\(103\) −7.06280 −0.695918 −0.347959 0.937510i \(-0.613125\pi\)
−0.347959 + 0.937510i \(0.613125\pi\)
\(104\) −9.42120 3.11854i −0.923824 0.305798i
\(105\) 1.55126 0.151387
\(106\) 0.405760 + 0.234265i 0.0394109 + 0.0227539i
\(107\) −6.89926 + 11.9499i −0.666977 + 1.15524i 0.311769 + 0.950158i \(0.399079\pi\)
−0.978745 + 0.205079i \(0.934255\pi\)
\(108\) 1.88728 + 3.26887i 0.181604 + 0.314547i
\(109\) 11.8898i 1.13884i −0.822048 0.569418i \(-0.807169\pi\)
0.822048 0.569418i \(-0.192831\pi\)
\(110\) 1.56494 0.903517i 0.149211 0.0861469i
\(111\) 4.24118 2.44864i 0.402555 0.232415i
\(112\) 0.967952i 0.0914629i
\(113\) −2.51440 4.35507i −0.236535 0.409691i 0.723183 0.690657i \(-0.242678\pi\)
−0.959718 + 0.280966i \(0.909345\pi\)
\(114\) 1.19083 2.06257i 0.111531 0.193177i
\(115\) 0.458192 + 0.264537i 0.0427266 + 0.0246682i
\(116\) 10.8112 1.00379
\(117\) 9.70177 2.00645i 0.896929 0.185496i
\(118\) −4.95743 −0.456368
\(119\) −2.58322 1.49142i −0.236804 0.136719i
\(120\) 0.715705 1.23964i 0.0653346 0.113163i
\(121\) −3.30094 5.71740i −0.300085 0.519763i
\(122\) 3.10669i 0.281266i
\(123\) −3.40996 + 1.96874i −0.307466 + 0.177515i
\(124\) −3.61546 + 2.08739i −0.324678 + 0.187453i
\(125\) 9.24418i 0.826824i
\(126\) 3.41027 + 5.90676i 0.303811 + 0.526216i
\(127\) 0.316585 0.548341i 0.0280924 0.0486574i −0.851637 0.524131i \(-0.824390\pi\)
0.879730 + 0.475474i \(0.157723\pi\)
\(128\) 7.00670 + 4.04532i 0.619311 + 0.357559i
\(129\) −4.21519 −0.371126
\(130\) −2.06608 2.32016i −0.181207 0.203491i
\(131\) 11.3167 0.988747 0.494373 0.869250i \(-0.335398\pi\)
0.494373 + 0.869250i \(0.335398\pi\)
\(132\) 1.19271 + 0.688612i 0.103812 + 0.0599360i
\(133\) −8.49832 + 14.7195i −0.736898 + 1.27634i
\(134\) 6.08422 + 10.5382i 0.525597 + 0.910360i
\(135\) 2.98916i 0.257266i
\(136\) −2.38365 + 1.37620i −0.204396 + 0.118008i
\(137\) 12.5721 7.25850i 1.07411 0.620135i 0.144805 0.989460i \(-0.453744\pi\)
0.929300 + 0.369325i \(0.120411\pi\)
\(138\) 0.213572i 0.0181804i
\(139\) −6.60946 11.4479i −0.560607 0.971000i −0.997444 0.0714594i \(-0.977234\pi\)
0.436836 0.899541i \(-0.356099\pi\)
\(140\) −2.01910 + 3.49719i −0.170645 + 0.295567i
\(141\) 0.501819 + 0.289725i 0.0422608 + 0.0243993i
\(142\) −5.64023 −0.473318
\(143\) 5.64701 5.02861i 0.472226 0.420513i
\(144\) −0.891655 −0.0743046
\(145\) 7.41453 + 4.28078i 0.615744 + 0.355500i
\(146\) 2.72494 4.71973i 0.225517 0.390608i
\(147\) 0.476496 + 0.825315i 0.0393007 + 0.0680709i
\(148\) 12.7485i 1.04792i
\(149\) 7.77279 4.48762i 0.636772 0.367641i −0.146598 0.989196i \(-0.546832\pi\)
0.783370 + 0.621556i \(0.213499\pi\)
\(150\) −1.42179 + 0.820873i −0.116089 + 0.0670240i
\(151\) 10.6329i 0.865293i −0.901564 0.432646i \(-0.857580\pi\)
0.901564 0.432646i \(-0.142420\pi\)
\(152\) 7.84176 + 13.5823i 0.636051 + 1.10167i
\(153\) 1.37386 2.37960i 0.111070 0.192380i
\(154\) 4.50826 + 2.60284i 0.363286 + 0.209743i
\(155\) −3.30608 −0.265551
\(156\) 0.744065 2.24784i 0.0595729 0.179971i
\(157\) −1.02228 −0.0815867 −0.0407933 0.999168i \(-0.512989\pi\)
−0.0407933 + 0.999168i \(0.512989\pi\)
\(158\) −9.01784 5.20645i −0.717421 0.414203i
\(159\) −0.141393 + 0.244900i −0.0112132 + 0.0194218i
\(160\) 2.98971 + 5.17834i 0.236358 + 0.409384i
\(161\) 1.52415i 0.120120i
\(162\) −4.89575 + 2.82656i −0.384646 + 0.222076i
\(163\) 2.65582 1.53334i 0.208020 0.120100i −0.392371 0.919807i \(-0.628345\pi\)
0.600391 + 0.799707i \(0.295012\pi\)
\(164\) 10.2500i 0.800390i
\(165\) 0.545325 + 0.944531i 0.0424535 + 0.0735317i
\(166\) −5.44966 + 9.43909i −0.422976 + 0.732615i
\(167\) 11.2703 + 6.50693i 0.872124 + 0.503521i 0.868054 0.496470i \(-0.165371\pi\)
0.00407076 + 0.999992i \(0.498704\pi\)
\(168\) 4.12359 0.318142
\(169\) −10.4325 7.75647i −0.802500 0.596652i
\(170\) −0.861653 −0.0660858
\(171\) −13.5593 7.82845i −1.03690 0.598657i
\(172\) 5.48646 9.50282i 0.418338 0.724583i
\(173\) −2.55585 4.42687i −0.194318 0.336568i 0.752359 0.658753i \(-0.228916\pi\)
−0.946677 + 0.322185i \(0.895583\pi\)
\(174\) 3.45605i 0.262003i
\(175\) 10.1466 5.85815i 0.767013 0.442835i
\(176\) −0.589369 + 0.340272i −0.0444253 + 0.0256490i
\(177\) 2.99210i 0.224900i
\(178\) 5.58370 + 9.67126i 0.418516 + 0.724891i
\(179\) −10.1819 + 17.6356i −0.761032 + 1.31815i 0.181287 + 0.983430i \(0.441974\pi\)
−0.942319 + 0.334716i \(0.891360\pi\)
\(180\) −3.22153 1.85995i −0.240119 0.138633i
\(181\) −20.0831 −1.49276 −0.746381 0.665519i \(-0.768210\pi\)
−0.746381 + 0.665519i \(0.768210\pi\)
\(182\) 2.81245 8.49648i 0.208473 0.629801i
\(183\) 1.87507 0.138609
\(184\) 1.21798 + 0.703201i 0.0897906 + 0.0518407i
\(185\) −5.04791 + 8.74324i −0.371130 + 0.642816i
\(186\) 0.667284 + 1.15577i 0.0489277 + 0.0847452i
\(187\) 2.09717i 0.153360i
\(188\) −1.30633 + 0.754209i −0.0952738 + 0.0550063i
\(189\) −7.45746 + 4.30557i −0.542451 + 0.313184i
\(190\) 4.90981i 0.356195i
\(191\) 2.43186 + 4.21210i 0.175963 + 0.304777i 0.940494 0.339810i \(-0.110363\pi\)
−0.764531 + 0.644587i \(0.777029\pi\)
\(192\) 1.04387 1.80804i 0.0753349 0.130484i
\(193\) −14.2799 8.24452i −1.02789 0.593454i −0.111512 0.993763i \(-0.535569\pi\)
−0.916380 + 0.400309i \(0.868903\pi\)
\(194\) 6.45367 0.463346
\(195\) 1.40035 1.24700i 0.100281 0.0892995i
\(196\) −2.48082 −0.177201
\(197\) −16.1857 9.34481i −1.15318 0.665790i −0.203522 0.979070i \(-0.565239\pi\)
−0.949661 + 0.313280i \(0.898572\pi\)
\(198\) −2.39768 + 4.15290i −0.170396 + 0.295134i
\(199\) −1.90868 3.30592i −0.135302 0.234351i 0.790410 0.612578i \(-0.209867\pi\)
−0.925713 + 0.378227i \(0.876534\pi\)
\(200\) 10.8111i 0.764463i
\(201\) −6.36041 + 3.67219i −0.448629 + 0.259016i
\(202\) 10.5624 6.09819i 0.743166 0.429067i
\(203\) 24.6641i 1.73108i
\(204\) −0.328353 0.568724i −0.0229893 0.0398187i
\(205\) 4.05859 7.02968i 0.283464 0.490974i
\(206\) −5.09003 2.93873i −0.354639 0.204751i
\(207\) −1.40401 −0.0975858
\(208\) 0.778102 + 0.873791i 0.0539517 + 0.0605865i
\(209\) −11.9499 −0.826594
\(210\) 1.11796 + 0.645456i 0.0771468 + 0.0445407i
\(211\) −6.35786 + 11.0121i −0.437693 + 0.758106i −0.997511 0.0705091i \(-0.977538\pi\)
0.559818 + 0.828615i \(0.310871\pi\)
\(212\) −0.368072 0.637520i −0.0252793 0.0437850i
\(213\) 3.40421i 0.233253i
\(214\) −9.94435 + 5.74137i −0.679782 + 0.392472i
\(215\) 7.52547 4.34483i 0.513233 0.296315i
\(216\) 7.94586i 0.540647i
\(217\) −4.76207 8.24815i −0.323270 0.559921i
\(218\) 4.94718 8.56877i 0.335065 0.580350i
\(219\) 2.84863 + 1.64466i 0.192493 + 0.111136i
\(220\) −2.83917 −0.191417
\(221\) −3.53083 + 0.730221i −0.237509 + 0.0491200i
\(222\) 4.07539 0.273522
\(223\) −5.20996 3.00797i −0.348884 0.201429i 0.315309 0.948989i \(-0.397892\pi\)
−0.664194 + 0.747560i \(0.731225\pi\)
\(224\) −8.61275 + 14.9177i −0.575464 + 0.996732i
\(225\) 5.39639 + 9.34683i 0.359760 + 0.623122i
\(226\) 4.18483i 0.278371i
\(227\) −7.35123 + 4.24423i −0.487918 + 0.281700i −0.723710 0.690104i \(-0.757565\pi\)
0.235792 + 0.971803i \(0.424231\pi\)
\(228\) −3.24066 + 1.87100i −0.214618 + 0.123910i
\(229\) 4.98616i 0.329495i 0.986336 + 0.164747i \(0.0526809\pi\)
−0.986336 + 0.164747i \(0.947319\pi\)
\(230\) 0.220141 + 0.381295i 0.0145156 + 0.0251418i
\(231\) −1.57097 + 2.72100i −0.103362 + 0.179029i
\(232\) 19.7095 + 11.3793i 1.29399 + 0.747088i
\(233\) −4.34393 −0.284580 −0.142290 0.989825i \(-0.545447\pi\)
−0.142290 + 0.989825i \(0.545447\pi\)
\(234\) 7.82675 + 2.59076i 0.511651 + 0.169363i
\(235\) −1.19455 −0.0779236
\(236\) 6.74546 + 3.89450i 0.439092 + 0.253510i
\(237\) 3.14240 5.44280i 0.204121 0.353548i
\(238\) −1.24112 2.14969i −0.0804500 0.139344i
\(239\) 15.6959i 1.01528i 0.861569 + 0.507641i \(0.169482\pi\)
−0.861569 + 0.507641i \(0.830518\pi\)
\(240\) −0.146152 + 0.0843810i −0.00943409 + 0.00544677i
\(241\) 16.7326 9.66057i 1.07784 0.622292i 0.147528 0.989058i \(-0.452868\pi\)
0.930313 + 0.366766i \(0.119535\pi\)
\(242\) 5.49390i 0.353161i
\(243\) −6.03632 10.4552i −0.387230 0.670702i
\(244\) −2.44058 + 4.22720i −0.156242 + 0.270619i
\(245\) −1.70140 0.982303i −0.108698 0.0627571i
\(246\) −3.27666 −0.208912
\(247\) 4.16089 + 20.1191i 0.264751 + 1.28015i
\(248\) −8.78833 −0.558060
\(249\) −5.69704 3.28919i −0.361036 0.208444i
\(250\) 3.84637 6.66211i 0.243266 0.421349i
\(251\) −15.6225 27.0589i −0.986081 1.70794i −0.637029 0.770840i \(-0.719837\pi\)
−0.349052 0.937103i \(-0.613496\pi\)
\(252\) 10.7163i 0.675061i
\(253\) −0.928030 + 0.535798i −0.0583447 + 0.0336853i
\(254\) 0.456315 0.263453i 0.0286317 0.0165305i
\(255\) 0.520058i 0.0325673i
\(256\) 7.52306 + 13.0303i 0.470191 + 0.814395i
\(257\) −0.876628 + 1.51836i −0.0546825 + 0.0947129i −0.892071 0.451895i \(-0.850748\pi\)
0.837388 + 0.546608i \(0.184081\pi\)
\(258\) −3.03781 1.75388i −0.189126 0.109192i
\(259\) −29.0840 −1.80719
\(260\) 0.988579 + 4.78007i 0.0613091 + 0.296447i
\(261\) −22.7200 −1.40633
\(262\) 8.15576 + 4.70873i 0.503865 + 0.290906i
\(263\) 7.78024 13.4758i 0.479750 0.830952i −0.519980 0.854178i \(-0.674061\pi\)
0.999730 + 0.0232266i \(0.00739392\pi\)
\(264\) 1.44960 + 2.51078i 0.0892167 + 0.154528i
\(265\) 0.582967i 0.0358114i
\(266\) −12.2492 + 7.07207i −0.751045 + 0.433616i
\(267\) −5.83717 + 3.37009i −0.357229 + 0.206246i
\(268\) 19.1188i 1.16786i
\(269\) −2.24400 3.88672i −0.136819 0.236978i 0.789472 0.613787i \(-0.210355\pi\)
−0.926291 + 0.376809i \(0.877021\pi\)
\(270\) −1.24375 + 2.15423i −0.0756920 + 0.131102i
\(271\) 4.87589 + 2.81509i 0.296189 + 0.171005i 0.640730 0.767767i \(-0.278632\pi\)
−0.344541 + 0.938771i \(0.611965\pi\)
\(272\) 0.324506 0.0196761
\(273\) 5.12812 + 1.69748i 0.310368 + 0.102736i
\(274\) 12.0806 0.729818
\(275\) 7.13385 + 4.11873i 0.430187 + 0.248369i
\(276\) −0.167779 + 0.290602i −0.0100991 + 0.0174922i
\(277\) 16.5380 + 28.6447i 0.993674 + 1.72109i 0.594098 + 0.804393i \(0.297509\pi\)
0.399576 + 0.916700i \(0.369157\pi\)
\(278\) 11.0004i 0.659762i
\(279\) 7.59800 4.38671i 0.454880 0.262625i
\(280\) −7.36195 + 4.25042i −0.439961 + 0.254011i
\(281\) 5.72421i 0.341478i −0.985316 0.170739i \(-0.945385\pi\)
0.985316 0.170739i \(-0.0546155\pi\)
\(282\) 0.241101 + 0.417600i 0.0143574 + 0.0248677i
\(283\) 9.76771 16.9182i 0.580630 1.00568i −0.414775 0.909924i \(-0.636140\pi\)
0.995405 0.0957563i \(-0.0305270\pi\)
\(284\) 7.67454 + 4.43090i 0.455400 + 0.262925i
\(285\) −2.96336 −0.175534
\(286\) 6.16203 1.27439i 0.364369 0.0753560i
\(287\) 23.3839 1.38031
\(288\) −13.7418 7.93386i −0.809746 0.467507i
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 3.56235 + 6.17017i 0.209188 + 0.362325i
\(291\) 3.89517i 0.228339i
\(292\) −7.41552 + 4.28136i −0.433961 + 0.250547i
\(293\) 6.49048 3.74728i 0.379178 0.218918i −0.298283 0.954478i \(-0.596414\pi\)
0.677460 + 0.735559i \(0.263080\pi\)
\(294\) 0.793054i 0.0462518i
\(295\) 3.08413 + 5.34187i 0.179565 + 0.311016i
\(296\) −13.4185 + 23.2415i −0.779935 + 1.35089i
\(297\) −5.24316 3.02714i −0.304239 0.175653i
\(298\) 7.46895 0.432665
\(299\) 1.22521 + 1.37589i 0.0708559 + 0.0795695i
\(300\) 2.57947 0.148926
\(301\) 21.6793 + 12.5166i 1.24958 + 0.721443i
\(302\) 4.42420 7.66294i 0.254584 0.440953i
\(303\) 3.68061 + 6.37501i 0.211446 + 0.366235i
\(304\) 1.84908i 0.106052i
\(305\) −3.34761 + 1.93274i −0.191683 + 0.110668i
\(306\) 1.98024 1.14329i 0.113203 0.0653577i
\(307\) 11.6373i 0.664175i −0.943249 0.332087i \(-0.892247\pi\)
0.943249 0.332087i \(-0.107753\pi\)
\(308\) −4.08953 7.08327i −0.233022 0.403607i
\(309\) 1.77370 3.07213i 0.100902 0.174768i
\(310\) −2.38264 1.37562i −0.135325 0.0781297i
\(311\) 4.10295 0.232657 0.116329 0.993211i \(-0.462887\pi\)
0.116329 + 0.993211i \(0.462887\pi\)
\(312\) 3.72245 3.31481i 0.210742 0.187664i
\(313\) −1.55217 −0.0877340 −0.0438670 0.999037i \(-0.513968\pi\)
−0.0438670 + 0.999037i \(0.513968\pi\)
\(314\) −0.736738 0.425356i −0.0415765 0.0240042i
\(315\) 4.24321 7.34946i 0.239078 0.414095i
\(316\) 8.18025 + 14.1686i 0.460175 + 0.797047i
\(317\) 7.46828i 0.419461i 0.977759 + 0.209730i \(0.0672586\pi\)
−0.977759 + 0.209730i \(0.932741\pi\)
\(318\) −0.203799 + 0.117663i −0.0114285 + 0.00659823i
\(319\) −15.0175 + 8.67037i −0.840820 + 0.485447i
\(320\) 4.30391i 0.240596i
\(321\) −3.46526 6.00200i −0.193412 0.334999i
\(322\) −0.634180 + 1.09843i −0.0353414 + 0.0612132i
\(323\) 4.93472 + 2.84906i 0.274575 + 0.158526i
\(324\) 8.88205 0.493447
\(325\) 4.45041 13.4448i 0.246864 0.745783i
\(326\) 2.55200 0.141342
\(327\) 5.17176 + 2.98591i 0.285999 + 0.165121i
\(328\) 10.7887 18.6865i 0.595704 1.03179i
\(329\) −1.72062 2.98020i −0.0948609 0.164304i
\(330\) 0.907609i 0.0499623i
\(331\) 24.1626 13.9503i 1.32810 0.766777i 0.343092 0.939302i \(-0.388526\pi\)
0.985005 + 0.172525i \(0.0551925\pi\)
\(332\) 14.8305 8.56237i 0.813928 0.469921i
\(333\) 26.7915i 1.46816i
\(334\) 5.41489 + 9.37886i 0.296289 + 0.513188i
\(335\) 7.57026 13.1121i 0.413608 0.716390i
\(336\) −0.421034 0.243084i −0.0229693 0.0132613i
\(337\) 22.9740 1.25147 0.625736 0.780035i \(-0.284799\pi\)
0.625736 + 0.780035i \(0.284799\pi\)
\(338\) −4.29116 9.93077i −0.233408 0.540163i
\(339\) 2.52579 0.137182
\(340\) 1.17243 + 0.676904i 0.0635841 + 0.0367103i
\(341\) 3.34810 5.79908i 0.181310 0.314038i
\(342\) −6.51462 11.2837i −0.352270 0.610150i
\(343\) 15.2203i 0.821820i
\(344\) 20.0044 11.5496i 1.07857 0.622711i
\(345\) −0.230134 + 0.132868i −0.0123900 + 0.00715336i
\(346\) 4.25382i 0.228687i
\(347\) −18.5310 32.0967i −0.994797 1.72304i −0.585628 0.810580i \(-0.699152\pi\)
−0.409169 0.912459i \(-0.634181\pi\)
\(348\) −2.71503 + 4.70257i −0.145541 + 0.252084i
\(349\) −2.20851 1.27509i −0.118219 0.0682537i 0.439725 0.898133i \(-0.355076\pi\)
−0.557943 + 0.829879i \(0.688409\pi\)
\(350\) 9.74999 0.521159
\(351\) −3.27092 + 9.88152i −0.174589 + 0.527436i
\(352\) −12.1108 −0.645510
\(353\) 6.85603 + 3.95833i 0.364910 + 0.210681i 0.671232 0.741247i \(-0.265765\pi\)
−0.306323 + 0.951928i \(0.599099\pi\)
\(354\) 1.24497 2.15635i 0.0661695 0.114609i
\(355\) 3.50892 + 6.07762i 0.186234 + 0.322567i
\(356\) 17.5460i 0.929934i
\(357\) 1.29746 0.749090i 0.0686690 0.0396461i
\(358\) −14.6759 + 8.47311i −0.775643 + 0.447818i
\(359\) 19.7210i 1.04084i 0.853912 + 0.520418i \(0.174224\pi\)
−0.853912 + 0.520418i \(0.825776\pi\)
\(360\) −3.91539 6.78165i −0.206359 0.357425i
\(361\) 6.73430 11.6642i 0.354437 0.613903i
\(362\) −14.4735 8.35628i −0.760710 0.439196i
\(363\) 3.31589 0.174039
\(364\) −10.5016 + 9.35155i −0.550432 + 0.490154i
\(365\) −6.78098 −0.354933
\(366\) 1.35133 + 0.780191i 0.0706351 + 0.0407812i
\(367\) 9.95717 17.2463i 0.519760 0.900251i −0.479976 0.877282i \(-0.659355\pi\)
0.999736 0.0229694i \(-0.00731204\pi\)
\(368\) −0.0829068 0.143599i −0.00432182 0.00748561i
\(369\) 21.5407i 1.12136i
\(370\) −7.27589 + 4.20073i −0.378255 + 0.218386i
\(371\) 1.45441 0.839704i 0.0755092 0.0435953i
\(372\) 2.09684i 0.108716i
\(373\) 17.3414 + 30.0362i 0.897903 + 1.55521i 0.830170 + 0.557510i \(0.188243\pi\)
0.0677323 + 0.997704i \(0.478424\pi\)
\(374\) 0.872603 1.51139i 0.0451212 0.0781523i
\(375\) 4.02098 + 2.32151i 0.207642 + 0.119882i
\(376\) −3.17538 −0.163758
\(377\) 19.8266 + 22.2648i 1.02112 + 1.14670i
\(378\) −7.16595 −0.368577
\(379\) 3.51800 + 2.03112i 0.180707 + 0.104331i 0.587625 0.809133i \(-0.300063\pi\)
−0.406918 + 0.913465i \(0.633396\pi\)
\(380\) 3.85708 6.68067i 0.197864 0.342711i
\(381\) 0.159010 + 0.275413i 0.00814631 + 0.0141098i
\(382\) 4.04745i 0.207086i
\(383\) −13.8332 + 7.98661i −0.706844 + 0.408097i −0.809891 0.586580i \(-0.800474\pi\)
0.103047 + 0.994676i \(0.467141\pi\)
\(384\) −3.51922 + 2.03182i −0.179589 + 0.103686i
\(385\) 6.47715i 0.330106i
\(386\) −6.86087 11.8834i −0.349209 0.604848i
\(387\) −11.5300 + 19.9705i −0.586101 + 1.01516i
\(388\) −8.78136 5.06992i −0.445806 0.257386i
\(389\) −23.9526 −1.21444 −0.607221 0.794533i \(-0.707716\pi\)
−0.607221 + 0.794533i \(0.707716\pi\)
\(390\) 1.52807 0.316024i 0.0773767 0.0160025i
\(391\) 0.510973 0.0258410
\(392\) −4.52271 2.61119i −0.228431 0.131885i
\(393\) −2.84200 + 4.92248i −0.143360 + 0.248306i
\(394\) −7.77650 13.4693i −0.391774 0.678573i
\(395\) 12.9562i 0.651897i
\(396\) 6.52494 3.76717i 0.327890 0.189308i
\(397\) 4.16646 2.40551i 0.209108 0.120729i −0.391789 0.920055i \(-0.628144\pi\)
0.600897 + 0.799326i \(0.294810\pi\)
\(398\) 3.17670i 0.159233i
\(399\) −4.26841 7.39310i −0.213688 0.370118i
\(400\) −0.637312 + 1.10386i −0.0318656 + 0.0551929i
\(401\) 12.2085 + 7.04859i 0.609664 + 0.351990i 0.772834 0.634608i \(-0.218839\pi\)
−0.163170 + 0.986598i \(0.552172\pi\)
\(402\) −6.11178 −0.304828
\(403\) −10.9292 3.61772i −0.544423 0.180211i
\(404\) −19.1626 −0.953377
\(405\) 6.09151 + 3.51693i 0.302689 + 0.174758i
\(406\) −10.2624 + 17.7750i −0.509314 + 0.882158i
\(407\) −10.2241 17.7087i −0.506791 0.877788i
\(408\) 1.38243i 0.0684407i
\(409\) 14.7509 8.51645i 0.729386 0.421111i −0.0888114 0.996048i \(-0.528307\pi\)
0.818198 + 0.574937i \(0.194973\pi\)
\(410\) 5.84990 3.37744i 0.288906 0.166800i
\(411\) 7.29138i 0.359657i
\(412\) 4.61726 + 7.99734i 0.227476 + 0.394000i
\(413\) −8.88473 + 15.3888i −0.437189 + 0.757234i
\(414\) −1.01185 0.584191i −0.0497297 0.0287114i
\(415\) 13.5614 0.665704
\(416\) 4.21691 + 20.3900i 0.206751 + 0.999703i
\(417\) 6.63940 0.325133
\(418\) −8.61211 4.97220i −0.421232 0.243198i
\(419\) 0.336539 0.582902i 0.0164410 0.0284766i −0.857688 0.514171i \(-0.828100\pi\)
0.874129 + 0.485694i \(0.161433\pi\)
\(420\) −1.01413 1.75652i −0.0494842 0.0857092i
\(421\) 26.3883i 1.28609i 0.765830 + 0.643043i \(0.222328\pi\)
−0.765830 + 0.643043i \(0.777672\pi\)
\(422\) −9.16399 + 5.29083i −0.446096 + 0.257554i
\(423\) 2.74529 1.58499i 0.133481 0.0770651i
\(424\) 1.54966i 0.0752582i
\(425\) −1.96395 3.40165i −0.0952654 0.165004i
\(426\) 1.41645 2.45336i 0.0686270 0.118865i
\(427\) −9.64376 5.56783i −0.466694 0.269446i
\(428\) 18.0414 0.872065
\(429\) 0.769167 + 3.71915i 0.0371357 + 0.179562i
\(430\) 7.23130 0.348724
\(431\) 4.39553 + 2.53776i 0.211725 + 0.122240i 0.602113 0.798411i \(-0.294326\pi\)
−0.390388 + 0.920651i \(0.627659\pi\)
\(432\) 0.468406 0.811302i 0.0225362 0.0390338i
\(433\) −13.4448 23.2871i −0.646116 1.11911i −0.984043 0.177933i \(-0.943059\pi\)
0.337927 0.941172i \(-0.390274\pi\)
\(434\) 7.92573i 0.380447i
\(435\) −3.72406 + 2.15009i −0.178555 + 0.103089i
\(436\) −13.4630 + 7.77289i −0.644763 + 0.372254i
\(437\) 2.91158i 0.139280i
\(438\) 1.36864 + 2.37055i 0.0653962 + 0.113269i
\(439\) 0.180223 0.312155i 0.00860157 0.0148984i −0.861693 0.507431i \(-0.830595\pi\)
0.870294 + 0.492532i \(0.163929\pi\)
\(440\) −5.17601 2.98837i −0.246757 0.142465i
\(441\) 5.21351 0.248263
\(442\) −2.84844 0.942873i −0.135487 0.0448479i
\(443\) 0.994914 0.0472698 0.0236349 0.999721i \(-0.492476\pi\)
0.0236349 + 0.999721i \(0.492476\pi\)
\(444\) −5.54529 3.20157i −0.263168 0.151940i
\(445\) 6.94749 12.0334i 0.329343 0.570439i
\(446\) −2.50315 4.33558i −0.118528 0.205296i
\(447\) 4.50795i 0.213219i
\(448\) −10.7376 + 6.19934i −0.507303 + 0.292891i
\(449\) 2.45269 1.41606i 0.115750 0.0668281i −0.441007 0.897503i \(-0.645379\pi\)
0.556757 + 0.830675i \(0.312045\pi\)
\(450\) 8.98146i 0.423390i
\(451\) 8.22033 + 14.2380i 0.387080 + 0.670442i
\(452\) −3.28755 + 5.69421i −0.154633 + 0.267833i
\(453\) 4.62503 + 2.67027i 0.217303 + 0.125460i
\(454\) −7.06387 −0.331524
\(455\) −10.9050 + 2.25530i −0.511237 + 0.105730i
\(456\) −7.87728 −0.368888
\(457\) −4.16639 2.40546i −0.194895 0.112523i 0.399377 0.916787i \(-0.369226\pi\)
−0.594272 + 0.804264i \(0.702560\pi\)
\(458\) −2.07467 + 3.59344i −0.0969430 + 0.167910i
\(459\) 1.44344 + 2.50011i 0.0673741 + 0.116695i
\(460\) 0.691759i 0.0322534i
\(461\) 10.2442 5.91452i 0.477122 0.275466i −0.242094 0.970253i \(-0.577834\pi\)
0.719216 + 0.694786i \(0.244501\pi\)
\(462\) −2.26434 + 1.30732i −0.105347 + 0.0608219i
\(463\) 4.96811i 0.230888i −0.993314 0.115444i \(-0.963171\pi\)
0.993314 0.115444i \(-0.0368291\pi\)
\(464\) −1.34161 2.32374i −0.0622828 0.107877i
\(465\) 0.830265 1.43806i 0.0385026 0.0666885i
\(466\) −3.13059 1.80745i −0.145022 0.0837284i
\(467\) −24.2093 −1.12027 −0.560137 0.828400i \(-0.689252\pi\)
−0.560137 + 0.828400i \(0.689252\pi\)
\(468\) −8.61442 9.67380i −0.398202 0.447171i
\(469\) 43.6167 2.01403
\(470\) −0.860888 0.497034i −0.0397098 0.0229265i
\(471\) 0.256727 0.444665i 0.0118294 0.0204891i
\(472\) 8.19832 + 14.1999i 0.377358 + 0.653604i
\(473\) 17.6002i 0.809258i
\(474\) 4.52934 2.61502i 0.208040 0.120112i
\(475\) −19.3830 + 11.1908i −0.889355 + 0.513469i
\(476\) 3.90004i 0.178758i
\(477\) 0.773515 + 1.33977i 0.0354168 + 0.0613438i
\(478\) −6.53083 + 11.3117i −0.298713 + 0.517387i
\(479\) −30.9818 17.8874i −1.41560 0.817295i −0.419688 0.907668i \(-0.637861\pi\)
−0.995908 + 0.0903735i \(0.971194\pi\)
\(480\) −3.00326 −0.137079
\(481\) −26.2547 + 23.3796i −1.19711 + 1.06602i
\(482\) 16.0785 0.732356
\(483\) −0.662968 0.382765i −0.0301661 0.0174164i
\(484\) −4.31594 + 7.47543i −0.196179 + 0.339792i
\(485\) −4.01497 6.95414i −0.182311 0.315771i
\(486\) 10.0465i 0.455719i
\(487\) 17.3039 9.99042i 0.784115 0.452709i −0.0537716 0.998553i \(-0.517124\pi\)
0.837887 + 0.545844i \(0.183791\pi\)
\(488\) −8.89871 + 5.13767i −0.402825 + 0.232571i
\(489\) 1.54028i 0.0696540i
\(490\) −0.817446 1.41586i −0.0369284 0.0639619i
\(491\) −5.93560 + 10.2808i −0.267870 + 0.463965i −0.968312 0.249745i \(-0.919653\pi\)
0.700442 + 0.713710i \(0.252986\pi\)
\(492\) 4.45848 + 2.57411i 0.201004 + 0.116050i
\(493\) 8.26864 0.372401
\(494\) −5.37261 + 16.2308i −0.241725 + 0.730257i
\(495\) 5.96660 0.268179
\(496\) 0.897321 + 0.518069i 0.0402909 + 0.0232620i
\(497\) −10.1085 + 17.5084i −0.453426 + 0.785358i
\(498\) −2.73717 4.74092i −0.122656 0.212446i
\(499\) 1.40392i 0.0628481i 0.999506 + 0.0314241i \(0.0100042\pi\)
−0.999506 + 0.0314241i \(0.989996\pi\)
\(500\) −10.4674 + 6.04333i −0.468114 + 0.270266i
\(501\) −5.66069 + 3.26820i −0.252901 + 0.146013i
\(502\) 26.0012i 1.16049i
\(503\) 15.8016 + 27.3691i 0.704557 + 1.22033i 0.966851 + 0.255341i \(0.0821877\pi\)
−0.262294 + 0.964988i \(0.584479\pi\)
\(504\) 11.2794 19.5365i 0.502426 0.870227i
\(505\) −13.1422 7.58764i −0.584819 0.337646i
\(506\) −0.891753 −0.0396432
\(507\) 5.99381 2.58997i 0.266194 0.115024i
\(508\) −0.827863 −0.0367305
\(509\) −28.2501 16.3102i −1.25216 0.722938i −0.280626 0.959817i \(-0.590542\pi\)
−0.971539 + 0.236880i \(0.923875\pi\)
\(510\) 0.216389 0.374797i 0.00958187 0.0165963i
\(511\) −9.76730 16.9175i −0.432080 0.748384i
\(512\) 3.66031i 0.161765i
\(513\) 14.2460 8.22491i 0.628975 0.363139i
\(514\) −1.26354 + 0.729505i −0.0557324 + 0.0321771i
\(515\) 7.31300i 0.322249i
\(516\) 2.75566 + 4.77293i 0.121311 + 0.210117i
\(517\) 1.20973 2.09531i 0.0532037 0.0921515i
\(518\) −20.9603 12.1014i −0.920944 0.531707i
\(519\) 2.56743 0.112698
\(520\) −3.22902 + 9.75496i −0.141602 + 0.427783i
\(521\) −27.1269 −1.18845 −0.594225 0.804299i \(-0.702541\pi\)
−0.594225 + 0.804299i \(0.702541\pi\)
\(522\) −16.3739 9.45347i −0.716666 0.413767i
\(523\) −0.115714 + 0.200422i −0.00505981 + 0.00876385i −0.868544 0.495612i \(-0.834944\pi\)
0.863484 + 0.504376i \(0.168277\pi\)
\(524\) −7.39825 12.8141i −0.323194 0.559788i
\(525\) 5.88469i 0.256829i
\(526\) 11.2142 6.47450i 0.488961 0.282302i
\(527\) −2.76519 + 1.59648i −0.120454 + 0.0695439i
\(528\) 0.341814i 0.0148755i
\(529\) 11.3695 + 19.6925i 0.494324 + 0.856194i
\(530\) 0.242565 0.420134i 0.0105363 0.0182495i
\(531\) −14.1758 8.18441i −0.615178 0.355173i
\(532\) 22.2229 0.963486
\(533\) 21.1091 18.7975i 0.914338 0.814209i
\(534\) −5.60900 −0.242725
\(535\) 12.3732 + 7.14367i 0.534940 + 0.308848i
\(536\) 20.1235 34.8549i 0.869203 1.50550i
\(537\) −5.11402 8.85774i −0.220686 0.382240i
\(538\) 3.73479i 0.161018i
\(539\) 3.44604 1.98957i 0.148432 0.0856970i
\(540\) 3.38468 1.95414i 0.145653 0.0840930i
\(541\) 6.00529i 0.258188i 0.991632 + 0.129094i \(0.0412068\pi\)
−0.991632 + 0.129094i \(0.958793\pi\)
\(542\) 2.34264 + 4.05758i 0.100625 + 0.174288i
\(543\) 5.04351 8.73561i 0.216438 0.374881i
\(544\) 5.00116 + 2.88742i 0.214423 + 0.123797i
\(545\) −12.3110 −0.527346
\(546\) 2.98945 + 3.35708i 0.127937 + 0.143670i
\(547\) 13.8580 0.592525 0.296263 0.955106i \(-0.404260\pi\)
0.296263 + 0.955106i \(0.404260\pi\)
\(548\) −16.4379 9.49041i −0.702191 0.405410i
\(549\) 5.12895 8.88360i 0.218898 0.379143i
\(550\) 3.42749 + 5.93659i 0.146149 + 0.253137i
\(551\) 47.1157i 2.00720i
\(552\) −0.611748 + 0.353193i −0.0260377 + 0.0150329i
\(553\) −32.3237 + 18.6621i −1.37454 + 0.793592i
\(554\) 27.5250i 1.16942i
\(555\) −2.53539 4.39142i −0.107621 0.186406i
\(556\) −8.64180 + 14.9680i −0.366494 + 0.634786i
\(557\) 0.644073 + 0.371856i 0.0272902 + 0.0157560i 0.513583 0.858040i \(-0.328318\pi\)
−0.486293 + 0.873796i \(0.661651\pi\)
\(558\) 7.30099 0.309076
\(559\) 29.6320 6.12827i 1.25330 0.259198i
\(560\) 1.00224 0.0423525
\(561\) 0.912215 + 0.526667i 0.0385137 + 0.0222359i
\(562\) 2.38177 4.12534i 0.100469 0.174017i
\(563\) 4.03420 + 6.98743i 0.170021 + 0.294485i 0.938427 0.345478i \(-0.112283\pi\)
−0.768406 + 0.639963i \(0.778950\pi\)
\(564\) 0.757626i 0.0319018i
\(565\) −4.50936 + 2.60348i −0.189710 + 0.109529i
\(566\) 14.0788 8.12841i 0.591777 0.341663i
\(567\) 20.2631i 0.850971i
\(568\) 9.32750 + 16.1557i 0.391373 + 0.677879i
\(569\) 15.2055 26.3367i 0.637447 1.10409i −0.348544 0.937292i \(-0.613324\pi\)
0.985991 0.166798i \(-0.0533429\pi\)
\(570\) −2.13564 1.23301i −0.0894521 0.0516452i
\(571\) 16.7044 0.699056 0.349528 0.936926i \(-0.386342\pi\)
0.349528 + 0.936926i \(0.386342\pi\)
\(572\) −9.38569 3.10679i −0.392435 0.129901i
\(573\) −2.44287 −0.102053
\(574\) 16.8524 + 9.72971i 0.703404 + 0.406110i
\(575\) −1.00352 + 1.73815i −0.0418498 + 0.0724860i
\(576\) −5.71068 9.89120i −0.237945 0.412133i
\(577\) 16.4021i 0.682829i −0.939913 0.341415i \(-0.889094\pi\)
0.939913 0.341415i \(-0.110906\pi\)
\(578\) −0.720682 + 0.416086i −0.0299764 + 0.0173069i
\(579\) 7.17231 4.14094i 0.298071 0.172091i
\(580\) 11.1942i 0.464812i
\(581\) 19.5338 + 33.8336i 0.810400 + 1.40365i
\(582\) −1.62073 + 2.80718i −0.0671812 + 0.116361i
\(583\) 1.02256 + 0.590376i 0.0423501 + 0.0244509i
\(584\) −18.0254 −0.745896
\(585\) −2.07753 10.0455i −0.0858953 0.415329i
\(586\) 6.23676 0.257638
\(587\) −16.3741 9.45360i −0.675832 0.390192i 0.122451 0.992475i \(-0.460925\pi\)
−0.798283 + 0.602283i \(0.794258\pi\)
\(588\) 0.623013 1.07909i 0.0256926 0.0445010i
\(589\) 9.09696 + 15.7564i 0.374834 + 0.649231i
\(590\) 5.13305i 0.211324i
\(591\) 8.12951 4.69357i 0.334403 0.193068i
\(592\) 2.74016 1.58203i 0.112620 0.0650211i
\(593\) 18.6932i 0.767637i 0.923408 + 0.383819i \(0.125391\pi\)
−0.923408 + 0.383819i \(0.874609\pi\)
\(594\) −2.51910 4.36322i −0.103360 0.179025i
\(595\) −1.54426 + 2.67474i −0.0633085 + 0.109654i
\(596\) −10.1628 5.86752i −0.416286 0.240343i
\(597\) 1.91732 0.0784708
\(598\) 0.310503 + 1.50137i 0.0126974 + 0.0613956i
\(599\) 24.5524 1.00318 0.501592 0.865104i \(-0.332748\pi\)
0.501592 + 0.865104i \(0.332748\pi\)
\(600\) 4.70257 + 2.71503i 0.191981 + 0.110841i
\(601\) −20.1512 + 34.9029i −0.821983 + 1.42372i 0.0822197 + 0.996614i \(0.473799\pi\)
−0.904203 + 0.427103i \(0.859534\pi\)
\(602\) 10.4159 + 18.0409i 0.424522 + 0.735294i
\(603\) 40.1787i 1.63620i
\(604\) −12.0398 + 6.95120i −0.489894 + 0.282840i
\(605\) −5.91994 + 3.41788i −0.240680 + 0.138957i
\(606\) 6.12581i 0.248844i
\(607\) −7.53247 13.0466i −0.305734 0.529546i 0.671691 0.740832i \(-0.265568\pi\)
−0.977424 + 0.211286i \(0.932235\pi\)
\(608\) 16.4529 28.4973i 0.667253 1.15572i
\(609\) −10.7283 6.19396i −0.434731 0.250992i
\(610\) −3.21675 −0.130242
\(611\) −3.94892 1.30714i −0.159756 0.0528814i
\(612\) −3.59263 −0.145223
\(613\) 1.97876 + 1.14244i 0.0799215 + 0.0461427i 0.539428 0.842032i \(-0.318640\pi\)
−0.459507 + 0.888174i \(0.651974\pi\)
\(614\) 4.84211 8.38678i 0.195412 0.338463i
\(615\) 2.03849 + 3.53076i 0.0821997 + 0.142374i
\(616\) 17.2178i 0.693723i
\(617\) 18.2976 10.5641i 0.736635 0.425296i −0.0842096 0.996448i \(-0.526837\pi\)
0.820845 + 0.571152i \(0.193503\pi\)
\(618\) 2.55655 1.47602i 0.102839 0.0593743i
\(619\) 7.26002i 0.291805i 0.989299 + 0.145902i \(0.0466086\pi\)
−0.989299 + 0.145902i \(0.953391\pi\)
\(620\) 2.16133 + 3.74354i 0.0868013 + 0.150344i
\(621\) 0.737559 1.27749i 0.0295972 0.0512639i
\(622\) 2.95693 + 1.70718i 0.118562 + 0.0684518i
\(623\) 40.0286 1.60371
\(624\) −0.575483 + 0.119017i −0.0230378 + 0.00476450i
\(625\) 10.0678 0.402712
\(626\) −1.11862 0.645838i −0.0447092 0.0258129i
\(627\) 3.00102 5.19791i 0.119849 0.207585i
\(628\) 0.668309 + 1.15754i 0.0266684 + 0.0461911i
\(629\) 9.75041i 0.388774i
\(630\) 6.11601 3.53108i 0.243668 0.140682i
\(631\) −23.9479 + 13.8263i −0.953350 + 0.550417i −0.894120 0.447827i \(-0.852198\pi\)
−0.0592302 + 0.998244i \(0.518865\pi\)
\(632\) 34.4406i 1.36997i
\(633\) −3.19333 5.53101i −0.126923 0.219838i
\(634\) −3.10745 + 5.38226i −0.123413 + 0.213757i
\(635\) −0.567767 0.327800i −0.0225311 0.0130084i
\(636\) 0.369740 0.0146611
\(637\) −4.54957 5.10906i −0.180261 0.202428i
\(638\) −14.4305 −0.571308
\(639\) −16.1283 9.31167i −0.638025 0.368364i
\(640\) 4.18863 7.25492i 0.165570 0.286776i
\(641\) −12.2703 21.2527i −0.484646 0.839432i 0.515198 0.857071i \(-0.327718\pi\)
−0.999844 + 0.0176394i \(0.994385\pi\)
\(642\) 5.76738i 0.227620i
\(643\) 16.9580 9.79070i 0.668758 0.386108i −0.126848 0.991922i \(-0.540486\pi\)
0.795606 + 0.605815i \(0.207153\pi\)
\(644\) 1.72583 0.996408i 0.0680072 0.0392640i
\(645\) 4.36452i 0.171853i
\(646\) 2.37091 + 4.10654i 0.0932822 + 0.161570i
\(647\) −8.34215 + 14.4490i −0.327964 + 0.568050i −0.982108 0.188320i \(-0.939696\pi\)
0.654144 + 0.756370i \(0.273029\pi\)
\(648\) 16.1926 + 9.34882i 0.636106 + 0.367256i
\(649\) −12.4933 −0.490404
\(650\) 8.80152 7.83767i 0.345224 0.307419i
\(651\) 4.78364 0.187486
\(652\) −3.47245 2.00482i −0.135992 0.0785148i
\(653\) 12.3418 21.3766i 0.482971 0.836530i −0.516838 0.856083i \(-0.672891\pi\)
0.999809 + 0.0195533i \(0.00622441\pi\)
\(654\) 2.48480 + 4.30379i 0.0971632 + 0.168292i
\(655\) 11.7176i 0.457846i
\(656\) −2.20312 + 1.27197i −0.0860175 + 0.0496622i
\(657\) 15.5840 8.99740i 0.607988 0.351022i
\(658\) 2.86370i 0.111639i
\(659\) −8.30332 14.3818i −0.323452 0.560235i 0.657746 0.753240i \(-0.271510\pi\)
−0.981198 + 0.193005i \(0.938177\pi\)
\(660\) 0.713007 1.23496i 0.0277538 0.0480709i
\(661\) −29.4159 16.9833i −1.14414 0.660572i −0.196691 0.980465i \(-0.563020\pi\)
−0.947454 + 0.319893i \(0.896353\pi\)
\(662\) 23.2181 0.902397
\(663\) 0.569080 1.71920i 0.0221012 0.0667683i
\(664\) 36.0494 1.39899
\(665\) 15.2410 + 8.79939i 0.591020 + 0.341226i
\(666\) 11.1476 19.3081i 0.431959 0.748176i
\(667\) −2.11252 3.65900i −0.0817973 0.141677i
\(668\) 17.0155i 0.658349i
\(669\) 2.61678 1.51080i 0.101170 0.0584108i
\(670\) 10.9115 6.29977i 0.421549 0.243381i
\(671\) 7.82921i 0.302243i
\(672\) −4.32588 7.49265i −0.166875 0.289035i
\(673\) −21.5417 + 37.3113i −0.830371 + 1.43825i 0.0673729 + 0.997728i \(0.478538\pi\)
−0.897744 + 0.440517i \(0.854795\pi\)
\(674\) 16.5569 + 9.55916i 0.637750 + 0.368205i
\(675\) −11.3394 −0.436452
\(676\) −1.96261 + 16.8837i −0.0754850 + 0.649372i
\(677\) 1.42508 0.0547703 0.0273851 0.999625i \(-0.491282\pi\)
0.0273851 + 0.999625i \(0.491282\pi\)
\(678\) 1.82029 + 1.05095i 0.0699080 + 0.0403614i
\(679\) 11.5663 20.0334i 0.443874 0.768812i
\(680\) 1.42495 + 2.46809i 0.0546445 + 0.0946471i
\(681\) 4.26346i 0.163376i
\(682\) 4.82583 2.78620i 0.184791 0.106689i
\(683\) −16.0945 + 9.29216i −0.615839 + 0.355555i −0.775247 0.631658i \(-0.782375\pi\)
0.159408 + 0.987213i \(0.449041\pi\)
\(684\) 20.4712i 0.782737i
\(685\) −7.51564 13.0175i −0.287158 0.497372i
\(686\) −6.33296 + 10.9690i −0.241794 + 0.418799i
\(687\) −2.16885 1.25219i −0.0827468 0.0477739i
\(688\) −2.72337 −0.103827
\(689\) 0.637918 1.92717i 0.0243027 0.0734192i
\(690\) −0.221138 −0.00841857
\(691\) 33.6477 + 19.4265i 1.28002 + 0.739019i 0.976852 0.213918i \(-0.0686226\pi\)
0.303167 + 0.952937i \(0.401956\pi\)
\(692\) −3.34175 + 5.78808i −0.127034 + 0.220030i
\(693\) 8.59427 + 14.8857i 0.326469 + 0.565461i
\(694\) 30.8420i 1.17075i
\(695\) −11.8535 + 6.84361i −0.449628 + 0.259593i
\(696\) −9.89941 + 5.71543i −0.375236 + 0.216643i
\(697\) 7.83945i 0.296940i
\(698\) −1.06109 1.83786i −0.0401629 0.0695641i
\(699\) 1.09090 1.88950i 0.0412617 0.0714673i
\(700\) −13.2666 7.65947i −0.501430 0.289501i
\(701\) −20.6141 −0.778585 −0.389292 0.921114i \(-0.627280\pi\)
−0.389292 + 0.921114i \(0.627280\pi\)
\(702\) −6.46885 + 5.76045i −0.244151 + 0.217414i
\(703\) 55.5590 2.09545
\(704\) −7.54933 4.35861i −0.284526 0.164271i
\(705\) 0.299989 0.519597i 0.0112983 0.0195691i
\(706\) 3.29401 + 5.70540i 0.123972 + 0.214725i
\(707\) 43.7168i 1.64414i
\(708\) −3.38801 + 1.95607i −0.127329 + 0.0735136i
\(709\) 15.6127 9.01402i 0.586349 0.338529i −0.177304 0.984156i \(-0.556737\pi\)
0.763653 + 0.645627i \(0.223404\pi\)
\(710\) 5.84005i 0.219173i
\(711\) −17.1911 29.7758i −0.644715 1.11668i
\(712\) 18.4680 31.9876i 0.692119 1.19879i
\(713\) 1.41294 + 0.815760i 0.0529149 + 0.0305504i
\(714\) 1.24674 0.0466582
\(715\) −5.20675 5.84706i −0.194721 0.218668i
\(716\) 26.6255 0.995041
\(717\) −6.82730 3.94174i −0.254970 0.147207i
\(718\) −8.20565 + 14.2126i −0.306232 + 0.530409i
\(719\) −9.95396 17.2408i −0.371220 0.642972i 0.618533 0.785758i \(-0.287727\pi\)
−0.989754 + 0.142786i \(0.954394\pi\)
\(720\) 0.923243i 0.0344072i
\(721\) −18.2448 + 10.5336i −0.679471 + 0.392293i
\(722\) 9.70659 5.60410i 0.361242 0.208563i
\(723\) 9.70433i 0.360908i
\(724\) 13.1292 + 22.7404i 0.487942 + 0.845141i
\(725\) −16.2392 + 28.1271i −0.603107 + 1.04461i
\(726\) 2.38971 + 1.37970i 0.0886903 + 0.0512054i
\(727\) 41.3159 1.53232 0.766161 0.642649i \(-0.222165\pi\)
0.766161 + 0.642649i \(0.222165\pi\)
\(728\) −28.9881 + 5.99511i −1.07437 + 0.222194i
\(729\) −14.3160 −0.530221
\(730\) −4.88693 2.82147i −0.180873 0.104427i
\(731\) 4.19618 7.26799i 0.155201 0.268816i
\(732\) −1.22582 2.12318i −0.0453075 0.0784749i
\(733\) 46.4139i 1.71434i 0.515037 + 0.857168i \(0.327778\pi\)
−0.515037 + 0.857168i \(0.672222\pi\)
\(734\) 14.3519 8.28608i 0.529739 0.305845i
\(735\) 0.854553 0.493377i 0.0315207 0.0181985i
\(736\) 2.95079i 0.108768i
\(737\) 15.3329 + 26.5574i 0.564796 + 0.978255i
\(738\) −8.96278 + 15.5240i −0.329925 + 0.571446i
\(739\) −28.6968 16.5681i −1.05563 0.609467i −0.131409 0.991328i \(-0.541950\pi\)
−0.924220 + 0.381861i \(0.875283\pi\)
\(740\) 13.2002 0.485248
\(741\) −9.79623 3.24269i −0.359874 0.119123i
\(742\) 1.39756 0.0513059
\(743\) 16.3200 + 9.42234i 0.598722 + 0.345672i 0.768539 0.639803i \(-0.220984\pi\)
−0.169817 + 0.985476i \(0.554318\pi\)
\(744\) 2.20704 3.82270i 0.0809138 0.140147i
\(745\) −4.64661 8.04816i −0.170238 0.294862i
\(746\) 28.8620i 1.05671i
\(747\) −31.1667 + 17.9941i −1.14033 + 0.658370i
\(748\) −2.37466 + 1.37101i −0.0868263 + 0.0501292i
\(749\) 41.1589i 1.50391i
\(750\) 1.93190 + 3.34615i 0.0705430 + 0.122184i
\(751\) 13.4365 23.2727i 0.490304 0.849232i −0.509633 0.860392i \(-0.670219\pi\)
0.999938 + 0.0111597i \(0.00355232\pi\)
\(752\) 0.324218 + 0.187187i 0.0118230 + 0.00682602i
\(753\) 15.6932 0.571893
\(754\) 5.02460 + 24.2954i 0.182985 + 0.884787i
\(755\) −11.0096 −0.400680
\(756\) 9.75055 + 5.62948i 0.354624 + 0.204742i
\(757\) −4.32514 + 7.49136i −0.157200 + 0.272278i −0.933858 0.357644i \(-0.883580\pi\)
0.776658 + 0.629922i \(0.216913\pi\)
\(758\) 1.69024 + 2.92758i 0.0613922 + 0.106334i
\(759\) 0.538225i 0.0195363i
\(760\) 14.0635 8.11957i 0.510137 0.294528i
\(761\) 7.08126 4.08837i 0.256696 0.148203i −0.366131 0.930563i \(-0.619318\pi\)
0.622826 + 0.782360i \(0.285984\pi\)
\(762\) 0.264647i 0.00958714i
\(763\) −17.7327 30.7140i −0.641968 1.11192i
\(764\) 3.17963 5.50728i 0.115035 0.199246i
\(765\) −2.46390 1.42254i −0.0890827 0.0514319i
\(766\) −13.2925 −0.480276
\(767\) 4.35008 + 21.0339i 0.157072 + 0.759491i
\(768\) −7.55714 −0.272695
\(769\) 2.78841 + 1.60989i 0.100553 + 0.0580542i 0.549433 0.835538i \(-0.314844\pi\)
−0.448880 + 0.893592i \(0.648177\pi\)
\(770\) 2.69505 4.66797i 0.0971230 0.168222i
\(771\) −0.440299 0.762621i −0.0158570 0.0274651i
\(772\) 21.5593i 0.775934i
\(773\) 30.8689 17.8222i 1.11028 0.641019i 0.171376 0.985206i \(-0.445179\pi\)
0.938901 + 0.344187i \(0.111845\pi\)
\(774\) −16.6189 + 9.59492i −0.597353 + 0.344882i
\(775\) 12.5416i 0.450509i
\(776\) −10.6727 18.4857i −0.383128 0.663598i
\(777\) 7.30393 12.6508i 0.262027 0.453844i
\(778\) −17.2622 9.96633i −0.618879 0.357310i
\(779\) −44.6701 −1.60047
\(780\) −2.32747 0.770425i −0.0833369 0.0275856i
\(781\) −14.2140 −0.508618
\(782\) 0.368249 + 0.212609i 0.0131686 + 0.00760287i
\(783\) 11.9353 20.6725i 0.426533 0.738776i
\(784\) 0.307857 + 0.533224i 0.0109949 + 0.0190437i
\(785\) 1.05849i 0.0377793i
\(786\) −4.09636 + 2.36503i −0.146112 + 0.0843579i
\(787\) −26.2033 + 15.1285i −0.934045 + 0.539271i −0.888089 0.459672i \(-0.847967\pi\)
−0.0459565 + 0.998943i \(0.514634\pi\)
\(788\) 24.4365i 0.870514i
\(789\) 3.90774 + 6.76841i 0.139119 + 0.240962i
\(790\) −5.39090 + 9.33731i −0.191800 + 0.332207i
\(791\) −12.9905 7.50008i −0.461890 0.266672i
\(792\) 15.8606 0.563582
\(793\) −13.1814 + 2.72608i −0.468085 + 0.0968060i
\(794\) 4.00359 0.142082
\(795\) 0.253576 + 0.146402i 0.00899341 + 0.00519235i
\(796\) −2.49557 + 4.32246i −0.0884532 + 0.153206i
\(797\) −23.3367 40.4204i −0.826628 1.43176i −0.900668 0.434507i \(-0.856923\pi\)
0.0740399 0.997255i \(-0.476411\pi\)
\(798\) 7.10410i 0.251483i
\(799\) −0.999112 + 0.576838i −0.0353461 + 0.0204071i
\(800\) −19.6440 + 11.3415i −0.694521 + 0.400982i
\(801\) 36.8734i 1.30286i
\(802\) 5.86564 + 10.1596i 0.207123 + 0.358748i
\(803\) 6.86715 11.8943i 0.242337 0.419739i
\(804\) 8.31617 + 4.80134i 0.293289 + 0.169330i
\(805\) 1.57815 0.0556225
\(806\) −6.37121 7.15472i −0.224416 0.252014i
\(807\) 2.25417 0.0793504
\(808\) −34.9349 20.1697i −1.22901 0.709567i
\(809\) 17.2190 29.8241i 0.605387 1.04856i −0.386604 0.922246i \(-0.626352\pi\)
0.991990 0.126314i \(-0.0403148\pi\)
\(810\) 2.92670 + 5.06919i 0.102834 + 0.178113i
\(811\) 23.9086i 0.839545i −0.907629 0.419773i \(-0.862110\pi\)
0.907629 0.419773i \(-0.137890\pi\)
\(812\) 27.9276 16.1240i 0.980068 0.565842i
\(813\) −2.44899 + 1.41392i −0.0858897 + 0.0495885i
\(814\) 17.0165i 0.596427i
\(815\) −1.58766 2.74990i −0.0556132 0.0963249i
\(816\) −0.0814940 + 0.141152i −0.00285286 + 0.00494130i
\(817\) −41.4139 23.9103i −1.44889 0.836517i
\(818\) 14.1743 0.495593
\(819\) 22.0694 19.6526i 0.771166 0.686716i
\(820\) −10.6131 −0.370626
\(821\) 24.9242 + 14.3900i 0.869861 + 0.502215i 0.867302 0.497782i \(-0.165852\pi\)
0.00255929 + 0.999997i \(0.499185\pi\)
\(822\) −3.03384 + 5.25477i −0.105817 + 0.183281i
\(823\) −5.08232 8.80283i −0.177158 0.306847i 0.763748 0.645515i \(-0.223357\pi\)
−0.940906 + 0.338667i \(0.890024\pi\)
\(824\) 19.4396i 0.677212i
\(825\) −3.58308 + 2.06869i −0.124747 + 0.0720226i
\(826\) −12.8061 + 7.39363i −0.445583 + 0.257257i
\(827\) 8.84039i 0.307411i 0.988117 + 0.153705i \(0.0491206\pi\)
−0.988117 + 0.153705i \(0.950879\pi\)
\(828\) 0.917867 + 1.58979i 0.0318981 + 0.0552491i
\(829\) −0.632302 + 1.09518i −0.0219607 + 0.0380371i −0.876797 0.480861i \(-0.840324\pi\)
0.854836 + 0.518898i \(0.173658\pi\)
\(830\) 9.77348 + 5.64272i 0.339242 + 0.195862i
\(831\) −16.6129 −0.576297
\(832\) −4.70960 + 14.2278i −0.163276 + 0.493261i
\(833\) −1.89739 −0.0657406
\(834\) 4.78490 + 2.76256i 0.165688 + 0.0956598i
\(835\) 6.73745 11.6696i 0.233159 0.403843i
\(836\) 7.81220 + 13.5311i 0.270191 + 0.467984i
\(837\) 9.21773i 0.318611i
\(838\) 0.485075 0.280058i 0.0167566 0.00967445i
\(839\) 27.3612 15.7970i 0.944614 0.545373i 0.0532105 0.998583i \(-0.483055\pi\)
0.891404 + 0.453210i \(0.149721\pi\)
\(840\) 4.26968i 0.147318i
\(841\) −19.6852 34.0958i −0.678800 1.17572i
\(842\) −10.9798 + 19.0176i −0.378389 + 0.655388i
\(843\) 2.48989 + 1.43754i 0.0857562 + 0.0495114i
\(844\) 16.6257 0.572279
\(845\) −8.03126 + 10.8021i −0.276284 + 0.371603i
\(846\) 2.63798 0.0906955
\(847\) −17.0541 9.84621i −0.585987 0.338320i
\(848\) −0.0913519 + 0.158226i −0.00313704 + 0.00543351i
\(849\) 4.90598 + 8.49740i 0.168373 + 0.291630i
\(850\) 3.26868i 0.112115i
\(851\) 4.31470 2.49110i 0.147906 0.0853936i
\(852\) −3.85465 + 2.22549i −0.132058 + 0.0762439i
\(853\) 39.5184i 1.35309i −0.736403 0.676543i \(-0.763477\pi\)
0.736403 0.676543i \(-0.236523\pi\)
\(854\) −4.63339 8.02527i −0.158551 0.274619i
\(855\) −8.10579 + 14.0396i −0.277212 + 0.480145i
\(856\) 32.8908 + 18.9895i 1.12419 + 0.649049i
\(857\) 24.4044 0.833637 0.416819 0.908990i \(-0.363145\pi\)
0.416819 + 0.908990i \(0.363145\pi\)
\(858\) −0.993161 + 3.00037i −0.0339060 + 0.102431i
\(859\) −9.75141 −0.332714 −0.166357 0.986066i \(-0.553200\pi\)
−0.166357 + 0.986066i \(0.553200\pi\)
\(860\) −9.83947 5.68082i −0.335523 0.193714i
\(861\) −5.87246 + 10.1714i −0.200133 + 0.346640i
\(862\) 2.11185 + 3.65784i 0.0719301 + 0.124587i
\(863\) 35.9459i 1.22361i 0.791008 + 0.611806i \(0.209557\pi\)
−0.791008 + 0.611806i \(0.790443\pi\)
\(864\) 14.4378 8.33566i 0.491183 0.283585i
\(865\) −4.58369 + 2.64640i −0.155850 + 0.0899802i
\(866\) 22.3768i 0.760394i
\(867\) −0.251133 0.434974i −0.00852891 0.0147725i
\(868\) −6.22636 + 10.7844i −0.211336 + 0.366045i
\(869\) −22.7260 13.1209i −0.770926 0.445094i
\(870\) −3.57849 −0.121322
\(871\) 39.3737 35.0619i 1.33413 1.18803i
\(872\) −32.7255 −1.10822
\(873\) 18.4543 + 10.6546i 0.624584 + 0.360604i
\(874\) 1.21147 2.09833i 0.0409786 0.0709770i
\(875\) −13.7870 23.8798i −0.466085 0.807284i
\(876\) 4.30075i 0.145309i
\(877\) −32.8469 + 18.9642i −1.10916 + 0.640374i −0.938612 0.344975i \(-0.887887\pi\)
−0.170549 + 0.985349i \(0.554554\pi\)
\(878\) 0.259767 0.149976i 0.00876671 0.00506146i
\(879\) 3.76425i 0.126965i
\(880\) 0.352327 + 0.610248i 0.0118769 + 0.0205714i
\(881\) −26.2097 + 45.3965i −0.883027 + 1.52945i −0.0350681 + 0.999385i \(0.511165\pi\)
−0.847959 + 0.530062i \(0.822169\pi\)
\(882\) 3.75729 + 2.16927i 0.126514 + 0.0730431i
\(883\) −26.5657 −0.894007 −0.447003 0.894532i \(-0.647509\pi\)
−0.447003 + 0.894532i \(0.647509\pi\)
\(884\) 3.13511 + 3.52065i 0.105445 + 0.118412i
\(885\) −3.09810 −0.104141
\(886\) 0.717017 + 0.413970i 0.0240887 + 0.0139076i
\(887\) −26.0932 + 45.1948i −0.876124 + 1.51749i −0.0205641 + 0.999789i \(0.506546\pi\)
−0.855560 + 0.517703i \(0.826787\pi\)
\(888\) −6.73965 11.6734i −0.226168 0.391734i
\(889\) 1.88865i 0.0633433i
\(890\) 10.0139 5.78151i 0.335666 0.193797i
\(891\) −12.3378 + 7.12326i −0.413333 + 0.238638i
\(892\) 7.86577i 0.263366i
\(893\) 3.28689 + 5.69306i 0.109992 + 0.190511i
\(894\) −1.87570 + 3.24880i −0.0627327 + 0.108656i
\(895\) 18.2604 + 10.5426i 0.610377 + 0.352401i
\(896\) 24.1332 0.806232
\(897\) −0.906166 + 0.187407i −0.0302560 + 0.00625732i
\(898\) 2.35681 0.0786479
\(899\) 22.8644 + 13.2008i 0.762570 + 0.440270i
\(900\) 7.05573 12.2209i 0.235191 0.407362i
\(901\) −0.281511 0.487591i −0.00937848 0.0162440i
\(902\) 13.6815i 0.455543i
\(903\) −10.8888 + 6.28663i −0.362355 + 0.209206i
\(904\) −11.9869 + 6.92064i −0.398678 + 0.230177i
\(905\) 20.7945i 0.691233i
\(906\) 2.22212 + 3.84883i 0.0738250 + 0.127869i
\(907\) 15.9066 27.5511i 0.528171 0.914819i −0.471290 0.881978i \(-0.656211\pi\)
0.999461 0.0328401i \(-0.0104552\pi\)
\(908\) 9.61165 + 5.54929i 0.318974 + 0.184160i
\(909\) 40.2709 1.33570
\(910\) −8.79748 2.91208i −0.291634 0.0965346i
\(911\) −33.1223 −1.09739 −0.548695 0.836023i \(-0.684875\pi\)
−0.548695 + 0.836023i \(0.684875\pi\)
\(912\) 0.804300 + 0.464363i 0.0266330 + 0.0153766i
\(913\) −13.7338 + 23.7876i −0.454521 + 0.787254i
\(914\) −2.00176 3.46715i −0.0662124 0.114683i
\(915\) 1.94150i 0.0641839i
\(916\) 5.64592 3.25967i 0.186546 0.107703i
\(917\) 29.2336 16.8780i 0.965379 0.557362i
\(918\) 2.40238i 0.0792905i
\(919\) −18.0704 31.2988i −0.596087 1.03245i −0.993392 0.114767i \(-0.963388\pi\)
0.397305 0.917687i \(-0.369946\pi\)
\(920\) 0.728113 1.26113i 0.0240052 0.0415782i
\(921\) 5.06192 + 2.92250i 0.166796 + 0.0962996i
\(922\) 9.84379 0.324188
\(923\) 4.94923 + 23.9310i 0.162906 + 0.787698i
\(924\) 4.10805 0.135145
\(925\) −33.1675 19.1493i −1.09054 0.629624i
\(926\) 2.06716 3.58043i 0.0679312 0.117660i
\(927\) −9.70333 16.8067i −0.318699 0.552003i
\(928\) 47.7501i 1.56747i
\(929\) −28.3351 + 16.3593i −0.929643 + 0.536730i −0.886699 0.462348i \(-0.847007\pi\)
−0.0429445 + 0.999077i \(0.513674\pi\)
\(930\) 1.19672 0.690924i 0.0392418 0.0226563i
\(931\) 10.8116i 0.354334i
\(932\) 2.83982 + 4.91871i 0.0930213 + 0.161118i
\(933\) −1.03038 + 1.78468i −0.0337333 + 0.0584278i
\(934\) −17.4472 10.0732i −0.570891 0.329604i
\(935\) −2.17146 −0.0710145
\(936\) −5.52255 26.7032i −0.180510 0.872821i
\(937\) 20.7407 0.677570 0.338785 0.940864i \(-0.389984\pi\)
0.338785 + 0.940864i \(0.389984\pi\)
\(938\) 31.4338 + 18.1483i 1.02635 + 0.592564i
\(939\) 0.389801 0.675155i 0.0127207 0.0220329i
\(940\) 0.780928 + 1.35261i 0.0254711 + 0.0441172i
\(941\) 29.2570i 0.953751i 0.878971 + 0.476875i \(0.158231\pi\)
−0.878971 + 0.476875i \(0.841769\pi\)
\(942\) 0.370038 0.213641i 0.0120565 0.00696081i
\(943\) −3.46908 + 2.00287i −0.112969 + 0.0652225i
\(944\) 1.93315i 0.0629187i
\(945\) 4.45810 + 7.72166i 0.145022 + 0.251185i
\(946\) −7.32320 + 12.6841i −0.238098 + 0.412397i
\(947\) −31.2651 18.0509i −1.01598 0.586575i −0.103042 0.994677i \(-0.532858\pi\)
−0.912937 + 0.408102i \(0.866191\pi\)
\(948\) −8.21731 −0.266886
\(949\) −22.4165 7.42016i −0.727670 0.240869i
\(950\) −18.6254 −0.604286
\(951\) −3.24851 1.87553i −0.105340 0.0608182i
\(952\) −4.10500 + 7.11007i −0.133044 + 0.230439i
\(953\) 11.5018 + 19.9217i 0.372579 + 0.645326i 0.989962 0.141337i \(-0.0451402\pi\)
−0.617382 + 0.786663i \(0.711807\pi\)
\(954\) 1.28740i 0.0416810i
\(955\) 4.36132 2.51801i 0.141129 0.0814809i
\(956\) 17.7727 10.2611i 0.574811 0.331867i
\(957\) 8.70965i 0.281543i
\(958\) −14.8854 25.7822i −0.480925 0.832986i
\(959\) 21.6510 37.5006i 0.699147 1.21096i
\(960\) −1.87209 1.08085i −0.0604215 0.0348844i
\(961\) 20.8050 0.671127
\(962\) −28.6492 + 5.92503i −0.923688 + 0.191030i
\(963\) −37.9146 −1.22178
\(964\) −21.8777 12.6311i −0.704633 0.406820i
\(965\) −8.53660 + 14.7858i −0.274803 + 0.475972i
\(966\) −0.318526 0.551704i −0.0102484 0.0177508i
\(967\) 9.16533i 0.294737i 0.989082 + 0.147369i \(0.0470803\pi\)
−0.989082 + 0.147369i \(0.952920\pi\)
\(968\) −15.7366 + 9.08551i −0.505792 + 0.292019i
\(969\) −2.47854 + 1.43098i −0.0796221 + 0.0459698i
\(970\) 6.68230i 0.214556i
\(971\) 21.0701 + 36.4945i 0.676172 + 1.17116i 0.976125 + 0.217210i \(0.0696955\pi\)
−0.299953 + 0.953954i \(0.596971\pi\)
\(972\) −7.89242 + 13.6701i −0.253150 + 0.438468i
\(973\) −34.1474 19.7150i −1.09472 0.632035i
\(974\) 16.6275 0.532779
\(975\) 4.73049 + 5.31223i 0.151497 + 0.170128i
\(976\) 1.21145 0.0387777
\(977\) 3.14988 + 1.81858i 0.100774 + 0.0581816i 0.549540 0.835468i \(-0.314803\pi\)
−0.448766 + 0.893649i \(0.648136\pi\)
\(978\) −0.640890 + 1.11005i −0.0204934 + 0.0354956i
\(979\) 14.0716 + 24.3727i 0.449729 + 0.778954i
\(980\) 2.56870i 0.0820542i
\(981\) 28.2930 16.3350i 0.903326 0.521536i
\(982\) −8.55537 + 4.93945i −0.273013 + 0.157624i
\(983\) 49.4027i 1.57570i −0.615865 0.787851i \(-0.711193\pi\)
0.615865 0.787851i \(-0.288807\pi\)
\(984\) 5.41876 + 9.38557i 0.172744 + 0.299201i
\(985\) −9.67587 + 16.7591i −0.308299 + 0.533989i
\(986\) 5.95906 + 3.44047i 0.189775 + 0.109567i
\(987\) 1.72841 0.0550160
\(988\) 20.0611 17.8642i 0.638229 0.568336i
\(989\) −4.28826 −0.136359
\(990\) 4.30002 + 2.48262i 0.136664 + 0.0789028i
\(991\) −14.2688 + 24.7143i −0.453264 + 0.785076i −0.998587 0.0531502i \(-0.983074\pi\)
0.545323 + 0.838226i \(0.316407\pi\)
\(992\) 9.21945 + 15.9686i 0.292718 + 0.507002i
\(993\) 14.0135i 0.444704i
\(994\) −14.5700 + 8.41198i −0.462132 + 0.266812i
\(995\) −3.42304 + 1.97629i −0.108518 + 0.0626527i
\(996\) 8.60116i 0.272538i
\(997\) 15.4618 + 26.7807i 0.489681 + 0.848152i 0.999929 0.0118748i \(-0.00377995\pi\)
−0.510249 + 0.860027i \(0.670447\pi\)
\(998\) −0.584152 + 1.01178i −0.0184910 + 0.0320274i
\(999\) 24.3771 + 14.0741i 0.771258 + 0.445286i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 221.2.m.c.69.8 22
13.6 odd 12 2873.2.a.x.1.8 22
13.7 odd 12 2873.2.a.x.1.15 22
13.10 even 6 inner 221.2.m.c.205.8 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
221.2.m.c.69.8 22 1.1 even 1 trivial
221.2.m.c.205.8 yes 22 13.10 even 6 inner
2873.2.a.x.1.8 22 13.6 odd 12
2873.2.a.x.1.15 22 13.7 odd 12