Properties

Label 220.2.g.b.219.18
Level $220$
Weight $2$
Character 220.219
Analytic conductor $1.757$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(219,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.219"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 219.18
Character \(\chi\) \(=\) 220.219
Dual form 220.2.g.b.219.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.896270 - 1.09394i) q^{2} +2.84322 q^{3} +(-0.393401 - 1.96093i) q^{4} +(-1.64854 - 1.51074i) q^{5} +(2.54829 - 3.11030i) q^{6} +3.37357i q^{7} +(-2.49773 - 1.32716i) q^{8} +5.08387 q^{9} +(-3.13019 + 0.449366i) q^{10} +(-1.92430 + 2.70131i) q^{11} +(-1.11852 - 5.57534i) q^{12} -2.23147 q^{13} +(3.69047 + 3.02362i) q^{14} +(-4.68714 - 4.29536i) q^{15} +(-3.69047 + 1.54286i) q^{16} -2.76398 q^{17} +(4.55652 - 5.56144i) q^{18} +7.85859 q^{19} +(-2.31391 + 3.82698i) q^{20} +9.59177i q^{21} +(1.23037 + 4.52617i) q^{22} +0.606168 q^{23} +(-7.10157 - 3.77341i) q^{24} +(0.435337 + 4.98101i) q^{25} +(-2.00000 + 2.44109i) q^{26} +5.92490 q^{27} +(6.61532 - 1.32716i) q^{28} -7.54682i q^{29} +(-8.89979 + 1.27764i) q^{30} -2.02302i q^{31} +(-1.61986 + 5.41997i) q^{32} +(-5.47120 + 7.68040i) q^{33} +(-2.47727 + 3.02362i) q^{34} +(5.09658 - 5.56144i) q^{35} +(-2.00000 - 9.96910i) q^{36} -1.18865i q^{37} +(7.04342 - 8.59682i) q^{38} -6.34455 q^{39} +(2.11259 + 5.96129i) q^{40} -2.04495i q^{41} +(10.4928 + 8.59682i) q^{42} -3.09062i q^{43} +(6.05409 + 2.71071i) q^{44} +(-8.38094 - 7.68040i) q^{45} +(0.543290 - 0.663111i) q^{46} -8.76811 q^{47} +(-10.4928 + 4.38669i) q^{48} -4.38094 q^{49} +(5.83910 + 3.98810i) q^{50} -7.85859 q^{51} +(0.877863 + 4.37575i) q^{52} +4.21013i q^{53} +(5.31031 - 6.48147i) q^{54} +(7.25325 - 1.54609i) q^{55} +(4.47727 - 8.42624i) q^{56} +22.3437 q^{57} +(-8.25576 - 6.76399i) q^{58} -4.33992i q^{59} +(-6.57895 + 10.8809i) q^{60} +2.84943i q^{61} +(-2.21306 - 1.81318i) q^{62} +17.1508i q^{63} +(4.47727 + 6.62978i) q^{64} +(3.67866 + 3.37117i) q^{65} +(3.49822 + 12.8689i) q^{66} -0.606168 q^{67} +(1.08735 + 5.41997i) q^{68} +1.72347 q^{69} +(-1.51597 - 10.5599i) q^{70} +9.55104i q^{71} +(-12.6981 - 6.74713i) q^{72} -6.00371 q^{73} +(-1.30031 - 1.06535i) q^{74} +(1.23776 + 14.1621i) q^{75} +(-3.09158 - 15.4101i) q^{76} +(-9.11304 - 6.49175i) q^{77} +(-5.68643 + 6.94055i) q^{78} +3.84860 q^{79} +(8.41473 + 3.03188i) q^{80} +1.59414 q^{81} +(-2.23705 - 1.83283i) q^{82} +8.39927i q^{83} +(18.8088 - 3.77341i) q^{84} +(4.55652 + 4.17565i) q^{85} +(-3.38094 - 2.77003i) q^{86} -21.4572i q^{87} +(8.39145 - 4.19327i) q^{88} +8.67801 q^{89} +(-15.9135 + 2.28452i) q^{90} -7.52801i q^{91} +(-0.238467 - 1.18865i) q^{92} -5.75189i q^{93} +(-7.85859 + 9.59177i) q^{94} +(-12.9552 - 11.8723i) q^{95} +(-4.60562 + 15.4101i) q^{96} -3.02148i q^{97} +(-3.92651 + 4.79248i) q^{98} +(-9.78289 + 13.7331i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{5} + 40 q^{9} + 12 q^{14} - 12 q^{16} - 20 q^{20} - 36 q^{25} - 48 q^{26} + 28 q^{34} - 48 q^{36} + 56 q^{44} - 48 q^{45} + 48 q^{49} + 20 q^{56} - 8 q^{60} + 20 q^{64} - 52 q^{66}+ \cdots - 16 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.896270 1.09394i 0.633758 0.773531i
\(3\) 2.84322 1.64153 0.820766 0.571265i \(-0.193547\pi\)
0.820766 + 0.571265i \(0.193547\pi\)
\(4\) −0.393401 1.96093i −0.196700 0.980464i
\(5\) −1.64854 1.51074i −0.737247 0.675623i
\(6\) 2.54829 3.11030i 1.04033 1.26978i
\(7\) 3.37357i 1.27509i 0.770414 + 0.637544i \(0.220050\pi\)
−0.770414 + 0.637544i \(0.779950\pi\)
\(8\) −2.49773 1.32716i −0.883080 0.469223i
\(9\) 5.08387 1.69462
\(10\) −3.13019 + 0.449366i −0.989852 + 0.142102i
\(11\) −1.92430 + 2.70131i −0.580198 + 0.814475i
\(12\) −1.11852 5.57534i −0.322890 1.60946i
\(13\) −2.23147 −0.618899 −0.309449 0.950916i \(-0.600145\pi\)
−0.309449 + 0.950916i \(0.600145\pi\)
\(14\) 3.69047 + 3.02362i 0.986320 + 0.808098i
\(15\) −4.68714 4.29536i −1.21021 1.10906i
\(16\) −3.69047 + 1.54286i −0.922618 + 0.385715i
\(17\) −2.76398 −0.670364 −0.335182 0.942153i \(-0.608798\pi\)
−0.335182 + 0.942153i \(0.608798\pi\)
\(18\) 4.55652 5.56144i 1.07398 1.31084i
\(19\) 7.85859 1.80289 0.901443 0.432899i \(-0.142509\pi\)
0.901443 + 0.432899i \(0.142509\pi\)
\(20\) −2.31391 + 3.82698i −0.517407 + 0.855740i
\(21\) 9.59177i 2.09310i
\(22\) 1.23037 + 4.52617i 0.262316 + 0.964982i
\(23\) 0.606168 0.126395 0.0631974 0.998001i \(-0.479870\pi\)
0.0631974 + 0.998001i \(0.479870\pi\)
\(24\) −7.10157 3.77341i −1.44960 0.770244i
\(25\) 0.435337 + 4.98101i 0.0870674 + 0.996202i
\(26\) −2.00000 + 2.44109i −0.392232 + 0.478737i
\(27\) 5.92490 1.14025
\(28\) 6.61532 1.32716i 1.25018 0.250810i
\(29\) 7.54682i 1.40141i −0.713451 0.700705i \(-0.752869\pi\)
0.713451 0.700705i \(-0.247131\pi\)
\(30\) −8.89979 + 1.27764i −1.62487 + 0.233265i
\(31\) 2.02302i 0.363346i −0.983359 0.181673i \(-0.941849\pi\)
0.983359 0.181673i \(-0.0581512\pi\)
\(32\) −1.61986 + 5.41997i −0.286354 + 0.958124i
\(33\) −5.47120 + 7.68040i −0.952413 + 1.33699i
\(34\) −2.47727 + 3.02362i −0.424849 + 0.518547i
\(35\) 5.09658 5.56144i 0.861479 0.940055i
\(36\) −2.00000 9.96910i −0.333333 1.66152i
\(37\) 1.18865i 0.195413i −0.995215 0.0977066i \(-0.968849\pi\)
0.995215 0.0977066i \(-0.0311507\pi\)
\(38\) 7.04342 8.59682i 1.14259 1.39459i
\(39\) −6.34455 −1.01594
\(40\) 2.11259 + 5.96129i 0.334030 + 0.942562i
\(41\) 2.04495i 0.319367i −0.987168 0.159684i \(-0.948953\pi\)
0.987168 0.159684i \(-0.0510474\pi\)
\(42\) 10.4928 + 8.59682i 1.61907 + 1.32652i
\(43\) 3.09062i 0.471315i −0.971836 0.235657i \(-0.924276\pi\)
0.971836 0.235657i \(-0.0757243\pi\)
\(44\) 6.05409 + 2.71071i 0.912689 + 0.408656i
\(45\) −8.38094 7.68040i −1.24936 1.14493i
\(46\) 0.543290 0.663111i 0.0801038 0.0977703i
\(47\) −8.76811 −1.27896 −0.639480 0.768807i \(-0.720850\pi\)
−0.639480 + 0.768807i \(0.720850\pi\)
\(48\) −10.4928 + 4.38669i −1.51451 + 0.633164i
\(49\) −4.38094 −0.625849
\(50\) 5.83910 + 3.98810i 0.825773 + 0.564002i
\(51\) −7.85859 −1.10042
\(52\) 0.877863 + 4.37575i 0.121738 + 0.606808i
\(53\) 4.21013i 0.578306i 0.957283 + 0.289153i \(0.0933736\pi\)
−0.957283 + 0.289153i \(0.906626\pi\)
\(54\) 5.31031 6.48147i 0.722641 0.882016i
\(55\) 7.25325 1.54609i 0.978028 0.208475i
\(56\) 4.47727 8.42624i 0.598301 1.12600i
\(57\) 22.3437 2.95949
\(58\) −8.25576 6.76399i −1.08403 0.888155i
\(59\) 4.33992i 0.565010i −0.959266 0.282505i \(-0.908835\pi\)
0.959266 0.282505i \(-0.0911653\pi\)
\(60\) −6.57895 + 10.8809i −0.849339 + 1.40472i
\(61\) 2.84943i 0.364833i 0.983221 + 0.182416i \(0.0583918\pi\)
−0.983221 + 0.182416i \(0.941608\pi\)
\(62\) −2.21306 1.81318i −0.281059 0.230274i
\(63\) 17.1508i 2.16079i
\(64\) 4.47727 + 6.62978i 0.559659 + 0.828723i
\(65\) 3.67866 + 3.37117i 0.456281 + 0.418142i
\(66\) 3.49822 + 12.8689i 0.430601 + 1.58405i
\(67\) −0.606168 −0.0740552 −0.0370276 0.999314i \(-0.511789\pi\)
−0.0370276 + 0.999314i \(0.511789\pi\)
\(68\) 1.08735 + 5.41997i 0.131861 + 0.657268i
\(69\) 1.72347 0.207481
\(70\) −1.51597 10.5599i −0.181193 1.26215i
\(71\) 9.55104i 1.13350i 0.823890 + 0.566750i \(0.191799\pi\)
−0.823890 + 0.566750i \(0.808201\pi\)
\(72\) −12.6981 6.74713i −1.49649 0.795157i
\(73\) −6.00371 −0.702681 −0.351340 0.936248i \(-0.614274\pi\)
−0.351340 + 0.936248i \(0.614274\pi\)
\(74\) −1.30031 1.06535i −0.151158 0.123845i
\(75\) 1.23776 + 14.1621i 0.142924 + 1.63530i
\(76\) −3.09158 15.4101i −0.354628 1.76766i
\(77\) −9.11304 6.49175i −1.03853 0.739804i
\(78\) −5.68643 + 6.94055i −0.643861 + 0.785862i
\(79\) 3.84860 0.433001 0.216501 0.976282i \(-0.430536\pi\)
0.216501 + 0.976282i \(0.430536\pi\)
\(80\) 8.41473 + 3.03188i 0.940796 + 0.338974i
\(81\) 1.59414 0.177127
\(82\) −2.23705 1.83283i −0.247040 0.202402i
\(83\) 8.39927i 0.921940i 0.887416 + 0.460970i \(0.152498\pi\)
−0.887416 + 0.460970i \(0.847502\pi\)
\(84\) 18.8088 3.77341i 2.05220 0.411713i
\(85\) 4.55652 + 4.17565i 0.494224 + 0.452913i
\(86\) −3.38094 2.77003i −0.364576 0.298700i
\(87\) 21.4572i 2.30046i
\(88\) 8.39145 4.19327i 0.894532 0.447004i
\(89\) 8.67801 0.919868 0.459934 0.887953i \(-0.347873\pi\)
0.459934 + 0.887953i \(0.347873\pi\)
\(90\) −15.9135 + 2.28452i −1.67743 + 0.240809i
\(91\) 7.52801i 0.789150i
\(92\) −0.238467 1.18865i −0.0248619 0.123926i
\(93\) 5.75189i 0.596444i
\(94\) −7.85859 + 9.59177i −0.810552 + 0.989316i
\(95\) −12.9552 11.8723i −1.32917 1.21807i
\(96\) −4.60562 + 15.4101i −0.470059 + 1.57279i
\(97\) 3.02148i 0.306785i −0.988165 0.153392i \(-0.950980\pi\)
0.988165 0.153392i \(-0.0490198\pi\)
\(98\) −3.92651 + 4.79248i −0.396637 + 0.484114i
\(99\) −9.78289 + 13.7331i −0.983218 + 1.38023i
\(100\) 9.59614 2.81320i 0.959614 0.281320i
\(101\) 12.4412i 1.23795i −0.785412 0.618973i \(-0.787549\pi\)
0.785412 0.618973i \(-0.212451\pi\)
\(102\) −7.04342 + 8.59682i −0.697403 + 0.851212i
\(103\) −1.86935 −0.184192 −0.0920961 0.995750i \(-0.529357\pi\)
−0.0920961 + 0.995750i \(0.529357\pi\)
\(104\) 5.57360 + 2.96153i 0.546537 + 0.290402i
\(105\) 14.4907 15.8124i 1.41414 1.54313i
\(106\) 4.60562 + 3.77341i 0.447337 + 0.366506i
\(107\) 9.47074i 0.915571i −0.889063 0.457786i \(-0.848643\pi\)
0.889063 0.457786i \(-0.151357\pi\)
\(108\) −2.33086 11.6183i −0.224287 1.11797i
\(109\) 8.78729i 0.841669i 0.907137 + 0.420835i \(0.138263\pi\)
−0.907137 + 0.420835i \(0.861737\pi\)
\(110\) 4.80954 9.32032i 0.458572 0.888657i
\(111\) 3.37959i 0.320777i
\(112\) −5.20494 12.4500i −0.491821 1.17642i
\(113\) 19.2799i 1.81370i −0.421456 0.906849i \(-0.638481\pi\)
0.421456 0.906849i \(-0.361519\pi\)
\(114\) 20.0260 24.4426i 1.87560 2.28926i
\(115\) −0.999290 0.915762i −0.0931843 0.0853952i
\(116\) −14.7988 + 2.96893i −1.37403 + 0.275658i
\(117\) −11.3445 −1.04880
\(118\) −4.74760 3.88974i −0.437052 0.358080i
\(119\) 9.32447i 0.854773i
\(120\) 6.00655 + 16.9492i 0.548321 + 1.54725i
\(121\) −3.59414 10.3963i −0.326740 0.945114i
\(122\) 3.11710 + 2.55386i 0.282209 + 0.231216i
\(123\) 5.81423i 0.524251i
\(124\) −3.96700 + 0.795860i −0.356248 + 0.0714703i
\(125\) 6.80734 8.86905i 0.608867 0.793272i
\(126\) 18.7619 + 15.3717i 1.67144 + 1.36942i
\(127\) 12.7750i 1.13360i 0.823855 + 0.566800i \(0.191819\pi\)
−0.823855 + 0.566800i \(0.808181\pi\)
\(128\) 11.2654 + 1.04421i 0.995732 + 0.0922964i
\(129\) 8.78729i 0.773678i
\(130\) 6.98492 1.00275i 0.612618 0.0879467i
\(131\) 8.67911 0.758297 0.379149 0.925336i \(-0.376217\pi\)
0.379149 + 0.925336i \(0.376217\pi\)
\(132\) 17.2131 + 7.70714i 1.49821 + 0.670821i
\(133\) 26.5115i 2.29884i
\(134\) −0.543290 + 0.663111i −0.0469331 + 0.0572840i
\(135\) −9.76740 8.95097i −0.840644 0.770377i
\(136\) 6.90367 + 3.66826i 0.591985 + 0.314550i
\(137\) 12.3393i 1.05422i 0.849797 + 0.527110i \(0.176724\pi\)
−0.849797 + 0.527110i \(0.823276\pi\)
\(138\) 1.54469 1.88537i 0.131493 0.160493i
\(139\) 2.49595 0.211704 0.105852 0.994382i \(-0.466243\pi\)
0.105852 + 0.994382i \(0.466243\pi\)
\(140\) −12.9106 7.80614i −1.09114 0.659739i
\(141\) −24.9296 −2.09945
\(142\) 10.4482 + 8.56031i 0.876797 + 0.718365i
\(143\) 4.29402 6.02789i 0.359084 0.504078i
\(144\) −18.7619 + 7.84371i −1.56349 + 0.653642i
\(145\) −11.4013 + 12.4412i −0.946825 + 1.03319i
\(146\) −5.38094 + 6.56769i −0.445330 + 0.543546i
\(147\) −12.4560 −1.02735
\(148\) −2.33086 + 0.467617i −0.191596 + 0.0384379i
\(149\) 13.6817i 1.12085i −0.828207 0.560423i \(-0.810639\pi\)
0.828207 0.560423i \(-0.189361\pi\)
\(150\) 16.6018 + 11.3390i 1.35553 + 0.925827i
\(151\) 3.02809 0.246422 0.123211 0.992380i \(-0.460681\pi\)
0.123211 + 0.992380i \(0.460681\pi\)
\(152\) −19.6286 10.4296i −1.59209 0.845956i
\(153\) −14.0517 −1.13602
\(154\) −15.2693 + 4.15074i −1.23044 + 0.334476i
\(155\) −3.05626 + 3.33503i −0.245485 + 0.267876i
\(156\) 2.49595 + 12.4412i 0.199836 + 0.996094i
\(157\) 5.75189i 0.459051i 0.973303 + 0.229526i \(0.0737175\pi\)
−0.973303 + 0.229526i \(0.926283\pi\)
\(158\) 3.44938 4.21013i 0.274418 0.334940i
\(159\) 11.9703i 0.949307i
\(160\) 10.8586 6.48782i 0.858444 0.512907i
\(161\) 2.04495i 0.161165i
\(162\) 1.42878 1.74389i 0.112256 0.137013i
\(163\) 12.2175 0.956948 0.478474 0.878102i \(-0.341190\pi\)
0.478474 + 0.878102i \(0.341190\pi\)
\(164\) −4.01000 + 0.804485i −0.313128 + 0.0628197i
\(165\) 20.6225 4.39586i 1.60546 0.342218i
\(166\) 9.18828 + 7.52801i 0.713149 + 0.584287i
\(167\) 13.5635i 1.04958i 0.851232 + 0.524789i \(0.175856\pi\)
−0.851232 + 0.524789i \(0.824144\pi\)
\(168\) 12.7299 23.9576i 0.982129 1.84837i
\(169\) −8.02054 −0.616964
\(170\) 8.65178 1.24204i 0.663561 0.0952601i
\(171\) 39.9521 3.05521
\(172\) −6.06047 + 1.21585i −0.462107 + 0.0927078i
\(173\) 16.7589 1.27416 0.637080 0.770798i \(-0.280142\pi\)
0.637080 + 0.770798i \(0.280142\pi\)
\(174\) −23.4729 19.2315i −1.77948 1.45793i
\(175\) −16.8038 + 1.46864i −1.27025 + 0.111019i
\(176\) 2.93383 12.9380i 0.221146 0.975241i
\(177\) 12.3393i 0.927481i
\(178\) 7.77784 9.49321i 0.582974 0.711546i
\(179\) 1.69409i 0.126622i 0.997994 + 0.0633111i \(0.0201660\pi\)
−0.997994 + 0.0633111i \(0.979834\pi\)
\(180\) −11.7636 + 19.4559i −0.876810 + 1.45016i
\(181\) 21.6326 1.60794 0.803968 0.594673i \(-0.202718\pi\)
0.803968 + 0.594673i \(0.202718\pi\)
\(182\) −8.23518 6.74713i −0.610432 0.500131i
\(183\) 8.10155i 0.598884i
\(184\) −1.51404 0.804485i −0.111617 0.0593074i
\(185\) −1.79574 + 1.95953i −0.132026 + 0.144068i
\(186\) −6.29222 5.15525i −0.461368 0.378001i
\(187\) 5.31873 7.46637i 0.388944 0.545995i
\(188\) 3.44938 + 17.1936i 0.251572 + 1.25397i
\(189\) 19.9880i 1.45392i
\(190\) −24.5989 + 3.53139i −1.78459 + 0.256194i
\(191\) 13.9933i 1.01252i −0.862380 0.506261i \(-0.831027\pi\)
0.862380 0.506261i \(-0.168973\pi\)
\(192\) 12.7299 + 18.8499i 0.918698 + 1.36037i
\(193\) −7.99126 −0.575223 −0.287612 0.957747i \(-0.592861\pi\)
−0.287612 + 0.957747i \(0.592861\pi\)
\(194\) −3.30531 2.70806i −0.237307 0.194427i
\(195\) 10.4592 + 9.58496i 0.749000 + 0.686393i
\(196\) 1.72347 + 8.59071i 0.123105 + 0.613622i
\(197\) 5.93008 0.422501 0.211250 0.977432i \(-0.432246\pi\)
0.211250 + 0.977432i \(0.432246\pi\)
\(198\) 6.25506 + 23.0105i 0.444528 + 1.63528i
\(199\) 9.46191i 0.670737i −0.942087 0.335368i \(-0.891139\pi\)
0.942087 0.335368i \(-0.108861\pi\)
\(200\) 5.52327 13.0190i 0.390554 0.920580i
\(201\) −1.72347 −0.121564
\(202\) −13.6099 11.1507i −0.957590 0.784559i
\(203\) 25.4597 1.78692
\(204\) 3.09158 + 15.4101i 0.216454 + 1.07893i
\(205\) −3.08938 + 3.37117i −0.215772 + 0.235453i
\(206\) −1.67544 + 2.04495i −0.116733 + 0.142478i
\(207\) 3.08168 0.214192
\(208\) 8.23518 3.44285i 0.571007 0.238719i
\(209\) −15.1223 + 21.2285i −1.04603 + 1.46841i
\(210\) −4.31022 30.0240i −0.297433 2.07186i
\(211\) −18.8723 −1.29922 −0.649610 0.760268i \(-0.725068\pi\)
−0.649610 + 0.760268i \(0.725068\pi\)
\(212\) 8.25576 1.65627i 0.567008 0.113753i
\(213\) 27.1557i 1.86067i
\(214\) −10.3604 8.48834i −0.708223 0.580251i
\(215\) −4.66911 + 5.09499i −0.318431 + 0.347475i
\(216\) −14.7988 7.86331i −1.00693 0.535030i
\(217\) 6.82481 0.463298
\(218\) 9.61275 + 7.87578i 0.651057 + 0.533415i
\(219\) −17.0698 −1.15347
\(220\) −5.88520 13.6149i −0.396780 0.917914i
\(221\) 6.16774 0.414887
\(222\) −3.69707 3.02903i −0.248131 0.203295i
\(223\) −7.98187 −0.534506 −0.267253 0.963626i \(-0.586116\pi\)
−0.267253 + 0.963626i \(0.586116\pi\)
\(224\) −18.2846 5.46472i −1.22169 0.365127i
\(225\) 2.21320 + 25.3228i 0.147547 + 1.68819i
\(226\) −21.0910 17.2800i −1.40295 1.14945i
\(227\) 4.58942i 0.304610i 0.988334 + 0.152305i \(0.0486696\pi\)
−0.988334 + 0.152305i \(0.951330\pi\)
\(228\) −8.79002 43.8143i −0.582133 2.90167i
\(229\) 9.59149 0.633823 0.316912 0.948455i \(-0.397354\pi\)
0.316912 + 0.948455i \(0.397354\pi\)
\(230\) −1.89742 + 0.272391i −0.125112 + 0.0179610i
\(231\) −25.9103 18.4574i −1.70478 1.21441i
\(232\) −10.0159 + 18.8499i −0.657574 + 1.23756i
\(233\) −22.8194 −1.49495 −0.747475 0.664290i \(-0.768734\pi\)
−0.747475 + 0.664290i \(0.768734\pi\)
\(234\) −10.1677 + 12.4102i −0.664686 + 0.811280i
\(235\) 14.4545 + 13.2463i 0.942910 + 0.864095i
\(236\) −8.51027 + 1.70733i −0.553971 + 0.111138i
\(237\) 10.9424 0.710785
\(238\) −10.2004 8.35724i −0.661193 0.541720i
\(239\) 11.5458 0.746836 0.373418 0.927663i \(-0.378186\pi\)
0.373418 + 0.927663i \(0.378186\pi\)
\(240\) 23.9249 + 8.62028i 1.54435 + 0.556437i
\(241\) 18.5761i 1.19659i 0.801276 + 0.598294i \(0.204155\pi\)
−0.801276 + 0.598294i \(0.795845\pi\)
\(242\) −14.5942 5.38608i −0.938149 0.346231i
\(243\) −13.2422 −0.849488
\(244\) 5.58753 1.12097i 0.357705 0.0717627i
\(245\) 7.22214 + 6.61846i 0.461406 + 0.422838i
\(246\) −6.36041 5.21112i −0.405525 0.332249i
\(247\) −17.5362 −1.11580
\(248\) −2.68489 + 5.05296i −0.170490 + 0.320863i
\(249\) 23.8809i 1.51339i
\(250\) −3.60098 15.3959i −0.227746 0.973721i
\(251\) 22.1527i 1.39827i 0.714991 + 0.699134i \(0.246431\pi\)
−0.714991 + 0.699134i \(0.753569\pi\)
\(252\) 33.6314 6.74713i 2.11858 0.425029i
\(253\) −1.16645 + 1.63745i −0.0733341 + 0.102945i
\(254\) 13.9751 + 11.4499i 0.876875 + 0.718429i
\(255\) 12.9552 + 11.8723i 0.811284 + 0.743471i
\(256\) 11.2392 11.3878i 0.702447 0.711736i
\(257\) 12.9835i 0.809889i −0.914341 0.404944i \(-0.867291\pi\)
0.914341 0.404944i \(-0.132709\pi\)
\(258\) −9.61275 7.87578i −0.598464 0.490325i
\(259\) 4.01000 0.249169
\(260\) 5.16343 8.53980i 0.320222 0.529616i
\(261\) 38.3671i 2.37486i
\(262\) 7.77882 9.49441i 0.480577 0.586566i
\(263\) 4.81204i 0.296723i 0.988933 + 0.148362i \(0.0473999\pi\)
−0.988933 + 0.148362i \(0.952600\pi\)
\(264\) 23.8587 11.9224i 1.46840 0.733771i
\(265\) 6.36041 6.94055i 0.390717 0.426354i
\(266\) 29.0019 + 23.7614i 1.77822 + 1.45691i
\(267\) 24.6735 1.50999
\(268\) 0.238467 + 1.18865i 0.0145667 + 0.0726085i
\(269\) −13.0205 −0.793876 −0.396938 0.917845i \(-0.629927\pi\)
−0.396938 + 0.917845i \(0.629927\pi\)
\(270\) −18.5460 + 2.66245i −1.12868 + 0.162031i
\(271\) 18.2131 1.10637 0.553185 0.833059i \(-0.313412\pi\)
0.553185 + 0.833059i \(0.313412\pi\)
\(272\) 10.2004 4.26444i 0.618490 0.258570i
\(273\) 21.4038i 1.29541i
\(274\) 13.4985 + 11.0594i 0.815472 + 0.668121i
\(275\) −14.2930 8.40898i −0.861899 0.507081i
\(276\) −0.678013 3.37959i −0.0408116 0.203428i
\(277\) −6.19087 −0.371973 −0.185987 0.982552i \(-0.559548\pi\)
−0.185987 + 0.982552i \(0.559548\pi\)
\(278\) 2.23705 2.73042i 0.134169 0.163760i
\(279\) 10.2848i 0.615735i
\(280\) −20.1108 + 7.12697i −1.20185 + 0.425918i
\(281\) 31.1888i 1.86057i 0.366843 + 0.930283i \(0.380439\pi\)
−0.366843 + 0.930283i \(0.619561\pi\)
\(282\) −22.3437 + 27.2715i −1.33055 + 1.62399i
\(283\) 15.7123i 0.933999i 0.884258 + 0.467000i \(0.154665\pi\)
−0.884258 + 0.467000i \(0.845335\pi\)
\(284\) 18.7289 3.75739i 1.11136 0.222960i
\(285\) −36.8343 33.7555i −2.18188 1.99950i
\(286\) −2.74554 10.1000i −0.162347 0.597226i
\(287\) 6.89877 0.407221
\(288\) −8.23518 + 27.5544i −0.485263 + 1.62366i
\(289\) −9.36041 −0.550612
\(290\) 3.39129 + 23.6230i 0.199143 + 1.38719i
\(291\) 8.59071i 0.503596i
\(292\) 2.36186 + 11.7728i 0.138218 + 0.688953i
\(293\) 33.0421 1.93034 0.965171 0.261618i \(-0.0842561\pi\)
0.965171 + 0.261618i \(0.0842561\pi\)
\(294\) −11.1639 + 13.6261i −0.651092 + 0.794687i
\(295\) −6.55649 + 7.15451i −0.381733 + 0.416552i
\(296\) −1.57754 + 2.96893i −0.0916924 + 0.172565i
\(297\) −11.4013 + 16.0050i −0.661569 + 0.928703i
\(298\) −14.9669 12.2625i −0.867009 0.710346i
\(299\) −1.35265 −0.0782256
\(300\) 27.2839 7.99853i 1.57524 0.461795i
\(301\) 10.4264 0.600967
\(302\) 2.71398 3.31254i 0.156172 0.190615i
\(303\) 35.3730i 2.03213i
\(304\) −29.0019 + 12.1247i −1.66337 + 0.695400i
\(305\) 4.30475 4.69739i 0.246489 0.268972i
\(306\) −12.5941 + 15.3717i −0.719959 + 0.878743i
\(307\) 3.15094i 0.179834i −0.995949 0.0899168i \(-0.971340\pi\)
0.995949 0.0899168i \(-0.0286601\pi\)
\(308\) −9.14477 + 20.4239i −0.521072 + 1.16376i
\(309\) −5.31495 −0.302357
\(310\) 0.909079 + 6.33245i 0.0516322 + 0.359659i
\(311\) 1.59172i 0.0902581i −0.998981 0.0451291i \(-0.985630\pi\)
0.998981 0.0451291i \(-0.0143699\pi\)
\(312\) 15.8470 + 8.42026i 0.897157 + 0.476703i
\(313\) 20.7596i 1.17340i −0.809804 0.586701i \(-0.800427\pi\)
0.809804 0.586701i \(-0.199573\pi\)
\(314\) 6.29222 + 5.15525i 0.355090 + 0.290928i
\(315\) 25.9103 28.2737i 1.45988 1.59304i
\(316\) −1.51404 7.54682i −0.0851715 0.424542i
\(317\) 13.2746i 0.745574i 0.927917 + 0.372787i \(0.121598\pi\)
−0.927917 + 0.372787i \(0.878402\pi\)
\(318\) 13.0948 + 10.7286i 0.734318 + 0.601631i
\(319\) 20.3863 + 14.5224i 1.14141 + 0.813096i
\(320\) 2.63493 17.6934i 0.147297 0.989092i
\(321\) 26.9274i 1.50294i
\(322\) 2.23705 + 1.83283i 0.124666 + 0.102139i
\(323\) −21.7210 −1.20859
\(324\) −0.627137 3.12599i −0.0348409 0.173666i
\(325\) −0.971442 11.1150i −0.0538859 0.616548i
\(326\) 10.9502 13.3652i 0.606474 0.740229i
\(327\) 24.9841i 1.38163i
\(328\) −2.71398 + 5.10772i −0.149855 + 0.282027i
\(329\) 29.5798i 1.63079i
\(330\) 13.6746 26.4997i 0.752760 1.45876i
\(331\) 31.1747i 1.71352i 0.515716 + 0.856760i \(0.327526\pi\)
−0.515716 + 0.856760i \(0.672474\pi\)
\(332\) 16.4704 3.30428i 0.903928 0.181346i
\(333\) 6.04295i 0.331152i
\(334\) 14.8377 + 12.1566i 0.811882 + 0.665179i
\(335\) 0.999290 + 0.915762i 0.0545970 + 0.0500334i
\(336\) −14.7988 35.3982i −0.807339 1.93113i
\(337\) −18.8600 −1.02737 −0.513685 0.857979i \(-0.671720\pi\)
−0.513685 + 0.857979i \(0.671720\pi\)
\(338\) −7.18857 + 8.77397i −0.391006 + 0.477241i
\(339\) 54.8168i 2.97724i
\(340\) 6.39561 10.5777i 0.346851 0.573657i
\(341\) 5.46482 + 3.89291i 0.295936 + 0.210813i
\(342\) 35.8079 43.7051i 1.93627 2.36330i
\(343\) 8.83556i 0.477075i
\(344\) −4.10175 + 7.71951i −0.221152 + 0.416208i
\(345\) −2.84120 2.60371i −0.152965 0.140179i
\(346\) 15.0205 18.3332i 0.807509 0.985602i
\(347\) 18.6496i 1.00116i 0.865690 + 0.500581i \(0.166880\pi\)
−0.865690 + 0.500581i \(0.833120\pi\)
\(348\) −42.0761 + 8.44130i −2.25552 + 0.452501i
\(349\) 8.35131i 0.447035i 0.974700 + 0.223518i \(0.0717540\pi\)
−0.974700 + 0.223518i \(0.928246\pi\)
\(350\) −13.4541 + 19.6986i −0.719153 + 1.05293i
\(351\) −13.2212 −0.705697
\(352\) −11.5239 14.8054i −0.614226 0.789130i
\(353\) 5.39878i 0.287348i −0.989625 0.143674i \(-0.954108\pi\)
0.989625 0.143674i \(-0.0458917\pi\)
\(354\) −13.4985 11.0594i −0.717435 0.587799i
\(355\) 14.4291 15.7452i 0.765818 0.835670i
\(356\) −3.41394 17.0170i −0.180938 0.901897i
\(357\) 26.5115i 1.40314i
\(358\) 1.85323 + 1.51836i 0.0979462 + 0.0802479i
\(359\) −14.3645 −0.758132 −0.379066 0.925370i \(-0.623755\pi\)
−0.379066 + 0.925370i \(0.623755\pi\)
\(360\) 10.7402 + 30.3064i 0.566056 + 1.59729i
\(361\) 42.7575 2.25040
\(362\) 19.3886 23.6647i 1.01904 1.24379i
\(363\) −10.2189 29.5588i −0.536354 1.55143i
\(364\) −14.7619 + 2.96153i −0.773733 + 0.155226i
\(365\) 9.89733 + 9.07004i 0.518050 + 0.474747i
\(366\) 8.86259 + 7.26118i 0.463255 + 0.379548i
\(367\) 24.3058 1.26875 0.634375 0.773025i \(-0.281257\pi\)
0.634375 + 0.773025i \(0.281257\pi\)
\(368\) −2.23705 + 0.935234i −0.116614 + 0.0487524i
\(369\) 10.3963i 0.541207i
\(370\) 0.534140 + 3.72070i 0.0277686 + 0.193430i
\(371\) −14.2031 −0.737391
\(372\) −11.2790 + 2.26280i −0.584791 + 0.117321i
\(373\) −6.11724 −0.316739 −0.158369 0.987380i \(-0.550624\pi\)
−0.158369 + 0.987380i \(0.550624\pi\)
\(374\) −3.40073 12.5102i −0.175847 0.646889i
\(375\) 19.3547 25.2166i 0.999474 1.30218i
\(376\) 21.9003 + 11.6367i 1.12942 + 0.600118i
\(377\) 16.8405i 0.867331i
\(378\) 21.8657 + 17.9147i 1.12465 + 0.921431i
\(379\) 28.2805i 1.45267i −0.687339 0.726337i \(-0.741221\pi\)
0.687339 0.726337i \(-0.258779\pi\)
\(380\) −18.1841 + 30.0747i −0.932825 + 1.54280i
\(381\) 36.3221i 1.86084i
\(382\) −15.3078 12.5418i −0.783217 0.641694i
\(383\) −25.0412 −1.27954 −0.639772 0.768565i \(-0.720971\pi\)
−0.639772 + 0.768565i \(0.720971\pi\)
\(384\) 32.0300 + 2.96893i 1.63452 + 0.151507i
\(385\) 5.21583 + 24.4693i 0.265823 + 1.24707i
\(386\) −7.16232 + 8.74194i −0.364553 + 0.444953i
\(387\) 15.7123i 0.798701i
\(388\) −5.92490 + 1.18865i −0.300791 + 0.0603447i
\(389\) −12.9117 −0.654652 −0.327326 0.944912i \(-0.606147\pi\)
−0.327326 + 0.944912i \(0.606147\pi\)
\(390\) 19.8596 2.85103i 1.00563 0.144367i
\(391\) −1.67544 −0.0847305
\(392\) 10.9424 + 5.81423i 0.552674 + 0.293663i
\(393\) 24.6766 1.24477
\(394\) 5.31495 6.48714i 0.267763 0.326817i
\(395\) −6.34455 5.81423i −0.319229 0.292546i
\(396\) 30.7782 + 13.7809i 1.54666 + 0.692518i
\(397\) 3.66565i 0.183974i −0.995760 0.0919869i \(-0.970678\pi\)
0.995760 0.0919869i \(-0.0293218\pi\)
\(398\) −10.3507 8.48042i −0.518836 0.425085i
\(399\) 75.3778i 3.77361i
\(400\) −9.29161 17.7106i −0.464580 0.885531i
\(401\) −35.0314 −1.74938 −0.874692 0.484679i \(-0.838936\pi\)
−0.874692 + 0.484679i \(0.838936\pi\)
\(402\) −1.54469 + 1.88537i −0.0770422 + 0.0940335i
\(403\) 4.51432i 0.224874i
\(404\) −24.3963 + 4.89438i −1.21376 + 0.243505i
\(405\) −2.62800 2.40833i −0.130586 0.119671i
\(406\) 22.8188 27.8513i 1.13248 1.38224i
\(407\) 3.21092 + 2.28732i 0.159159 + 0.113378i
\(408\) 19.6286 + 10.4296i 0.971761 + 0.516344i
\(409\) 23.8809i 1.18084i −0.807098 0.590418i \(-0.798963\pi\)
0.807098 0.590418i \(-0.201037\pi\)
\(410\) 0.918930 + 6.40107i 0.0453827 + 0.316126i
\(411\) 35.0834i 1.73053i
\(412\) 0.735402 + 3.66565i 0.0362307 + 0.180594i
\(413\) 14.6410 0.720437
\(414\) 2.76202 3.37117i 0.135746 0.165684i
\(415\) 12.6891 13.8465i 0.622884 0.679698i
\(416\) 3.61468 12.0945i 0.177224 0.592982i
\(417\) 7.09653 0.347519
\(418\) 9.66900 + 35.5693i 0.472926 + 1.73975i
\(419\) 20.7070i 1.01160i 0.862649 + 0.505802i \(0.168804\pi\)
−0.862649 + 0.505802i \(0.831196\pi\)
\(420\) −36.7076 22.1945i −1.79115 1.08298i
\(421\) −3.57360 −0.174167 −0.0870834 0.996201i \(-0.527755\pi\)
−0.0870834 + 0.996201i \(0.527755\pi\)
\(422\) −16.9146 + 20.6451i −0.823392 + 1.00499i
\(423\) −44.5760 −2.16736
\(424\) 5.58753 10.5158i 0.271354 0.510690i
\(425\) −1.20326 13.7674i −0.0583669 0.667818i
\(426\) 29.7066 + 24.3388i 1.43929 + 1.17922i
\(427\) −9.61275 −0.465193
\(428\) −18.5714 + 3.72580i −0.897684 + 0.180093i
\(429\) 12.2088 17.1386i 0.589447 0.827459i
\(430\) 1.38882 + 9.67421i 0.0669747 + 0.466532i
\(431\) −37.4561 −1.80420 −0.902099 0.431528i \(-0.857974\pi\)
−0.902099 + 0.431528i \(0.857974\pi\)
\(432\) −21.8657 + 9.14129i −1.05201 + 0.439811i
\(433\) 35.0314i 1.68350i −0.539865 0.841752i \(-0.681525\pi\)
0.539865 0.841752i \(-0.318475\pi\)
\(434\) 6.11687 7.46592i 0.293619 0.358375i
\(435\) −32.4163 + 35.3730i −1.55424 + 1.69601i
\(436\) 17.2312 3.45693i 0.825226 0.165557i
\(437\) 4.76363 0.227875
\(438\) −15.2992 + 18.6733i −0.731023 + 0.892247i
\(439\) −28.4063 −1.35576 −0.677879 0.735173i \(-0.737101\pi\)
−0.677879 + 0.735173i \(0.737101\pi\)
\(440\) −20.1685 5.76454i −0.961498 0.274814i
\(441\) −22.2722 −1.06058
\(442\) 5.52796 6.74713i 0.262938 0.320928i
\(443\) 12.9329 0.614461 0.307230 0.951635i \(-0.400598\pi\)
0.307230 + 0.951635i \(0.400598\pi\)
\(444\) −6.62714 + 1.32954i −0.314510 + 0.0630969i
\(445\) −14.3060 13.1102i −0.678170 0.621484i
\(446\) −7.15391 + 8.73167i −0.338747 + 0.413457i
\(447\) 38.8999i 1.83990i
\(448\) −22.3660 + 15.1044i −1.05669 + 0.713615i
\(449\) 6.61202 0.312041 0.156020 0.987754i \(-0.450133\pi\)
0.156020 + 0.987754i \(0.450133\pi\)
\(450\) 29.6852 + 20.2750i 1.39938 + 0.955772i
\(451\) 5.52404 + 3.93509i 0.260117 + 0.185296i
\(452\) −37.8064 + 7.58472i −1.77826 + 0.356755i
\(453\) 8.60950 0.404509
\(454\) 5.02054 + 4.11336i 0.235625 + 0.193049i
\(455\) −11.3729 + 12.4102i −0.533168 + 0.581799i
\(456\) −55.8084 29.6537i −2.61347 1.38866i
\(457\) 24.4616 1.14427 0.572133 0.820161i \(-0.306116\pi\)
0.572133 + 0.820161i \(0.306116\pi\)
\(458\) 8.59656 10.4925i 0.401691 0.490282i
\(459\) −16.3763 −0.764381
\(460\) −1.40262 + 2.31980i −0.0653975 + 0.108161i
\(461\) 13.2457i 0.616913i 0.951238 + 0.308457i \(0.0998125\pi\)
−0.951238 + 0.308457i \(0.900188\pi\)
\(462\) −43.4140 + 11.8015i −2.01980 + 0.549053i
\(463\) 27.5675 1.28117 0.640586 0.767887i \(-0.278692\pi\)
0.640586 + 0.767887i \(0.278692\pi\)
\(464\) 11.6437 + 27.8513i 0.540545 + 1.29297i
\(465\) −8.68961 + 9.48220i −0.402971 + 0.439727i
\(466\) −20.4524 + 24.9630i −0.947437 + 1.15639i
\(467\) 5.26789 0.243769 0.121884 0.992544i \(-0.461106\pi\)
0.121884 + 0.992544i \(0.461106\pi\)
\(468\) 4.46294 + 22.2458i 0.206300 + 1.02831i
\(469\) 2.04495i 0.0944269i
\(470\) 27.4458 3.94009i 1.26598 0.181743i
\(471\) 16.3539i 0.753547i
\(472\) −5.75978 + 10.8399i −0.265116 + 0.498948i
\(473\) 8.34871 + 5.94727i 0.383874 + 0.273456i
\(474\) 9.80734 11.9703i 0.450466 0.549814i
\(475\) 3.42114 + 39.1438i 0.156973 + 1.79604i
\(476\) −18.2846 + 3.66826i −0.838074 + 0.168134i
\(477\) 21.4038i 0.980011i
\(478\) 10.3482 12.6304i 0.473313 0.577701i
\(479\) 32.7870 1.49808 0.749039 0.662526i \(-0.230516\pi\)
0.749039 + 0.662526i \(0.230516\pi\)
\(480\) 30.8732 18.4463i 1.40916 0.841953i
\(481\) 2.65244i 0.120941i
\(482\) 20.3210 + 16.6492i 0.925598 + 0.758348i
\(483\) 5.81423i 0.264557i
\(484\) −18.9724 + 11.1377i −0.862380 + 0.506261i
\(485\) −4.56466 + 4.98101i −0.207271 + 0.226176i
\(486\) −11.8686 + 14.4862i −0.538370 + 0.657105i
\(487\) −36.8910 −1.67169 −0.835844 0.548966i \(-0.815021\pi\)
−0.835844 + 0.548966i \(0.815021\pi\)
\(488\) 3.78166 7.11710i 0.171188 0.322176i
\(489\) 34.7370 1.57086
\(490\) 13.7132 1.96865i 0.619498 0.0889344i
\(491\) −5.68543 −0.256580 −0.128290 0.991737i \(-0.540949\pi\)
−0.128290 + 0.991737i \(0.540949\pi\)
\(492\) −11.4013 + 2.28732i −0.514009 + 0.103120i
\(493\) 20.8593i 0.939455i
\(494\) −15.7172 + 19.1835i −0.707150 + 0.863108i
\(495\) 36.8746 7.86012i 1.65739 0.353286i
\(496\) 3.12125 + 7.46592i 0.140148 + 0.335229i
\(497\) −32.2210 −1.44531
\(498\) 26.1243 + 21.4038i 1.17066 + 0.959125i
\(499\) 14.1934i 0.635385i −0.948194 0.317692i \(-0.897092\pi\)
0.948194 0.317692i \(-0.102908\pi\)
\(500\) −20.0696 9.85960i −0.897539 0.440935i
\(501\) 38.5641i 1.72292i
\(502\) 24.2337 + 19.8548i 1.08160 + 0.886164i
\(503\) 18.4507i 0.822675i −0.911483 0.411338i \(-0.865062\pi\)
0.911483 0.411338i \(-0.134938\pi\)
\(504\) 22.7619 42.8379i 1.01389 1.90815i
\(505\) −18.7954 + 20.5098i −0.836385 + 0.912673i
\(506\) 0.745813 + 2.74362i 0.0331554 + 0.121969i
\(507\) −22.8041 −1.01277
\(508\) 25.0509 5.02571i 1.11145 0.222980i
\(509\) 13.0027 0.576333 0.288166 0.957580i \(-0.406954\pi\)
0.288166 + 0.957580i \(0.406954\pi\)
\(510\) 24.5989 3.53139i 1.08926 0.156372i
\(511\) 20.2539i 0.895980i
\(512\) −2.38420 22.5015i −0.105368 0.994433i
\(513\) 46.5614 2.05573
\(514\) −14.2031 11.6367i −0.626474 0.513274i
\(515\) 3.08168 + 2.82409i 0.135795 + 0.124444i
\(516\) −17.2312 + 3.45693i −0.758563 + 0.152183i
\(517\) 16.8725 23.6854i 0.742051 1.04168i
\(518\) 3.59404 4.38669i 0.157913 0.192740i
\(519\) 47.6493 2.09157
\(520\) −4.71419 13.3024i −0.206731 0.583351i
\(521\) −11.8912 −0.520963 −0.260482 0.965479i \(-0.583881\pi\)
−0.260482 + 0.965479i \(0.583881\pi\)
\(522\) −41.9712 34.3873i −1.83703 1.50509i
\(523\) 30.8439i 1.34871i −0.738407 0.674355i \(-0.764422\pi\)
0.738407 0.674355i \(-0.235578\pi\)
\(524\) −3.41437 17.0191i −0.149157 0.743483i
\(525\) −47.7767 + 4.17565i −2.08515 + 0.182240i
\(526\) 5.26408 + 4.31289i 0.229525 + 0.188051i
\(527\) 5.59160i 0.243574i
\(528\) 8.34151 36.7856i 0.363017 1.60089i
\(529\) −22.6326 −0.984024
\(530\) −1.89189 13.1785i −0.0821784 0.572437i
\(531\) 22.0636i 0.957479i
\(532\) 51.9871 10.4296i 2.25393 0.452182i
\(533\) 4.56324i 0.197656i
\(534\) 22.1141 26.9912i 0.956970 1.16803i
\(535\) −14.3078 + 15.6129i −0.618581 + 0.675002i
\(536\) 1.51404 + 0.804485i 0.0653967 + 0.0347484i
\(537\) 4.81666i 0.207854i
\(538\) −11.6699 + 14.2437i −0.503126 + 0.614088i
\(539\) 8.43025 11.8343i 0.363116 0.509739i
\(540\) −13.7097 + 22.6745i −0.589972 + 0.975755i
\(541\) 39.1716i 1.68412i −0.539386 0.842059i \(-0.681344\pi\)
0.539386 0.842059i \(-0.318656\pi\)
\(542\) 16.3239 19.9240i 0.701171 0.855811i
\(543\) 61.5060 2.63948
\(544\) 4.47727 14.9807i 0.191962 0.642292i
\(545\) 13.2753 14.4862i 0.568651 0.620519i
\(546\) −23.4144 19.1835i −1.00204 0.820980i
\(547\) 6.39490i 0.273426i −0.990611 0.136713i \(-0.956346\pi\)
0.990611 0.136713i \(-0.0436538\pi\)
\(548\) 24.1965 4.85430i 1.03362 0.207366i
\(549\) 14.4862i 0.618254i
\(550\) −22.0093 + 8.09891i −0.938478 + 0.345339i
\(551\) 59.3074i 2.52658i
\(552\) −4.30475 2.28732i −0.183222 0.0973549i
\(553\) 12.9835i 0.552115i
\(554\) −5.54869 + 6.77243i −0.235741 + 0.287733i
\(555\) −5.10568 + 5.57138i −0.216724 + 0.236492i
\(556\) −0.981910 4.89438i −0.0416423 0.207568i
\(557\) −33.1557 −1.40485 −0.702426 0.711757i \(-0.747900\pi\)
−0.702426 + 0.711757i \(0.747900\pi\)
\(558\) −11.2509 9.21796i −0.476290 0.390227i
\(559\) 6.89662i 0.291696i
\(560\) −10.2282 + 28.3876i −0.432222 + 1.19960i
\(561\) 15.1223 21.2285i 0.638464 0.896268i
\(562\) 34.1186 + 27.9536i 1.43921 + 1.17915i
\(563\) 17.7167i 0.746669i −0.927697 0.373334i \(-0.878214\pi\)
0.927697 0.373334i \(-0.121786\pi\)
\(564\) 9.80734 + 48.8852i 0.412963 + 2.05844i
\(565\) −29.1269 + 31.7836i −1.22538 + 1.33714i
\(566\) 17.1883 + 14.0825i 0.722477 + 0.591930i
\(567\) 5.37794i 0.225852i
\(568\) 12.6758 23.8559i 0.531864 1.00097i
\(569\) 8.78729i 0.368382i 0.982890 + 0.184191i \(0.0589665\pi\)
−0.982890 + 0.184191i \(0.941033\pi\)
\(570\) −69.9399 + 10.0405i −2.92946 + 0.420550i
\(571\) 25.7489 1.07756 0.538780 0.842447i \(-0.318885\pi\)
0.538780 + 0.842447i \(0.318885\pi\)
\(572\) −13.5095 6.04888i −0.564862 0.252916i
\(573\) 39.7860i 1.66209i
\(574\) 6.18316 7.54682i 0.258080 0.314998i
\(575\) 0.263888 + 3.01933i 0.0110049 + 0.125915i
\(576\) 22.7619 + 33.7050i 0.948412 + 1.40437i
\(577\) 20.5682i 0.856266i 0.903716 + 0.428133i \(0.140829\pi\)
−0.903716 + 0.428133i \(0.859171\pi\)
\(578\) −8.38945 + 10.2397i −0.348955 + 0.425916i
\(579\) −22.7209 −0.944247
\(580\) 28.8816 + 17.4627i 1.19924 + 0.725099i
\(581\) −28.3355 −1.17555
\(582\) −9.39770 7.69959i −0.389547 0.319158i
\(583\) −11.3729 8.10155i −0.471016 0.335532i
\(584\) 14.9956 + 7.96790i 0.620523 + 0.329714i
\(585\) 18.7018 + 17.1386i 0.773226 + 0.708594i
\(586\) 29.6147 36.1461i 1.22337 1.49318i
\(587\) 19.1163 0.789013 0.394506 0.918893i \(-0.370916\pi\)
0.394506 + 0.918893i \(0.370916\pi\)
\(588\) 4.90019 + 24.4252i 0.202080 + 1.00728i
\(589\) 15.8981i 0.655071i
\(590\) 1.95021 + 13.5848i 0.0802890 + 0.559276i
\(591\) 16.8605 0.693548
\(592\) 1.83392 + 4.38669i 0.0753738 + 0.180292i
\(593\) −0.402117 −0.0165130 −0.00825649 0.999966i \(-0.502628\pi\)
−0.00825649 + 0.999966i \(0.502628\pi\)
\(594\) 7.28983 + 26.8171i 0.299106 + 1.10032i
\(595\) −14.0868 + 15.3717i −0.577504 + 0.630179i
\(596\) −26.8288 + 5.38238i −1.09895 + 0.220471i
\(597\) 26.9022i 1.10104i
\(598\) −1.21234 + 1.47971i −0.0495761 + 0.0605099i
\(599\) 1.68550i 0.0688678i 0.999407 + 0.0344339i \(0.0109628\pi\)
−0.999407 + 0.0344339i \(0.989037\pi\)
\(600\) 15.7038 37.0157i 0.641106 1.51116i
\(601\) 36.3221i 1.48161i −0.671720 0.740805i \(-0.734444\pi\)
0.671720 0.740805i \(-0.265556\pi\)
\(602\) 9.34486 11.4058i 0.380868 0.464867i
\(603\) −3.08168 −0.125496
\(604\) −1.19125 5.93785i −0.0484713 0.241608i
\(605\) −9.78096 + 22.5684i −0.397653 + 0.917536i
\(606\) −38.6959 31.7038i −1.57191 1.28788i
\(607\) 24.6864i 1.00199i −0.865450 0.500996i \(-0.832967\pi\)
0.865450 0.500996i \(-0.167033\pi\)
\(608\) −12.7299 + 42.5933i −0.516264 + 1.72739i
\(609\) 72.3874 2.93329
\(610\) −1.28044 8.91926i −0.0518434 0.361130i
\(611\) 19.5658 0.791547
\(612\) 5.52796 + 27.5544i 0.223455 + 1.11382i
\(613\) −8.75083 −0.353443 −0.176721 0.984261i \(-0.556549\pi\)
−0.176721 + 0.984261i \(0.556549\pi\)
\(614\) −3.44693 2.82409i −0.139107 0.113971i
\(615\) −8.78378 + 9.58496i −0.354196 + 0.386503i
\(616\) 14.1463 + 28.3091i 0.569969 + 1.14061i
\(617\) 42.8075i 1.72337i 0.507447 + 0.861683i \(0.330589\pi\)
−0.507447 + 0.861683i \(0.669411\pi\)
\(618\) −4.76363 + 5.81423i −0.191621 + 0.233883i
\(619\) 30.3386i 1.21941i −0.792628 0.609706i \(-0.791288\pi\)
0.792628 0.609706i \(-0.208712\pi\)
\(620\) 7.74208 + 4.68110i 0.310930 + 0.187998i
\(621\) 3.59149 0.144121
\(622\) −1.74124 1.42661i −0.0698175 0.0572019i
\(623\) 29.2758i 1.17291i
\(624\) 23.4144 9.78876i 0.937326 0.391864i
\(625\) −24.6210 + 4.33684i −0.984839 + 0.173474i
\(626\) −22.7097 18.6062i −0.907662 0.743653i
\(627\) −42.9959 + 60.3572i −1.71709 + 2.41043i
\(628\) 11.2790 2.26280i 0.450083 0.0902956i
\(629\) 3.28541i 0.130998i
\(630\) −7.70698 53.6851i −0.307053 2.13887i
\(631\) 36.0437i 1.43488i 0.696622 + 0.717438i \(0.254685\pi\)
−0.696622 + 0.717438i \(0.745315\pi\)
\(632\) −9.61275 5.10772i −0.382375 0.203174i
\(633\) −53.6579 −2.13271
\(634\) 14.5215 + 11.8976i 0.576724 + 0.472514i
\(635\) 19.2997 21.0601i 0.765886 0.835744i
\(636\) 23.4729 4.70913i 0.930761 0.186729i
\(637\) 9.77595 0.387337
\(638\) 34.1582 9.28541i 1.35234 0.367613i
\(639\) 48.5563i 1.92086i
\(640\) −16.9939 18.7405i −0.671743 0.740784i
\(641\) 13.5255 0.534225 0.267112 0.963665i \(-0.413930\pi\)
0.267112 + 0.963665i \(0.413930\pi\)
\(642\) −29.4569 24.1342i −1.16257 0.952500i
\(643\) −8.27118 −0.326183 −0.163092 0.986611i \(-0.552147\pi\)
−0.163092 + 0.986611i \(0.552147\pi\)
\(644\) 4.01000 0.804485i 0.158016 0.0317011i
\(645\) −13.2753 + 14.4862i −0.522714 + 0.570392i
\(646\) −19.4679 + 23.7614i −0.765954 + 0.934881i
\(647\) 18.8778 0.742163 0.371081 0.928600i \(-0.378987\pi\)
0.371081 + 0.928600i \(0.378987\pi\)
\(648\) −3.98173 2.11569i −0.156417 0.0831120i
\(649\) 11.7235 + 8.35131i 0.460186 + 0.327818i
\(650\) −13.0298 8.89933i −0.511070 0.349060i
\(651\) 19.4044 0.760518
\(652\) −4.80637 23.9576i −0.188232 0.938253i
\(653\) 8.12920i 0.318120i −0.987269 0.159060i \(-0.949154\pi\)
0.987269 0.159060i \(-0.0508464\pi\)
\(654\) 27.3311 + 22.3925i 1.06873 + 0.875618i
\(655\) −14.3078 13.1119i −0.559053 0.512323i
\(656\) 3.15507 + 7.54682i 0.123185 + 0.294654i
\(657\) −30.5221 −1.19078
\(658\) −32.3585 26.5115i −1.26146 1.03353i
\(659\) 12.5621 0.489351 0.244675 0.969605i \(-0.421319\pi\)
0.244675 + 0.969605i \(0.421319\pi\)
\(660\) −16.7329 38.7100i −0.651327 1.50678i
\(661\) 23.0384 0.896091 0.448045 0.894011i \(-0.352120\pi\)
0.448045 + 0.894011i \(0.352120\pi\)
\(662\) 34.1032 + 27.9410i 1.32546 + 1.08596i
\(663\) 17.5362 0.681051
\(664\) 11.1472 20.9791i 0.432596 0.814146i
\(665\) 40.0519 43.7051i 1.55315 1.69481i
\(666\) −6.61062 5.41612i −0.256156 0.209870i
\(667\) 4.57465i 0.177131i
\(668\) 26.5971 5.33591i 1.02907 0.206453i
\(669\) −22.6942 −0.877407
\(670\) 1.89742 0.272391i 0.0733037 0.0105234i
\(671\) −7.69720 5.48316i −0.297147 0.211675i
\(672\) −51.9871 15.5374i −2.00545 0.599367i
\(673\) 44.5570 1.71754 0.858772 0.512358i \(-0.171228\pi\)
0.858772 + 0.512358i \(0.171228\pi\)
\(674\) −16.9037 + 20.6317i −0.651105 + 0.794703i
\(675\) 2.57933 + 29.5120i 0.0992784 + 1.13592i
\(676\) 3.15529 + 15.7277i 0.121357 + 0.604911i
\(677\) −40.7002 −1.56423 −0.782117 0.623132i \(-0.785860\pi\)
−0.782117 + 0.623132i \(0.785860\pi\)
\(678\) −59.9662 49.1307i −2.30299 1.88685i
\(679\) 10.1932 0.391177
\(680\) −5.83917 16.4769i −0.223922 0.631860i
\(681\) 13.0487i 0.500027i
\(682\) 9.15655 2.48908i 0.350622 0.0953116i
\(683\) −38.3418 −1.46711 −0.733553 0.679632i \(-0.762140\pi\)
−0.733553 + 0.679632i \(0.762140\pi\)
\(684\) −15.7172 78.3431i −0.600962 2.99553i
\(685\) 18.6415 20.3418i 0.712255 0.777221i
\(686\) 9.66556 + 7.91905i 0.369033 + 0.302351i
\(687\) 27.2707 1.04044
\(688\) 4.76839 + 11.4058i 0.181793 + 0.434843i
\(689\) 9.39478i 0.357913i
\(690\) −5.39477 + 0.774467i −0.205376 + 0.0294835i
\(691\) 37.4135i 1.42328i −0.702546 0.711638i \(-0.747954\pi\)
0.702546 0.711638i \(-0.252046\pi\)
\(692\) −6.59298 32.8631i −0.250628 1.24927i
\(693\) −46.3295 33.0032i −1.75991 1.25369i
\(694\) 20.4015 + 16.7151i 0.774430 + 0.634495i
\(695\) −4.11467 3.77073i −0.156078 0.143032i
\(696\) −28.4773 + 53.5943i −1.07943 + 2.03149i
\(697\) 5.65220i 0.214092i
\(698\) 9.13581 + 7.48503i 0.345796 + 0.283312i
\(699\) −64.8805 −2.45401
\(700\) 9.49051 + 32.3732i 0.358708 + 1.22359i
\(701\) 27.1663i 1.02606i 0.858371 + 0.513029i \(0.171477\pi\)
−0.858371 + 0.513029i \(0.828523\pi\)
\(702\) −11.8498 + 14.4632i −0.447242 + 0.545879i
\(703\) 9.34113i 0.352308i
\(704\) −26.5247 0.663191i −0.999688 0.0249950i
\(705\) 41.0974 + 37.6622i 1.54782 + 1.41844i
\(706\) −5.90593 4.83876i −0.222273 0.182109i
\(707\) 41.9712 1.57849
\(708\) −24.1965 + 4.85430i −0.909361 + 0.182436i
\(709\) 8.91175 0.334688 0.167344 0.985899i \(-0.446481\pi\)
0.167344 + 0.985899i \(0.446481\pi\)
\(710\) −4.29191 29.8965i −0.161073 1.12200i
\(711\) 19.5658 0.733774
\(712\) −21.6753 11.5171i −0.812316 0.431623i
\(713\) 1.22629i 0.0459251i
\(714\) −29.0019 23.7614i −1.08537 0.889250i
\(715\) −16.1854 + 3.45005i −0.605300 + 0.129025i
\(716\) 3.32199 0.666456i 0.124148 0.0249066i
\(717\) 32.8272 1.22595
\(718\) −12.8745 + 15.7139i −0.480472 + 0.586438i
\(719\) 19.6576i 0.733104i −0.930398 0.366552i \(-0.880538\pi\)
0.930398 0.366552i \(-0.119462\pi\)
\(720\) 42.7794 + 15.4137i 1.59430 + 0.574434i
\(721\) 6.30636i 0.234861i
\(722\) 38.3223 46.7741i 1.42621 1.74075i
\(723\) 52.8157i 1.96424i
\(724\) −8.51027 42.4199i −0.316282 1.57652i
\(725\) 37.5908 3.28541i 1.39609 0.122017i
\(726\) −41.4944 15.3138i −1.54000 0.568348i
\(727\) 38.5802 1.43086 0.715431 0.698684i \(-0.246231\pi\)
0.715431 + 0.698684i \(0.246231\pi\)
\(728\) −9.99091 + 18.8029i −0.370288 + 0.696882i
\(729\) −42.4329 −1.57159
\(730\) 18.7927 2.69786i 0.695550 0.0998524i
\(731\) 8.54241i 0.315952i
\(732\) 15.8866 3.18716i 0.587184 0.117801i
\(733\) 12.6124 0.465849 0.232925 0.972495i \(-0.425170\pi\)
0.232925 + 0.972495i \(0.425170\pi\)
\(734\) 21.7845 26.5890i 0.804081 0.981418i
\(735\) 20.5341 + 18.8177i 0.757411 + 0.694102i
\(736\) −0.981910 + 3.28541i −0.0361937 + 0.121102i
\(737\) 1.16645 1.63745i 0.0429667 0.0603162i
\(738\) −11.3729 9.31785i −0.418641 0.342995i
\(739\) −36.1035 −1.32809 −0.664044 0.747693i \(-0.731161\pi\)
−0.664044 + 0.747693i \(0.731161\pi\)
\(740\) 4.54895 + 2.75044i 0.167223 + 0.101108i
\(741\) −49.8593 −1.83163
\(742\) −12.7299 + 15.5374i −0.467328 + 0.570395i
\(743\) 1.73620i 0.0636949i 0.999493 + 0.0318474i \(0.0101391\pi\)
−0.999493 + 0.0318474i \(0.989861\pi\)
\(744\) −7.63371 + 14.3667i −0.279865 + 0.526707i
\(745\) −20.6694 + 22.5547i −0.757269 + 0.826341i
\(746\) −5.48270 + 6.69188i −0.200736 + 0.245007i
\(747\) 42.7008i 1.56234i
\(748\) −16.7334 7.49236i −0.611834 0.273948i
\(749\) 31.9502 1.16743
\(750\) −10.2384 43.7738i −0.373852 1.59839i
\(751\) 29.1062i 1.06210i 0.847340 + 0.531051i \(0.178203\pi\)
−0.847340 + 0.531051i \(0.821797\pi\)
\(752\) 32.3585 13.5280i 1.17999 0.493315i
\(753\) 62.9850i 2.29530i
\(754\) 18.4225 + 15.0936i 0.670907 + 0.549678i
\(755\) −4.99190 4.57465i −0.181674 0.166488i
\(756\) 39.1951 7.86331i 1.42551 0.285986i
\(757\) 40.9371i 1.48788i −0.668245 0.743941i \(-0.732954\pi\)
0.668245 0.743941i \(-0.267046\pi\)
\(758\) −30.9371 25.3470i −1.12369 0.920644i
\(759\) −3.31647 + 4.65562i −0.120380 + 0.168988i
\(760\) 16.6020 + 46.8473i 0.602218 + 1.69933i
\(761\) 30.0158i 1.08807i 0.839062 + 0.544036i \(0.183104\pi\)
−0.839062 + 0.544036i \(0.816896\pi\)
\(762\) 39.7342 + 32.5544i 1.43942 + 1.17932i
\(763\) −29.6445 −1.07320
\(764\) −27.4399 + 5.50499i −0.992741 + 0.199163i
\(765\) 23.1648 + 21.2285i 0.837524 + 0.767518i
\(766\) −22.4436 + 27.3935i −0.810922 + 0.989767i
\(767\) 9.68441i 0.349684i
\(768\) 31.9553 32.3779i 1.15309 1.16834i
\(769\) 1.43745i 0.0518359i −0.999664 0.0259180i \(-0.991749\pi\)
0.999664 0.0259180i \(-0.00825087\pi\)
\(770\) 31.4427 + 16.2253i 1.13312 + 0.584719i
\(771\) 36.9149i 1.32946i
\(772\) 3.14377 + 15.6703i 0.113147 + 0.563985i
\(773\) 24.6410i 0.886276i 0.896453 + 0.443138i \(0.146135\pi\)
−0.896453 + 0.443138i \(0.853865\pi\)
\(774\) −17.1883 14.0825i −0.617820 0.506184i
\(775\) 10.0767 0.880698i 0.361966 0.0316356i
\(776\) −4.01000 + 7.54682i −0.143950 + 0.270915i
\(777\) 11.4013 0.409019
\(778\) −11.5724 + 14.1247i −0.414891 + 0.506393i
\(779\) 16.0704i 0.575783i
\(780\) 14.6807 24.2805i 0.525655 0.869381i
\(781\) −25.8003 18.3791i −0.923207 0.657654i
\(782\) −1.50164 + 1.83283i −0.0536987 + 0.0655417i
\(783\) 44.7142i 1.59795i
\(784\) 16.1677 6.75919i 0.577419 0.241400i
\(785\) 8.68961 9.48220i 0.310145 0.338434i
\(786\) 22.1169 26.9946i 0.788883 0.962867i
\(787\) 27.6295i 0.984886i −0.870345 0.492443i \(-0.836104\pi\)
0.870345 0.492443i \(-0.163896\pi\)
\(788\) −2.33290 11.6285i −0.0831061 0.414247i
\(789\) 13.6817i 0.487080i
\(790\) −12.0468 + 1.72943i −0.428607 + 0.0615303i
\(791\) 65.0419 2.31262
\(792\) 42.6611 21.3180i 1.51590 0.757504i
\(793\) 6.35843i 0.225794i
\(794\) −4.01000 3.28541i −0.142309 0.116595i
\(795\) 18.0840 19.7335i 0.641373 0.699874i
\(796\) −18.5541 + 3.72232i −0.657633 + 0.131934i
\(797\) 35.2228i 1.24766i 0.781562 + 0.623828i \(0.214423\pi\)
−0.781562 + 0.623828i \(0.785577\pi\)
\(798\) 82.4587 + 67.5589i 2.91901 + 2.39156i
\(799\) 24.2349 0.857369
\(800\) −27.7021 5.70905i −0.979417 0.201845i
\(801\) 44.1179 1.55883
\(802\) −31.3976 + 38.3222i −1.10869 + 1.35320i
\(803\) 11.5529 16.2179i 0.407694 0.572316i
\(804\) 0.678013 + 3.37959i 0.0239117 + 0.119189i
\(805\) 3.08938 3.37117i 0.108886 0.118818i
\(806\) 4.93839 + 4.04605i 0.173947 + 0.142516i
\(807\) −37.0202 −1.30317
\(808\) −16.5115 + 31.0747i −0.580873 + 1.09320i
\(809\) 8.35131i 0.293616i 0.989165 + 0.146808i \(0.0469000\pi\)
−0.989165 + 0.146808i \(0.953100\pi\)
\(810\) −4.98996 + 0.716353i −0.175329 + 0.0251701i
\(811\) −26.0717 −0.915502 −0.457751 0.889080i \(-0.651345\pi\)
−0.457751 + 0.889080i \(0.651345\pi\)
\(812\) −10.0159 49.9246i −0.351488 1.75201i
\(813\) 51.7839 1.81614
\(814\) 5.38004 1.46249i 0.188570 0.0512601i
\(815\) −20.1410 18.4574i −0.705508 0.646536i
\(816\) 29.0019 12.1247i 1.01527 0.424450i
\(817\) 24.2879i 0.849726i
\(818\) −26.1243 21.4038i −0.913413 0.748365i
\(819\) 38.2715i 1.33731i
\(820\) 7.82598 + 4.73183i 0.273295 + 0.165243i
\(821\) 43.0645i 1.50296i −0.659755 0.751480i \(-0.729340\pi\)
0.659755 0.751480i \(-0.270660\pi\)
\(822\) 38.3790 + 31.4442i 1.33862 + 1.09674i
\(823\) 1.08310 0.0377546 0.0188773 0.999822i \(-0.493991\pi\)
0.0188773 + 0.999822i \(0.493991\pi\)
\(824\) 4.66911 + 2.48093i 0.162656 + 0.0864272i
\(825\) −40.6380 23.9085i −1.41483 0.832389i
\(826\) 13.1223 16.0164i 0.456583 0.557280i
\(827\) 1.85103i 0.0643667i 0.999482 + 0.0321834i \(0.0102461\pi\)
−0.999482 + 0.0321834i \(0.989754\pi\)
\(828\) −1.21234 6.04295i −0.0421316 0.210007i
\(829\) −18.5763 −0.645180 −0.322590 0.946539i \(-0.604554\pi\)
−0.322590 + 0.946539i \(0.604554\pi\)
\(830\) −3.77435 26.2913i −0.131009 0.912584i
\(831\) −17.6020 −0.610606
\(832\) −9.99091 14.7942i −0.346372 0.512896i
\(833\) 12.1088 0.419547
\(834\) 6.36041 7.76316i 0.220243 0.268816i
\(835\) 20.4910 22.3600i 0.709119 0.773799i
\(836\) 47.5767 + 21.3024i 1.64547 + 0.736759i
\(837\) 11.9862i 0.414304i
\(838\) 22.6522 + 18.5591i 0.782508 + 0.641113i
\(839\) 48.0140i 1.65763i 0.559525 + 0.828814i \(0.310984\pi\)
−0.559525 + 0.828814i \(0.689016\pi\)
\(840\) −57.1793 + 20.2635i −1.97287 + 0.699157i
\(841\) −27.9545 −0.963950
\(842\) −3.20291 + 3.90930i −0.110380 + 0.134723i
\(843\) 88.6764i 3.05418i
\(844\) 7.42436 + 37.0071i 0.255557 + 1.27384i
\(845\) 13.2221 + 12.1169i 0.454855 + 0.416835i
\(846\) −39.9521 + 48.7633i −1.37358 + 1.67652i
\(847\) 35.0725 12.1251i 1.20510 0.416622i
\(848\) −6.49564 15.5374i −0.223061 0.533555i
\(849\) 44.6734i 1.53319i
\(850\) −16.1392 11.0230i −0.553569 0.378087i
\(851\) 0.720523i 0.0246992i
\(852\) 53.2503 10.6831i 1.82432 0.365996i
\(853\) −26.5228 −0.908123 −0.454062 0.890970i \(-0.650025\pi\)
−0.454062 + 0.890970i \(0.650025\pi\)
\(854\) −8.61562 + 10.5158i −0.294820 + 0.359842i
\(855\) −65.8624 60.3572i −2.25245 2.06417i
\(856\) −12.5692 + 23.6553i −0.429607 + 0.808522i
\(857\) 13.7800 0.470716 0.235358 0.971909i \(-0.424374\pi\)
0.235358 + 0.971909i \(0.424374\pi\)
\(858\) −7.80617 28.7165i −0.266498 0.980365i
\(859\) 38.3871i 1.30975i 0.755737 + 0.654875i \(0.227279\pi\)
−0.755737 + 0.654875i \(0.772721\pi\)
\(860\) 11.8277 + 7.15142i 0.403323 + 0.243861i
\(861\) 19.6147 0.668466
\(862\) −33.5708 + 40.9747i −1.14343 + 1.39560i
\(863\) −29.8246 −1.01524 −0.507620 0.861581i \(-0.669475\pi\)
−0.507620 + 0.861581i \(0.669475\pi\)
\(864\) −9.59753 + 32.1127i −0.326514 + 1.09250i
\(865\) −27.6277 25.3184i −0.939370 0.860851i
\(866\) −38.3222 31.3976i −1.30224 1.06693i
\(867\) −26.6136 −0.903847
\(868\) −2.68489 13.3829i −0.0911309 0.454247i
\(869\) −7.40586 + 10.3963i −0.251227 + 0.352669i
\(870\) 9.64216 + 67.1652i 0.326900 + 2.27711i
\(871\) 1.35265 0.0458327
\(872\) 11.6622 21.9482i 0.394931 0.743261i
\(873\) 15.3608i 0.519885i
\(874\) 4.26950 5.21112i 0.144418 0.176269i
\(875\) 29.9203 + 22.9650i 1.01149 + 0.776359i
\(876\) 6.71529 + 33.4727i 0.226889 + 1.13094i
\(877\) 38.6836 1.30625 0.653127 0.757249i \(-0.273457\pi\)
0.653127 + 0.757249i \(0.273457\pi\)
\(878\) −25.4597 + 31.0747i −0.859223 + 1.04872i
\(879\) 93.9459 3.16872
\(880\) −24.3825 + 16.8966i −0.821934 + 0.569583i
\(881\) −29.9680 −1.00965 −0.504825 0.863222i \(-0.668443\pi\)
−0.504825 + 0.863222i \(0.668443\pi\)
\(882\) −19.9619 + 24.3644i −0.672151 + 0.820391i
\(883\) −40.7513 −1.37139 −0.685696 0.727888i \(-0.740502\pi\)
−0.685696 + 0.727888i \(0.740502\pi\)
\(884\) −2.42640 12.0945i −0.0816085 0.406782i
\(885\) −18.6415 + 20.3418i −0.626627 + 0.683783i
\(886\) 11.5914 14.1478i 0.389420 0.475304i
\(887\) 9.27185i 0.311318i 0.987811 + 0.155659i \(0.0497501\pi\)
−0.987811 + 0.155659i \(0.950250\pi\)
\(888\) −4.48527 + 8.44130i −0.150516 + 0.283271i
\(889\) −43.0974 −1.44544
\(890\) −27.1638 + 3.89960i −0.910533 + 0.130715i
\(891\) −3.06761 + 4.30627i −0.102769 + 0.144265i
\(892\) 3.14007 + 15.6519i 0.105137 + 0.524063i
\(893\) −68.9050 −2.30582
\(894\) −42.5541 34.8648i −1.42322 1.16605i
\(895\) 2.55933 2.79277i 0.0855489 0.0933519i
\(896\) −3.52273 + 38.0046i −0.117686 + 1.26965i
\(897\) −3.84587 −0.128410
\(898\) 5.92616 7.23314i 0.197758 0.241373i
\(899\) −15.2674 −0.509197
\(900\) 48.7856 14.3019i 1.62619 0.476731i
\(901\) 11.6367i 0.387675i
\(902\) 9.25578 2.51605i 0.308184 0.0837753i
\(903\) 29.6445 0.986507
\(904\) −25.5875 + 48.1559i −0.851029 + 1.60164i
\(905\) −35.6620 32.6811i −1.18545 1.08636i
\(906\) 7.71643 9.41826i 0.256361 0.312901i
\(907\) −34.9632 −1.16093 −0.580467 0.814284i \(-0.697130\pi\)
−0.580467 + 0.814284i \(0.697130\pi\)
\(908\) 8.99951 1.80548i 0.298659 0.0599170i
\(909\) 63.2495i 2.09785i
\(910\) 3.38283 + 23.5641i 0.112140 + 0.781142i
\(911\) 13.7800i 0.456552i 0.973596 + 0.228276i \(0.0733088\pi\)
−0.973596 + 0.228276i \(0.926691\pi\)
\(912\) −82.4587 + 34.4732i −2.73048 + 1.14152i
\(913\) −22.6890 16.1627i −0.750897 0.534908i
\(914\) 21.9242 26.7595i 0.725188 0.885125i
\(915\) 12.2393 13.3557i 0.404620 0.441526i
\(916\) −3.77330 18.8082i −0.124673 0.621441i
\(917\) 29.2795i 0.966896i
\(918\) −14.6776 + 17.9147i −0.484433 + 0.591272i
\(919\) −14.0762 −0.464330 −0.232165 0.972676i \(-0.574581\pi\)
−0.232165 + 0.972676i \(0.574581\pi\)
\(920\) 1.28059 + 3.61354i 0.0422197 + 0.119135i
\(921\) 8.95880i 0.295203i
\(922\) 14.4900 + 11.8717i 0.477202 + 0.390974i
\(923\) 21.3129i 0.701521i
\(924\) −26.0006 + 58.0695i −0.855355 + 1.91035i
\(925\) 5.92069 0.517464i 0.194671 0.0170141i
\(926\) 24.7079 30.1572i 0.811953 0.991026i
\(927\) −9.50351 −0.312136
\(928\) 40.9035 + 12.2248i 1.34272 + 0.401300i
\(929\) 15.9340 0.522778 0.261389 0.965234i \(-0.415819\pi\)
0.261389 + 0.965234i \(0.415819\pi\)
\(930\) 2.58471 + 18.0045i 0.0847558 + 0.590391i
\(931\) −34.4281 −1.12833
\(932\) 8.97718 + 44.7472i 0.294057 + 1.46574i
\(933\) 4.52560i 0.148162i
\(934\) 4.72145 5.76274i 0.154491 0.188563i
\(935\) −20.0478 + 4.27336i −0.655635 + 0.139754i
\(936\) 28.3355 + 15.0560i 0.926174 + 0.492122i
\(937\) 18.5883 0.607253 0.303627 0.952791i \(-0.401802\pi\)
0.303627 + 0.952791i \(0.401802\pi\)
\(938\) −2.23705 1.83283i −0.0730422 0.0598439i
\(939\) 59.0240i 1.92617i
\(940\) 20.2887 33.5554i 0.661743 1.09446i
\(941\) 40.6090i 1.32382i −0.749585 0.661908i \(-0.769747\pi\)
0.749585 0.661908i \(-0.230253\pi\)
\(942\) 17.8901 + 14.6575i 0.582892 + 0.477567i
\(943\) 1.23958i 0.0403664i
\(944\) 6.69589 + 16.0164i 0.217933 + 0.521288i
\(945\) 30.1967 32.9510i 0.982298 1.07190i
\(946\) 13.9886 3.80261i 0.454810 0.123634i
\(947\) −0.895476 −0.0290991 −0.0145495 0.999894i \(-0.504631\pi\)
−0.0145495 + 0.999894i \(0.504631\pi\)
\(948\) −4.30475 21.4572i −0.139812 0.696899i
\(949\) 13.3971 0.434888
\(950\) 45.8871 + 31.3409i 1.48877 + 1.01683i
\(951\) 37.7424i 1.22388i
\(952\) −12.3751 + 23.2900i −0.401079 + 0.754833i
\(953\) −6.76328 −0.219084 −0.109542 0.993982i \(-0.534938\pi\)
−0.109542 + 0.993982i \(0.534938\pi\)
\(954\) 23.4144 + 19.1835i 0.758069 + 0.621090i
\(955\) −21.1403 + 23.0685i −0.684083 + 0.746479i
\(956\) −4.54213 22.6405i −0.146903 0.732245i
\(957\) 57.9626 + 41.2902i 1.87367 + 1.33472i
\(958\) 29.3860 35.8670i 0.949419 1.15881i
\(959\) −41.6275 −1.34422
\(960\) 7.49166 50.3062i 0.241792 1.62363i
\(961\) 26.9074 0.867980
\(962\) 2.90161 + 2.37730i 0.0935516 + 0.0766474i
\(963\) 48.1480i 1.55155i
\(964\) 36.4263 7.30783i 1.17321 0.235370i
\(965\) 13.1739 + 12.0727i 0.424082 + 0.388634i
\(966\) 6.36041 + 5.21112i 0.204643 + 0.167665i
\(967\) 40.1851i 1.29226i −0.763225 0.646132i \(-0.776385\pi\)
0.763225 0.646132i \(-0.223615\pi\)
\(968\) −4.82035 + 30.7370i −0.154932 + 0.987925i
\(969\) −61.7575 −1.98394
\(970\) 1.35775 + 9.45779i 0.0435947 + 0.303671i
\(971\) 10.4004i 0.333765i −0.985977 0.166883i \(-0.946630\pi\)
0.985977 0.166883i \(-0.0533701\pi\)
\(972\) 5.20950 + 25.9670i 0.167095 + 0.832892i
\(973\) 8.42026i 0.269941i
\(974\) −33.0642 + 40.3564i −1.05945 + 1.29310i
\(975\) −2.76202 31.6023i −0.0884554 1.01208i
\(976\) −4.39628 10.5158i −0.140721 0.336601i
\(977\) 39.5947i 1.26675i −0.773847 0.633373i \(-0.781670\pi\)
0.773847 0.633373i \(-0.218330\pi\)
\(978\) 31.1337 38.0001i 0.995546 1.21511i
\(979\) −16.6991 + 23.4420i −0.533706 + 0.749209i
\(980\) 10.1371 16.7658i 0.323819 0.535564i
\(981\) 44.6734i 1.42631i
\(982\) −5.09568 + 6.21951i −0.162610 + 0.198473i
\(983\) 21.1857 0.675718 0.337859 0.941197i \(-0.390297\pi\)
0.337859 + 0.941197i \(0.390297\pi\)
\(984\) −7.71643 + 14.5224i −0.245991 + 0.462956i
\(985\) −9.77595 8.95880i −0.311488 0.285451i
\(986\) 22.8188 + 18.6955i 0.726697 + 0.595387i
\(987\) 84.1017i 2.67699i
\(988\) 6.89877 + 34.3873i 0.219479 + 1.09400i
\(989\) 1.87343i 0.0595717i
\(990\) 24.4511 47.3833i 0.777107 1.50594i
\(991\) 31.5123i 1.00102i 0.865731 + 0.500510i \(0.166854\pi\)
−0.865731 + 0.500510i \(0.833146\pi\)
\(992\) 10.9647 + 3.27702i 0.348130 + 0.104046i
\(993\) 88.6365i 2.81279i
\(994\) −28.8788 + 35.2478i −0.915978 + 1.11799i
\(995\) −14.2945 + 15.5983i −0.453165 + 0.494499i
\(996\) 46.8288 9.39478i 1.48383 0.297685i
\(997\) 4.10073 0.129871 0.0649357 0.997889i \(-0.479316\pi\)
0.0649357 + 0.997889i \(0.479316\pi\)
\(998\) −15.5267 12.7211i −0.491490 0.402680i
\(999\) 7.04264i 0.222819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.g.b.219.18 yes 24
4.3 odd 2 inner 220.2.g.b.219.19 yes 24
5.4 even 2 inner 220.2.g.b.219.7 yes 24
11.10 odd 2 inner 220.2.g.b.219.8 yes 24
20.19 odd 2 inner 220.2.g.b.219.6 yes 24
44.43 even 2 inner 220.2.g.b.219.5 24
55.54 odd 2 inner 220.2.g.b.219.17 yes 24
220.219 even 2 inner 220.2.g.b.219.20 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.g.b.219.5 24 44.43 even 2 inner
220.2.g.b.219.6 yes 24 20.19 odd 2 inner
220.2.g.b.219.7 yes 24 5.4 even 2 inner
220.2.g.b.219.8 yes 24 11.10 odd 2 inner
220.2.g.b.219.17 yes 24 55.54 odd 2 inner
220.2.g.b.219.18 yes 24 1.1 even 1 trivial
220.2.g.b.219.19 yes 24 4.3 odd 2 inner
220.2.g.b.219.20 yes 24 220.219 even 2 inner