Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(219,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.219");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
219.1 | −1.33078 | − | 0.478573i | −1.30496 | 1.54194 | + | 1.27375i | −0.393401 | + | 2.20119i | 1.73662 | + | 0.624520i | − | 1.57789i | −1.44239 | − | 2.43300i | −1.29707 | 1.57696 | − | 2.74102i | |||||
219.2 | −1.33078 | − | 0.478573i | 1.30496 | 1.54194 | + | 1.27375i | −0.393401 | − | 2.20119i | −1.73662 | − | 0.624520i | − | 1.57789i | −1.44239 | − | 2.43300i | −1.29707 | −0.529900 | + | 3.11756i | |||||
219.3 | −1.33078 | + | 0.478573i | −1.30496 | 1.54194 | − | 1.27375i | −0.393401 | − | 2.20119i | 1.73662 | − | 0.624520i | 1.57789i | −1.44239 | + | 2.43300i | −1.29707 | 1.57696 | + | 2.74102i | ||||||
219.4 | −1.33078 | + | 0.478573i | 1.30496 | 1.54194 | − | 1.27375i | −0.393401 | + | 2.20119i | −1.73662 | + | 0.624520i | 1.57789i | −1.44239 | + | 2.43300i | −1.29707 | −0.529900 | − | 3.11756i | ||||||
219.5 | −0.896270 | − | 1.09394i | −2.84322 | −0.393401 | + | 1.96093i | −1.64854 | − | 1.51074i | 2.54829 | + | 3.11030i | 3.37357i | 2.49773 | − | 1.32716i | 5.08387 | −0.175122 | + | 3.15742i | ||||||
219.6 | −0.896270 | − | 1.09394i | 2.84322 | −0.393401 | + | 1.96093i | −1.64854 | + | 1.51074i | −2.54829 | − | 3.11030i | 3.37357i | 2.49773 | − | 1.32716i | 5.08387 | 3.13019 | + | 0.449366i | ||||||
219.7 | −0.896270 | + | 1.09394i | −2.84322 | −0.393401 | − | 1.96093i | −1.64854 | + | 1.51074i | 2.54829 | − | 3.11030i | − | 3.37357i | 2.49773 | + | 1.32716i | 5.08387 | −0.175122 | − | 3.15742i | |||||
219.8 | −0.896270 | + | 1.09394i | 2.84322 | −0.393401 | − | 1.96093i | −1.64854 | − | 1.51074i | −2.54829 | + | 3.11030i | − | 3.37357i | 2.49773 | + | 1.32716i | 5.08387 | 3.13019 | − | 0.449366i | |||||
219.9 | −0.419204 | − | 1.35065i | −2.05261 | −1.64854 | + | 1.13240i | 1.54194 | + | 1.61939i | 0.860462 | + | 2.77236i | − | 1.06270i | 2.22056 | + | 1.75189i | 1.21320 | 1.54085 | − | 2.76148i | |||||
219.10 | −0.419204 | − | 1.35065i | 2.05261 | −1.64854 | + | 1.13240i | 1.54194 | − | 1.61939i | −0.860462 | − | 2.77236i | − | 1.06270i | 2.22056 | + | 1.75189i | 1.21320 | −2.83363 | − | 1.40377i | |||||
219.11 | −0.419204 | + | 1.35065i | −2.05261 | −1.64854 | − | 1.13240i | 1.54194 | − | 1.61939i | 0.860462 | − | 2.77236i | 1.06270i | 2.22056 | − | 1.75189i | 1.21320 | 1.54085 | + | 2.76148i | ||||||
219.12 | −0.419204 | + | 1.35065i | 2.05261 | −1.64854 | − | 1.13240i | 1.54194 | + | 1.61939i | −0.860462 | + | 2.77236i | 1.06270i | 2.22056 | − | 1.75189i | 1.21320 | −2.83363 | + | 1.40377i | ||||||
219.13 | 0.419204 | − | 1.35065i | −2.05261 | −1.64854 | − | 1.13240i | 1.54194 | − | 1.61939i | −0.860462 | + | 2.77236i | − | 1.06270i | −2.22056 | + | 1.75189i | 1.21320 | −1.54085 | − | 2.76148i | |||||
219.14 | 0.419204 | − | 1.35065i | 2.05261 | −1.64854 | − | 1.13240i | 1.54194 | + | 1.61939i | 0.860462 | − | 2.77236i | − | 1.06270i | −2.22056 | + | 1.75189i | 1.21320 | 2.83363 | − | 1.40377i | |||||
219.15 | 0.419204 | + | 1.35065i | −2.05261 | −1.64854 | + | 1.13240i | 1.54194 | + | 1.61939i | −0.860462 | − | 2.77236i | 1.06270i | −2.22056 | − | 1.75189i | 1.21320 | −1.54085 | + | 2.76148i | ||||||
219.16 | 0.419204 | + | 1.35065i | 2.05261 | −1.64854 | + | 1.13240i | 1.54194 | − | 1.61939i | 0.860462 | + | 2.77236i | 1.06270i | −2.22056 | − | 1.75189i | 1.21320 | 2.83363 | + | 1.40377i | ||||||
219.17 | 0.896270 | − | 1.09394i | −2.84322 | −0.393401 | − | 1.96093i | −1.64854 | + | 1.51074i | −2.54829 | + | 3.11030i | 3.37357i | −2.49773 | − | 1.32716i | 5.08387 | 0.175122 | + | 3.15742i | ||||||
219.18 | 0.896270 | − | 1.09394i | 2.84322 | −0.393401 | − | 1.96093i | −1.64854 | − | 1.51074i | 2.54829 | − | 3.11030i | 3.37357i | −2.49773 | − | 1.32716i | 5.08387 | −3.13019 | + | 0.449366i | ||||||
219.19 | 0.896270 | + | 1.09394i | −2.84322 | −0.393401 | + | 1.96093i | −1.64854 | − | 1.51074i | −2.54829 | − | 3.11030i | − | 3.37357i | −2.49773 | + | 1.32716i | 5.08387 | 0.175122 | − | 3.15742i | |||||
219.20 | 0.896270 | + | 1.09394i | 2.84322 | −0.393401 | + | 1.96093i | −1.64854 | + | 1.51074i | 2.54829 | + | 3.11030i | − | 3.37357i | −2.49773 | + | 1.32716i | 5.08387 | −3.13019 | − | 0.449366i | |||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
20.d | odd | 2 | 1 | inner |
44.c | even | 2 | 1 | inner |
55.d | odd | 2 | 1 | inner |
220.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.g.b | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 220.2.g.b | ✓ | 24 |
5.b | even | 2 | 1 | inner | 220.2.g.b | ✓ | 24 |
11.b | odd | 2 | 1 | inner | 220.2.g.b | ✓ | 24 |
20.d | odd | 2 | 1 | inner | 220.2.g.b | ✓ | 24 |
44.c | even | 2 | 1 | inner | 220.2.g.b | ✓ | 24 |
55.d | odd | 2 | 1 | inner | 220.2.g.b | ✓ | 24 |
220.g | even | 2 | 1 | inner | 220.2.g.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.g.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
220.2.g.b | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
220.2.g.b | ✓ | 24 | 5.b | even | 2 | 1 | inner |
220.2.g.b | ✓ | 24 | 11.b | odd | 2 | 1 | inner |
220.2.g.b | ✓ | 24 | 20.d | odd | 2 | 1 | inner |
220.2.g.b | ✓ | 24 | 44.c | even | 2 | 1 | inner |
220.2.g.b | ✓ | 24 | 55.d | odd | 2 | 1 | inner |
220.2.g.b | ✓ | 24 | 220.g | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 14T_{3}^{4} + 55T_{3}^{2} - 58 \) acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\).