Properties

Label 220.2.g.b.219.17
Level $220$
Weight $2$
Character 220.219
Analytic conductor $1.757$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(219,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.219"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 219.17
Character \(\chi\) \(=\) 220.219
Dual form 220.2.g.b.219.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.896270 - 1.09394i) q^{2} -2.84322 q^{3} +(-0.393401 - 1.96093i) q^{4} +(-1.64854 + 1.51074i) q^{5} +(-2.54829 + 3.11030i) q^{6} +3.37357i q^{7} +(-2.49773 - 1.32716i) q^{8} +5.08387 q^{9} +(0.175122 + 3.15742i) q^{10} +(1.92430 + 2.70131i) q^{11} +(1.11852 + 5.57534i) q^{12} -2.23147 q^{13} +(3.69047 + 3.02362i) q^{14} +(4.68714 - 4.29536i) q^{15} +(-3.69047 + 1.54286i) q^{16} -2.76398 q^{17} +(4.55652 - 5.56144i) q^{18} -7.85859 q^{19} +(3.61098 + 2.63833i) q^{20} -9.59177i q^{21} +(4.67976 + 0.316037i) q^{22} -0.606168 q^{23} +(7.10157 + 3.77341i) q^{24} +(0.435337 - 4.98101i) q^{25} +(-2.00000 + 2.44109i) q^{26} -5.92490 q^{27} +(6.61532 - 1.32716i) q^{28} +7.54682i q^{29} +(-0.497910 - 8.97724i) q^{30} -2.02302i q^{31} +(-1.61986 + 5.41997i) q^{32} +(-5.47120 - 7.68040i) q^{33} +(-2.47727 + 3.02362i) q^{34} +(-5.09658 - 5.56144i) q^{35} +(-2.00000 - 9.96910i) q^{36} +1.18865i q^{37} +(-7.04342 + 8.59682i) q^{38} +6.34455 q^{39} +(6.12259 - 1.58554i) q^{40} +2.04495i q^{41} +(-10.4928 - 8.59682i) q^{42} -3.09062i q^{43} +(4.54005 - 4.83611i) q^{44} +(-8.38094 + 7.68040i) q^{45} +(-0.543290 + 0.663111i) q^{46} +8.76811 q^{47} +(10.4928 - 4.38669i) q^{48} -4.38094 q^{49} +(-5.05874 - 4.94056i) q^{50} +7.85859 q^{51} +(0.877863 + 4.37575i) q^{52} -4.21013i q^{53} +(-5.31031 + 6.48147i) q^{54} +(-7.25325 - 1.54609i) q^{55} +(4.47727 - 8.42624i) q^{56} +22.3437 q^{57} +(8.25576 + 6.76399i) q^{58} -4.33992i q^{59} +(-10.2668 - 7.50134i) q^{60} -2.84943i q^{61} +(-2.21306 - 1.81318i) q^{62} +17.1508i q^{63} +(4.47727 + 6.62978i) q^{64} +(3.67866 - 3.37117i) q^{65} +(-13.3056 - 0.898561i) q^{66} +0.606168 q^{67} +(1.08735 + 5.41997i) q^{68} +1.72347 q^{69} +(-10.6518 + 0.590786i) q^{70} +9.55104i q^{71} +(-12.6981 - 6.74713i) q^{72} -6.00371 q^{73} +(1.30031 + 1.06535i) q^{74} +(-1.23776 + 14.1621i) q^{75} +(3.09158 + 15.4101i) q^{76} +(-9.11304 + 6.49175i) q^{77} +(5.68643 - 6.94055i) q^{78} -3.84860 q^{79} +(3.75301 - 8.11880i) q^{80} +1.59414 q^{81} +(2.23705 + 1.83283i) q^{82} +8.39927i q^{83} +(-18.8088 + 3.77341i) q^{84} +(4.55652 - 4.17565i) q^{85} +(-3.38094 - 2.77003i) q^{86} -21.4572i q^{87} +(-1.22129 - 9.30099i) q^{88} +8.67801 q^{89} +(0.890299 + 16.0519i) q^{90} -7.52801i q^{91} +(0.238467 + 1.18865i) q^{92} +5.75189i q^{93} +(7.85859 - 9.59177i) q^{94} +(12.9552 - 11.8723i) q^{95} +(4.60562 - 15.4101i) q^{96} +3.02148i q^{97} +(-3.92651 + 4.79248i) q^{98} +(9.78289 + 13.7331i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{5} + 40 q^{9} + 12 q^{14} - 12 q^{16} - 20 q^{20} - 36 q^{25} - 48 q^{26} + 28 q^{34} - 48 q^{36} + 56 q^{44} - 48 q^{45} + 48 q^{49} + 20 q^{56} - 8 q^{60} + 20 q^{64} - 52 q^{66}+ \cdots - 16 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.896270 1.09394i 0.633758 0.773531i
\(3\) −2.84322 −1.64153 −0.820766 0.571265i \(-0.806453\pi\)
−0.820766 + 0.571265i \(0.806453\pi\)
\(4\) −0.393401 1.96093i −0.196700 0.980464i
\(5\) −1.64854 + 1.51074i −0.737247 + 0.675623i
\(6\) −2.54829 + 3.11030i −1.04033 + 1.26978i
\(7\) 3.37357i 1.27509i 0.770414 + 0.637544i \(0.220050\pi\)
−0.770414 + 0.637544i \(0.779950\pi\)
\(8\) −2.49773 1.32716i −0.883080 0.469223i
\(9\) 5.08387 1.69462
\(10\) 0.175122 + 3.15742i 0.0553785 + 0.998465i
\(11\) 1.92430 + 2.70131i 0.580198 + 0.814475i
\(12\) 1.11852 + 5.57534i 0.322890 + 1.60946i
\(13\) −2.23147 −0.618899 −0.309449 0.950916i \(-0.600145\pi\)
−0.309449 + 0.950916i \(0.600145\pi\)
\(14\) 3.69047 + 3.02362i 0.986320 + 0.808098i
\(15\) 4.68714 4.29536i 1.21021 1.10906i
\(16\) −3.69047 + 1.54286i −0.922618 + 0.385715i
\(17\) −2.76398 −0.670364 −0.335182 0.942153i \(-0.608798\pi\)
−0.335182 + 0.942153i \(0.608798\pi\)
\(18\) 4.55652 5.56144i 1.07398 1.31084i
\(19\) −7.85859 −1.80289 −0.901443 0.432899i \(-0.857491\pi\)
−0.901443 + 0.432899i \(0.857491\pi\)
\(20\) 3.61098 + 2.63833i 0.807441 + 0.589949i
\(21\) 9.59177i 2.09310i
\(22\) 4.67976 + 0.316037i 0.997727 + 0.0673793i
\(23\) −0.606168 −0.126395 −0.0631974 0.998001i \(-0.520130\pi\)
−0.0631974 + 0.998001i \(0.520130\pi\)
\(24\) 7.10157 + 3.77341i 1.44960 + 0.770244i
\(25\) 0.435337 4.98101i 0.0870674 0.996202i
\(26\) −2.00000 + 2.44109i −0.392232 + 0.478737i
\(27\) −5.92490 −1.14025
\(28\) 6.61532 1.32716i 1.25018 0.250810i
\(29\) 7.54682i 1.40141i 0.713451 + 0.700705i \(0.247131\pi\)
−0.713451 + 0.700705i \(0.752869\pi\)
\(30\) −0.497910 8.97724i −0.0909055 1.63901i
\(31\) 2.02302i 0.363346i −0.983359 0.181673i \(-0.941849\pi\)
0.983359 0.181673i \(-0.0581512\pi\)
\(32\) −1.61986 + 5.41997i −0.286354 + 0.958124i
\(33\) −5.47120 7.68040i −0.952413 1.33699i
\(34\) −2.47727 + 3.02362i −0.424849 + 0.518547i
\(35\) −5.09658 5.56144i −0.861479 0.940055i
\(36\) −2.00000 9.96910i −0.333333 1.66152i
\(37\) 1.18865i 0.195413i 0.995215 + 0.0977066i \(0.0311507\pi\)
−0.995215 + 0.0977066i \(0.968849\pi\)
\(38\) −7.04342 + 8.59682i −1.14259 + 1.39459i
\(39\) 6.34455 1.01594
\(40\) 6.12259 1.58554i 0.968066 0.250695i
\(41\) 2.04495i 0.319367i 0.987168 + 0.159684i \(0.0510474\pi\)
−0.987168 + 0.159684i \(0.948953\pi\)
\(42\) −10.4928 8.59682i −1.61907 1.32652i
\(43\) 3.09062i 0.471315i −0.971836 0.235657i \(-0.924276\pi\)
0.971836 0.235657i \(-0.0757243\pi\)
\(44\) 4.54005 4.83611i 0.684438 0.729071i
\(45\) −8.38094 + 7.68040i −1.24936 + 1.14493i
\(46\) −0.543290 + 0.663111i −0.0801038 + 0.0977703i
\(47\) 8.76811 1.27896 0.639480 0.768807i \(-0.279150\pi\)
0.639480 + 0.768807i \(0.279150\pi\)
\(48\) 10.4928 4.38669i 1.51451 0.633164i
\(49\) −4.38094 −0.625849
\(50\) −5.05874 4.94056i −0.715414 0.698701i
\(51\) 7.85859 1.10042
\(52\) 0.877863 + 4.37575i 0.121738 + 0.606808i
\(53\) 4.21013i 0.578306i −0.957283 0.289153i \(-0.906626\pi\)
0.957283 0.289153i \(-0.0933736\pi\)
\(54\) −5.31031 + 6.48147i −0.722641 + 0.882016i
\(55\) −7.25325 1.54609i −0.978028 0.208475i
\(56\) 4.47727 8.42624i 0.598301 1.12600i
\(57\) 22.3437 2.95949
\(58\) 8.25576 + 6.76399i 1.08403 + 0.888155i
\(59\) 4.33992i 0.565010i −0.959266 0.282505i \(-0.908835\pi\)
0.959266 0.282505i \(-0.0911653\pi\)
\(60\) −10.2668 7.50134i −1.32544 0.968419i
\(61\) 2.84943i 0.364833i −0.983221 0.182416i \(-0.941608\pi\)
0.983221 0.182416i \(-0.0583918\pi\)
\(62\) −2.21306 1.81318i −0.281059 0.230274i
\(63\) 17.1508i 2.16079i
\(64\) 4.47727 + 6.62978i 0.559659 + 0.828723i
\(65\) 3.67866 3.37117i 0.456281 0.418142i
\(66\) −13.3056 0.898561i −1.63780 0.110605i
\(67\) 0.606168 0.0740552 0.0370276 0.999314i \(-0.488211\pi\)
0.0370276 + 0.999314i \(0.488211\pi\)
\(68\) 1.08735 + 5.41997i 0.131861 + 0.657268i
\(69\) 1.72347 0.207481
\(70\) −10.6518 + 0.590786i −1.27313 + 0.0706124i
\(71\) 9.55104i 1.13350i 0.823890 + 0.566750i \(0.191799\pi\)
−0.823890 + 0.566750i \(0.808201\pi\)
\(72\) −12.6981 6.74713i −1.49649 0.795157i
\(73\) −6.00371 −0.702681 −0.351340 0.936248i \(-0.614274\pi\)
−0.351340 + 0.936248i \(0.614274\pi\)
\(74\) 1.30031 + 1.06535i 0.151158 + 0.123845i
\(75\) −1.23776 + 14.1621i −0.142924 + 1.63530i
\(76\) 3.09158 + 15.4101i 0.354628 + 1.76766i
\(77\) −9.11304 + 6.49175i −1.03853 + 0.739804i
\(78\) 5.68643 6.94055i 0.643861 0.785862i
\(79\) −3.84860 −0.433001 −0.216501 0.976282i \(-0.569464\pi\)
−0.216501 + 0.976282i \(0.569464\pi\)
\(80\) 3.75301 8.11880i 0.419600 0.907709i
\(81\) 1.59414 0.177127
\(82\) 2.23705 + 1.83283i 0.247040 + 0.202402i
\(83\) 8.39927i 0.921940i 0.887416 + 0.460970i \(0.152498\pi\)
−0.887416 + 0.460970i \(0.847502\pi\)
\(84\) −18.8088 + 3.77341i −2.05220 + 0.411713i
\(85\) 4.55652 4.17565i 0.494224 0.452913i
\(86\) −3.38094 2.77003i −0.364576 0.298700i
\(87\) 21.4572i 2.30046i
\(88\) −1.22129 9.30099i −0.130190 0.991489i
\(89\) 8.67801 0.919868 0.459934 0.887953i \(-0.347873\pi\)
0.459934 + 0.887953i \(0.347873\pi\)
\(90\) 0.890299 + 16.0519i 0.0938457 + 1.69202i
\(91\) 7.52801i 0.789150i
\(92\) 0.238467 + 1.18865i 0.0248619 + 0.123926i
\(93\) 5.75189i 0.596444i
\(94\) 7.85859 9.59177i 0.810552 0.989316i
\(95\) 12.9552 11.8723i 1.32917 1.21807i
\(96\) 4.60562 15.4101i 0.470059 1.57279i
\(97\) 3.02148i 0.306785i 0.988165 + 0.153392i \(0.0490198\pi\)
−0.988165 + 0.153392i \(0.950980\pi\)
\(98\) −3.92651 + 4.79248i −0.396637 + 0.484114i
\(99\) 9.78289 + 13.7331i 0.983218 + 1.38023i
\(100\) −9.93866 + 1.10587i −0.993866 + 0.110587i
\(101\) 12.4412i 1.23795i 0.785412 + 0.618973i \(0.212451\pi\)
−0.785412 + 0.618973i \(0.787549\pi\)
\(102\) 7.04342 8.59682i 0.697403 0.851212i
\(103\) 1.86935 0.184192 0.0920961 0.995750i \(-0.470643\pi\)
0.0920961 + 0.995750i \(0.470643\pi\)
\(104\) 5.57360 + 2.96153i 0.546537 + 0.290402i
\(105\) 14.4907 + 15.8124i 1.41414 + 1.54313i
\(106\) −4.60562 3.77341i −0.447337 0.366506i
\(107\) 9.47074i 0.915571i −0.889063 0.457786i \(-0.848643\pi\)
0.889063 0.457786i \(-0.151357\pi\)
\(108\) 2.33086 + 11.6183i 0.224287 + 1.11797i
\(109\) 8.78729i 0.841669i −0.907137 0.420835i \(-0.861737\pi\)
0.907137 0.420835i \(-0.138263\pi\)
\(110\) −8.19219 + 6.54889i −0.781095 + 0.624412i
\(111\) 3.37959i 0.320777i
\(112\) −5.20494 12.4500i −0.491821 1.17642i
\(113\) 19.2799i 1.81370i 0.421456 + 0.906849i \(0.361519\pi\)
−0.421456 + 0.906849i \(0.638481\pi\)
\(114\) 20.0260 24.4426i 1.87560 2.28926i
\(115\) 0.999290 0.915762i 0.0931843 0.0853952i
\(116\) 14.7988 2.96893i 1.37403 0.275658i
\(117\) −11.3445 −1.04880
\(118\) −4.74760 3.88974i −0.437052 0.358080i
\(119\) 9.32447i 0.854773i
\(120\) −17.4078 + 4.50802i −1.58911 + 0.411524i
\(121\) −3.59414 + 10.3963i −0.326740 + 0.945114i
\(122\) −3.11710 2.55386i −0.282209 0.231216i
\(123\) 5.81423i 0.524251i
\(124\) −3.96700 + 0.795860i −0.356248 + 0.0714703i
\(125\) 6.80734 + 8.86905i 0.608867 + 0.793272i
\(126\) 18.7619 + 15.3717i 1.67144 + 1.36942i
\(127\) 12.7750i 1.13360i 0.823855 + 0.566800i \(0.191819\pi\)
−0.823855 + 0.566800i \(0.808181\pi\)
\(128\) 11.2654 + 1.04421i 0.995732 + 0.0922964i
\(129\) 8.78729i 0.773678i
\(130\) −0.390780 7.04570i −0.0342737 0.617949i
\(131\) −8.67911 −0.758297 −0.379149 0.925336i \(-0.623783\pi\)
−0.379149 + 0.925336i \(0.623783\pi\)
\(132\) −12.9083 + 13.7501i −1.12353 + 1.19679i
\(133\) 26.5115i 2.29884i
\(134\) 0.543290 0.663111i 0.0469331 0.0572840i
\(135\) 9.76740 8.95097i 0.840644 0.770377i
\(136\) 6.90367 + 3.66826i 0.591985 + 0.314550i
\(137\) 12.3393i 1.05422i −0.849797 0.527110i \(-0.823276\pi\)
0.849797 0.527110i \(-0.176724\pi\)
\(138\) 1.54469 1.88537i 0.131493 0.160493i
\(139\) −2.49595 −0.211704 −0.105852 0.994382i \(-0.533757\pi\)
−0.105852 + 0.994382i \(0.533757\pi\)
\(140\) −8.90058 + 12.1819i −0.752237 + 1.02956i
\(141\) −24.9296 −2.09945
\(142\) 10.4482 + 8.56031i 0.876797 + 0.718365i
\(143\) −4.29402 6.02789i −0.359084 0.504078i
\(144\) −18.7619 + 7.84371i −1.56349 + 0.653642i
\(145\) −11.4013 12.4412i −0.946825 1.03319i
\(146\) −5.38094 + 6.56769i −0.445330 + 0.543546i
\(147\) 12.4560 1.02735
\(148\) 2.33086 0.467617i 0.191596 0.0384379i
\(149\) 13.6817i 1.12085i 0.828207 + 0.560423i \(0.189361\pi\)
−0.828207 + 0.560423i \(0.810639\pi\)
\(150\) 14.3831 + 14.0471i 1.17437 + 1.14694i
\(151\) −3.02809 −0.246422 −0.123211 0.992380i \(-0.539319\pi\)
−0.123211 + 0.992380i \(0.539319\pi\)
\(152\) 19.6286 + 10.4296i 1.59209 + 0.845956i
\(153\) −14.0517 −1.13602
\(154\) −1.06617 + 15.7875i −0.0859145 + 1.27219i
\(155\) 3.05626 + 3.33503i 0.245485 + 0.267876i
\(156\) −2.49595 12.4412i −0.199836 0.996094i
\(157\) 5.75189i 0.459051i −0.973303 0.229526i \(-0.926283\pi\)
0.973303 0.229526i \(-0.0737175\pi\)
\(158\) −3.44938 + 4.21013i −0.274418 + 0.334940i
\(159\) 11.9703i 0.949307i
\(160\) −5.51775 11.3822i −0.436217 0.899842i
\(161\) 2.04495i 0.161165i
\(162\) 1.42878 1.74389i 0.112256 0.137013i
\(163\) −12.2175 −0.956948 −0.478474 0.878102i \(-0.658810\pi\)
−0.478474 + 0.878102i \(0.658810\pi\)
\(164\) 4.01000 0.804485i 0.313128 0.0628197i
\(165\) 20.6225 + 4.39586i 1.60546 + 0.342218i
\(166\) 9.18828 + 7.52801i 0.713149 + 0.584287i
\(167\) 13.5635i 1.04958i 0.851232 + 0.524789i \(0.175856\pi\)
−0.851232 + 0.524789i \(0.824144\pi\)
\(168\) −12.7299 + 23.9576i −0.982129 + 1.84837i
\(169\) −8.02054 −0.616964
\(170\) −0.484035 8.72706i −0.0371238 0.669335i
\(171\) −39.9521 −3.05521
\(172\) −6.06047 + 1.21585i −0.462107 + 0.0927078i
\(173\) 16.7589 1.27416 0.637080 0.770798i \(-0.280142\pi\)
0.637080 + 0.770798i \(0.280142\pi\)
\(174\) −23.4729 19.2315i −1.77948 1.45793i
\(175\) 16.8038 + 1.46864i 1.27025 + 0.111019i
\(176\) −11.2693 7.00018i −0.849457 0.527658i
\(177\) 12.3393i 0.927481i
\(178\) 7.77784 9.49321i 0.582974 0.711546i
\(179\) 1.69409i 0.126622i 0.997994 + 0.0633111i \(0.0201660\pi\)
−0.997994 + 0.0633111i \(0.979834\pi\)
\(180\) 18.3578 + 13.4129i 1.36831 + 0.999742i
\(181\) 21.6326 1.60794 0.803968 0.594673i \(-0.202718\pi\)
0.803968 + 0.594673i \(0.202718\pi\)
\(182\) −8.23518 6.74713i −0.610432 0.500131i
\(183\) 8.10155i 0.598884i
\(184\) 1.51404 + 0.804485i 0.111617 + 0.0593074i
\(185\) −1.79574 1.95953i −0.132026 0.144068i
\(186\) 6.29222 + 5.15525i 0.461368 + 0.378001i
\(187\) −5.31873 7.46637i −0.388944 0.545995i
\(188\) −3.44938 17.1936i −0.251572 1.25397i
\(189\) 19.9880i 1.45392i
\(190\) −1.37621 24.8129i −0.0998411 1.80012i
\(191\) 13.9933i 1.01252i −0.862380 0.506261i \(-0.831027\pi\)
0.862380 0.506261i \(-0.168973\pi\)
\(192\) −12.7299 18.8499i −0.918698 1.36037i
\(193\) −7.99126 −0.575223 −0.287612 0.957747i \(-0.592861\pi\)
−0.287612 + 0.957747i \(0.592861\pi\)
\(194\) 3.30531 + 2.70806i 0.237307 + 0.194427i
\(195\) −10.4592 + 9.58496i −0.749000 + 0.686393i
\(196\) 1.72347 + 8.59071i 0.123105 + 0.613622i
\(197\) 5.93008 0.422501 0.211250 0.977432i \(-0.432246\pi\)
0.211250 + 0.977432i \(0.432246\pi\)
\(198\) 23.7913 + 1.60669i 1.69077 + 0.114183i
\(199\) 9.46191i 0.670737i −0.942087 0.335368i \(-0.891139\pi\)
0.942087 0.335368i \(-0.108861\pi\)
\(200\) −7.69797 + 11.8634i −0.544329 + 0.838872i
\(201\) −1.72347 −0.121564
\(202\) 13.6099 + 11.1507i 0.957590 + 0.784559i
\(203\) −25.4597 −1.78692
\(204\) −3.09158 15.4101i −0.216454 1.07893i
\(205\) −3.08938 3.37117i −0.215772 0.235453i
\(206\) 1.67544 2.04495i 0.116733 0.142478i
\(207\) −3.08168 −0.214192
\(208\) 8.23518 3.44285i 0.571007 0.238719i
\(209\) −15.1223 21.2285i −1.04603 1.46841i
\(210\) 30.2853 1.67973i 2.08988 0.115913i
\(211\) 18.8723 1.29922 0.649610 0.760268i \(-0.274932\pi\)
0.649610 + 0.760268i \(0.274932\pi\)
\(212\) −8.25576 + 1.65627i −0.567008 + 0.113753i
\(213\) 27.1557i 1.86067i
\(214\) −10.3604 8.48834i −0.708223 0.580251i
\(215\) 4.66911 + 5.09499i 0.318431 + 0.347475i
\(216\) 14.7988 + 7.86331i 1.00693 + 0.535030i
\(217\) 6.82481 0.463298
\(218\) −9.61275 7.87578i −0.651057 0.533415i
\(219\) 17.0698 1.15347
\(220\) −0.178334 + 14.8313i −0.0120233 + 0.999928i
\(221\) 6.16774 0.414887
\(222\) −3.69707 3.02903i −0.248131 0.203295i
\(223\) 7.98187 0.534506 0.267253 0.963626i \(-0.413884\pi\)
0.267253 + 0.963626i \(0.413884\pi\)
\(224\) −18.2846 5.46472i −1.22169 0.365127i
\(225\) 2.21320 25.3228i 0.147547 1.68819i
\(226\) 21.0910 + 17.2800i 1.40295 + 1.14945i
\(227\) 4.58942i 0.304610i 0.988334 + 0.152305i \(0.0486696\pi\)
−0.988334 + 0.152305i \(0.951330\pi\)
\(228\) −8.79002 43.8143i −0.582133 2.90167i
\(229\) 9.59149 0.633823 0.316912 0.948455i \(-0.397354\pi\)
0.316912 + 0.948455i \(0.397354\pi\)
\(230\) −0.106154 1.91393i −0.00699956 0.126201i
\(231\) 25.9103 18.4574i 1.70478 1.21441i
\(232\) 10.0159 18.8499i 0.657574 1.23756i
\(233\) −22.8194 −1.49495 −0.747475 0.664290i \(-0.768734\pi\)
−0.747475 + 0.664290i \(0.768734\pi\)
\(234\) −10.1677 + 12.4102i −0.664686 + 0.811280i
\(235\) −14.4545 + 13.2463i −0.942910 + 0.864095i
\(236\) −8.51027 + 1.70733i −0.553971 + 0.111138i
\(237\) 10.9424 0.710785
\(238\) −10.2004 8.35724i −0.661193 0.541720i
\(239\) −11.5458 −0.746836 −0.373418 0.927663i \(-0.621814\pi\)
−0.373418 + 0.927663i \(0.621814\pi\)
\(240\) −10.6706 + 23.0835i −0.688786 + 1.49003i
\(241\) 18.5761i 1.19659i −0.801276 0.598294i \(-0.795845\pi\)
0.801276 0.598294i \(-0.204155\pi\)
\(242\) 8.15154 + 13.2496i 0.524001 + 0.851718i
\(243\) 13.2422 0.849488
\(244\) −5.58753 + 1.12097i −0.357705 + 0.0717627i
\(245\) 7.22214 6.61846i 0.461406 0.422838i
\(246\) −6.36041 5.21112i −0.405525 0.332249i
\(247\) 17.5362 1.11580
\(248\) −2.68489 + 5.05296i −0.170490 + 0.320863i
\(249\) 23.8809i 1.51339i
\(250\) 15.8034 + 0.502258i 0.999495 + 0.0317656i
\(251\) 22.1527i 1.39827i 0.714991 + 0.699134i \(0.246431\pi\)
−0.714991 + 0.699134i \(0.753569\pi\)
\(252\) 33.6314 6.74713i 2.11858 0.425029i
\(253\) −1.16645 1.63745i −0.0733341 0.102945i
\(254\) 13.9751 + 11.4499i 0.876875 + 0.718429i
\(255\) −12.9552 + 11.8723i −0.811284 + 0.743471i
\(256\) 11.2392 11.3878i 0.702447 0.711736i
\(257\) 12.9835i 0.809889i 0.914341 + 0.404944i \(0.132709\pi\)
−0.914341 + 0.404944i \(0.867291\pi\)
\(258\) 9.61275 + 7.87578i 0.598464 + 0.490325i
\(259\) −4.01000 −0.249169
\(260\) −8.05781 5.88736i −0.499724 0.365119i
\(261\) 38.3671i 2.37486i
\(262\) −7.77882 + 9.49441i −0.480577 + 0.586566i
\(263\) 4.81204i 0.296723i 0.988933 + 0.148362i \(0.0473999\pi\)
−0.988933 + 0.148362i \(0.952600\pi\)
\(264\) 3.47240 + 26.4447i 0.213712 + 1.62756i
\(265\) 6.36041 + 6.94055i 0.390717 + 0.426354i
\(266\) −29.0019 23.7614i −1.77822 1.45691i
\(267\) −24.6735 −1.50999
\(268\) −0.238467 1.18865i −0.0145667 0.0726085i
\(269\) −13.0205 −0.793876 −0.396938 0.917845i \(-0.629927\pi\)
−0.396938 + 0.917845i \(0.629927\pi\)
\(270\) −1.03758 18.7074i −0.0631452 1.13850i
\(271\) −18.2131 −1.10637 −0.553185 0.833059i \(-0.686588\pi\)
−0.553185 + 0.833059i \(0.686588\pi\)
\(272\) 10.2004 4.26444i 0.618490 0.258570i
\(273\) 21.4038i 1.29541i
\(274\) −13.4985 11.0594i −0.815472 0.668121i
\(275\) 14.2930 8.40898i 0.861899 0.507081i
\(276\) −0.678013 3.37959i −0.0408116 0.203428i
\(277\) −6.19087 −0.371973 −0.185987 0.982552i \(-0.559548\pi\)
−0.185987 + 0.982552i \(0.559548\pi\)
\(278\) −2.23705 + 2.73042i −0.134169 + 0.163760i
\(279\) 10.2848i 0.615735i
\(280\) 5.34891 + 20.6549i 0.319658 + 1.23437i
\(281\) 31.1888i 1.86057i −0.366843 0.930283i \(-0.619561\pi\)
0.366843 0.930283i \(-0.380439\pi\)
\(282\) −22.3437 + 27.2715i −1.33055 + 1.62399i
\(283\) 15.7123i 0.933999i 0.884258 + 0.467000i \(0.154665\pi\)
−0.884258 + 0.467000i \(0.845335\pi\)
\(284\) 18.7289 3.75739i 1.11136 0.222960i
\(285\) −36.8343 + 33.7555i −2.18188 + 1.99950i
\(286\) −10.4427 0.705227i −0.617492 0.0417010i
\(287\) −6.89877 −0.407221
\(288\) −8.23518 + 27.5544i −0.485263 + 1.62366i
\(289\) −9.36041 −0.550612
\(290\) −23.8285 + 1.32162i −1.39926 + 0.0776080i
\(291\) 8.59071i 0.503596i
\(292\) 2.36186 + 11.7728i 0.138218 + 0.688953i
\(293\) 33.0421 1.93034 0.965171 0.261618i \(-0.0842561\pi\)
0.965171 + 0.261618i \(0.0842561\pi\)
\(294\) 11.1639 13.6261i 0.651092 0.794687i
\(295\) 6.55649 + 7.15451i 0.381733 + 0.416552i
\(296\) 1.57754 2.96893i 0.0916924 0.172565i
\(297\) −11.4013 16.0050i −0.661569 0.928703i
\(298\) 14.9669 + 12.2625i 0.867009 + 0.710346i
\(299\) 1.35265 0.0782256
\(300\) 28.2578 3.14423i 1.63146 0.181532i
\(301\) 10.4264 0.600967
\(302\) −2.71398 + 3.31254i −0.156172 + 0.190615i
\(303\) 35.3730i 2.03213i
\(304\) 29.0019 12.1247i 1.66337 0.695400i
\(305\) 4.30475 + 4.69739i 0.246489 + 0.268972i
\(306\) −12.5941 + 15.3717i −0.719959 + 0.878743i
\(307\) 3.15094i 0.179834i −0.995949 0.0899168i \(-0.971340\pi\)
0.995949 0.0899168i \(-0.0286601\pi\)
\(308\) 16.3149 + 15.3162i 0.929629 + 0.872719i
\(309\) −5.31495 −0.302357
\(310\) 6.38755 0.354277i 0.362788 0.0201216i
\(311\) 1.59172i 0.0902581i −0.998981 0.0451291i \(-0.985630\pi\)
0.998981 0.0451291i \(-0.0143699\pi\)
\(312\) −15.8470 8.42026i −0.897157 0.476703i
\(313\) 20.7596i 1.17340i 0.809804 + 0.586701i \(0.199573\pi\)
−0.809804 + 0.586701i \(0.800427\pi\)
\(314\) −6.29222 5.15525i −0.355090 0.290928i
\(315\) −25.9103 28.2737i −1.45988 1.59304i
\(316\) 1.51404 + 7.54682i 0.0851715 + 0.424542i
\(317\) 13.2746i 0.745574i −0.927917 0.372787i \(-0.878402\pi\)
0.927917 0.372787i \(-0.121598\pi\)
\(318\) 13.0948 + 10.7286i 0.734318 + 0.601631i
\(319\) −20.3863 + 14.5224i −1.14141 + 0.813096i
\(320\) −17.3968 4.16544i −0.972511 0.232855i
\(321\) 26.9274i 1.50294i
\(322\) −2.23705 1.83283i −0.124666 0.102139i
\(323\) 21.7210 1.20859
\(324\) −0.627137 3.12599i −0.0348409 0.173666i
\(325\) −0.971442 + 11.1150i −0.0538859 + 0.616548i
\(326\) −10.9502 + 13.3652i −0.606474 + 0.740229i
\(327\) 24.9841i 1.38163i
\(328\) 2.71398 5.10772i 0.149855 0.282027i
\(329\) 29.5798i 1.63079i
\(330\) 23.2922 18.6199i 1.28219 1.02499i
\(331\) 31.1747i 1.71352i 0.515716 + 0.856760i \(0.327526\pi\)
−0.515716 + 0.856760i \(0.672474\pi\)
\(332\) 16.4704 3.30428i 0.903928 0.181346i
\(333\) 6.04295i 0.331152i
\(334\) 14.8377 + 12.1566i 0.811882 + 0.665179i
\(335\) −0.999290 + 0.915762i −0.0545970 + 0.0500334i
\(336\) 14.7988 + 35.3982i 0.807339 + 1.93113i
\(337\) −18.8600 −1.02737 −0.513685 0.857979i \(-0.671720\pi\)
−0.513685 + 0.857979i \(0.671720\pi\)
\(338\) −7.18857 + 8.77397i −0.391006 + 0.477241i
\(339\) 54.8168i 2.97724i
\(340\) −9.98069 7.29230i −0.541279 0.395481i
\(341\) 5.46482 3.89291i 0.295936 0.210813i
\(342\) −35.8079 + 43.7051i −1.93627 + 2.36330i
\(343\) 8.83556i 0.477075i
\(344\) −4.10175 + 7.71951i −0.221152 + 0.416208i
\(345\) −2.84120 + 2.60371i −0.152965 + 0.140179i
\(346\) 15.0205 18.3332i 0.807509 0.985602i
\(347\) 18.6496i 1.00116i 0.865690 + 0.500581i \(0.166880\pi\)
−0.865690 + 0.500581i \(0.833120\pi\)
\(348\) −42.0761 + 8.44130i −2.25552 + 0.452501i
\(349\) 8.35131i 0.447035i −0.974700 0.223518i \(-0.928246\pi\)
0.974700 0.223518i \(-0.0717540\pi\)
\(350\) 16.6673 17.0660i 0.890905 0.912215i
\(351\) 13.2212 0.705697
\(352\) −17.7581 + 6.05389i −0.946510 + 0.322673i
\(353\) 5.39878i 0.287348i 0.989625 + 0.143674i \(0.0458917\pi\)
−0.989625 + 0.143674i \(0.954108\pi\)
\(354\) 13.4985 + 11.0594i 0.717435 + 0.587799i
\(355\) −14.4291 15.7452i −0.765818 0.835670i
\(356\) −3.41394 17.0170i −0.180938 0.901897i
\(357\) 26.5115i 1.40314i
\(358\) 1.85323 + 1.51836i 0.0979462 + 0.0802479i
\(359\) 14.3645 0.758132 0.379066 0.925370i \(-0.376245\pi\)
0.379066 + 0.925370i \(0.376245\pi\)
\(360\) 31.1265 8.06066i 1.64051 0.424834i
\(361\) 42.7575 2.25040
\(362\) 19.3886 23.6647i 1.01904 1.24379i
\(363\) 10.2189 29.5588i 0.536354 1.55143i
\(364\) −14.7619 + 2.96153i −0.773733 + 0.155226i
\(365\) 9.89733 9.07004i 0.518050 0.474747i
\(366\) 8.86259 + 7.26118i 0.463255 + 0.379548i
\(367\) −24.3058 −1.26875 −0.634375 0.773025i \(-0.718743\pi\)
−0.634375 + 0.773025i \(0.718743\pi\)
\(368\) 2.23705 0.935234i 0.116614 0.0487524i
\(369\) 10.3963i 0.541207i
\(370\) −3.75308 + 0.208159i −0.195113 + 0.0108217i
\(371\) 14.2031 0.737391
\(372\) 11.2790 2.26280i 0.584791 0.117321i
\(373\) −6.11724 −0.316739 −0.158369 0.987380i \(-0.550624\pi\)
−0.158369 + 0.987380i \(0.550624\pi\)
\(374\) −12.9348 0.873520i −0.668841 0.0451687i
\(375\) −19.3547 25.2166i −0.999474 1.30218i
\(376\) −21.9003 11.6367i −1.12942 0.600118i
\(377\) 16.8405i 0.867331i
\(378\) −21.8657 17.9147i −1.12465 0.921431i
\(379\) 28.2805i 1.45267i −0.687339 0.726337i \(-0.741221\pi\)
0.687339 0.726337i \(-0.258779\pi\)
\(380\) −28.3773 20.7336i −1.45572 1.06361i
\(381\) 36.3221i 1.86084i
\(382\) −15.3078 12.5418i −0.783217 0.641694i
\(383\) 25.0412 1.27954 0.639772 0.768565i \(-0.279029\pi\)
0.639772 + 0.768565i \(0.279029\pi\)
\(384\) −32.0300 2.96893i −1.63452 0.151507i
\(385\) 5.21583 24.4693i 0.265823 1.24707i
\(386\) −7.16232 + 8.74194i −0.364553 + 0.444953i
\(387\) 15.7123i 0.798701i
\(388\) 5.92490 1.18865i 0.300791 0.0603447i
\(389\) −12.9117 −0.654652 −0.327326 0.944912i \(-0.606147\pi\)
−0.327326 + 0.944912i \(0.606147\pi\)
\(390\) 1.11107 + 20.0324i 0.0562613 + 1.01438i
\(391\) 1.67544 0.0847305
\(392\) 10.9424 + 5.81423i 0.552674 + 0.293663i
\(393\) 24.6766 1.24477
\(394\) 5.31495 6.48714i 0.267763 0.326817i
\(395\) 6.34455 5.81423i 0.319229 0.292546i
\(396\) 23.0810 24.5862i 1.15987 1.23550i
\(397\) 3.66565i 0.183974i 0.995760 + 0.0919869i \(0.0293218\pi\)
−0.995760 + 0.0919869i \(0.970678\pi\)
\(398\) −10.3507 8.48042i −0.518836 0.425085i
\(399\) 75.3778i 3.77361i
\(400\) 6.07841 + 19.0539i 0.303921 + 0.952697i
\(401\) −35.0314 −1.74938 −0.874692 0.484679i \(-0.838936\pi\)
−0.874692 + 0.484679i \(0.838936\pi\)
\(402\) −1.54469 + 1.88537i −0.0770422 + 0.0940335i
\(403\) 4.51432i 0.224874i
\(404\) 24.3963 4.89438i 1.21376 0.243505i
\(405\) −2.62800 + 2.40833i −0.130586 + 0.119671i
\(406\) −22.8188 + 27.8513i −1.13248 + 1.38224i
\(407\) −3.21092 + 2.28732i −0.159159 + 0.113378i
\(408\) −19.6286 10.4296i −0.971761 0.516344i
\(409\) 23.8809i 1.18084i 0.807098 + 0.590418i \(0.201037\pi\)
−0.807098 + 0.590418i \(0.798963\pi\)
\(410\) −6.45677 + 0.358116i −0.318877 + 0.0176861i
\(411\) 35.0834i 1.73053i
\(412\) −0.735402 3.66565i −0.0362307 0.180594i
\(413\) 14.6410 0.720437
\(414\) −2.76202 + 3.37117i −0.135746 + 0.165684i
\(415\) −12.6891 13.8465i −0.622884 0.679698i
\(416\) 3.61468 12.0945i 0.177224 0.592982i
\(417\) 7.09653 0.347519
\(418\) −36.7763 2.48361i −1.79879 0.121477i
\(419\) 20.7070i 1.01160i 0.862649 + 0.505802i \(0.168804\pi\)
−0.862649 + 0.505802i \(0.831196\pi\)
\(420\) 25.3063 34.6357i 1.23482 1.69005i
\(421\) −3.57360 −0.174167 −0.0870834 0.996201i \(-0.527755\pi\)
−0.0870834 + 0.996201i \(0.527755\pi\)
\(422\) 16.9146 20.6451i 0.823392 1.00499i
\(423\) 44.5760 2.16736
\(424\) −5.58753 + 10.5158i −0.271354 + 0.510690i
\(425\) −1.20326 + 13.7674i −0.0583669 + 0.667818i
\(426\) −29.7066 24.3388i −1.43929 1.17922i
\(427\) 9.61275 0.465193
\(428\) −18.5714 + 3.72580i −0.897684 + 0.180093i
\(429\) 12.2088 + 17.1386i 0.589447 + 0.827459i
\(430\) 9.75839 0.541236i 0.470591 0.0261007i
\(431\) 37.4561 1.80420 0.902099 0.431528i \(-0.142026\pi\)
0.902099 + 0.431528i \(0.142026\pi\)
\(432\) 21.8657 9.14129i 1.05201 0.439811i
\(433\) 35.0314i 1.68350i 0.539865 + 0.841752i \(0.318475\pi\)
−0.539865 + 0.841752i \(0.681525\pi\)
\(434\) 6.11687 7.46592i 0.293619 0.358375i
\(435\) 32.4163 + 35.3730i 1.55424 + 1.69601i
\(436\) −17.2312 + 3.45693i −0.825226 + 0.165557i
\(437\) 4.76363 0.227875
\(438\) 15.2992 18.6733i 0.731023 0.892247i
\(439\) 28.4063 1.35576 0.677879 0.735173i \(-0.262899\pi\)
0.677879 + 0.735173i \(0.262899\pi\)
\(440\) 16.0647 + 13.4880i 0.765855 + 0.643013i
\(441\) −22.2722 −1.06058
\(442\) 5.52796 6.74713i 0.262938 0.320928i
\(443\) −12.9329 −0.614461 −0.307230 0.951635i \(-0.599402\pi\)
−0.307230 + 0.951635i \(0.599402\pi\)
\(444\) −6.62714 + 1.32954i −0.314510 + 0.0630969i
\(445\) −14.3060 + 13.1102i −0.678170 + 0.621484i
\(446\) 7.15391 8.73167i 0.338747 0.413457i
\(447\) 38.8999i 1.83990i
\(448\) −22.3660 + 15.1044i −1.05669 + 0.713615i
\(449\) 6.61202 0.312041 0.156020 0.987754i \(-0.450133\pi\)
0.156020 + 0.987754i \(0.450133\pi\)
\(450\) −25.7180 25.1172i −1.21236 1.18404i
\(451\) −5.52404 + 3.93509i −0.260117 + 0.185296i
\(452\) 37.8064 7.58472i 1.77826 0.356755i
\(453\) 8.60950 0.404509
\(454\) 5.02054 + 4.11336i 0.235625 + 0.193049i
\(455\) 11.3729 + 12.4102i 0.533168 + 0.581799i
\(456\) −55.8084 29.6537i −2.61347 1.38866i
\(457\) 24.4616 1.14427 0.572133 0.820161i \(-0.306116\pi\)
0.572133 + 0.820161i \(0.306116\pi\)
\(458\) 8.59656 10.4925i 0.401691 0.490282i
\(459\) 16.3763 0.764381
\(460\) −2.18886 1.59927i −0.102056 0.0745665i
\(461\) 13.2457i 0.616913i −0.951238 0.308457i \(-0.900188\pi\)
0.951238 0.308457i \(-0.0998125\pi\)
\(462\) 3.03135 44.8872i 0.141031 2.08834i
\(463\) −27.5675 −1.28117 −0.640586 0.767887i \(-0.721308\pi\)
−0.640586 + 0.767887i \(0.721308\pi\)
\(464\) −11.6437 27.8513i −0.540545 1.29297i
\(465\) −8.68961 9.48220i −0.402971 0.439727i
\(466\) −20.4524 + 24.9630i −0.947437 + 1.15639i
\(467\) −5.26789 −0.243769 −0.121884 0.992544i \(-0.538894\pi\)
−0.121884 + 0.992544i \(0.538894\pi\)
\(468\) 4.46294 + 22.2458i 0.206300 + 1.02831i
\(469\) 2.04495i 0.0944269i
\(470\) 1.53549 + 27.6847i 0.0708269 + 1.27700i
\(471\) 16.3539i 0.753547i
\(472\) −5.75978 + 10.8399i −0.265116 + 0.498948i
\(473\) 8.34871 5.94727i 0.383874 0.273456i
\(474\) 9.80734 11.9703i 0.450466 0.549814i
\(475\) −3.42114 + 39.1438i −0.156973 + 1.79604i
\(476\) −18.2846 + 3.66826i −0.838074 + 0.168134i
\(477\) 21.4038i 0.980011i
\(478\) −10.3482 + 12.6304i −0.473313 + 0.577701i
\(479\) −32.7870 −1.49808 −0.749039 0.662526i \(-0.769484\pi\)
−0.749039 + 0.662526i \(0.769484\pi\)
\(480\) 15.6882 + 32.3620i 0.716063 + 1.47712i
\(481\) 2.65244i 0.120941i
\(482\) −20.3210 16.6492i −0.925598 0.758348i
\(483\) 5.81423i 0.264557i
\(484\) 21.8002 + 2.95795i 0.990920 + 0.134452i
\(485\) −4.56466 4.98101i −0.207271 0.226176i
\(486\) 11.8686 14.4862i 0.538370 0.657105i
\(487\) 36.8910 1.67169 0.835844 0.548966i \(-0.184979\pi\)
0.835844 + 0.548966i \(0.184979\pi\)
\(488\) −3.78166 + 7.11710i −0.171188 + 0.322176i
\(489\) 34.7370 1.57086
\(490\) −0.767200 13.8325i −0.0346586 0.624889i
\(491\) 5.68543 0.256580 0.128290 0.991737i \(-0.459051\pi\)
0.128290 + 0.991737i \(0.459051\pi\)
\(492\) −11.4013 + 2.28732i −0.514009 + 0.103120i
\(493\) 20.8593i 0.939455i
\(494\) 15.7172 19.1835i 0.707150 0.863108i
\(495\) −36.8746 7.86012i −1.65739 0.353286i
\(496\) 3.12125 + 7.46592i 0.140148 + 0.335229i
\(497\) −32.2210 −1.44531
\(498\) −26.1243 21.4038i −1.17066 0.959125i
\(499\) 14.1934i 0.635385i −0.948194 0.317692i \(-0.897092\pi\)
0.948194 0.317692i \(-0.102908\pi\)
\(500\) 14.7136 16.8378i 0.658010 0.753009i
\(501\) 38.5641i 1.72292i
\(502\) 24.2337 + 19.8548i 1.08160 + 0.886164i
\(503\) 18.4507i 0.822675i −0.911483 0.411338i \(-0.865062\pi\)
0.911483 0.411338i \(-0.134938\pi\)
\(504\) 22.7619 42.8379i 1.01389 1.90815i
\(505\) −18.7954 20.5098i −0.836385 0.912673i
\(506\) −2.83672 0.191572i −0.126108 0.00851640i
\(507\) 22.8041 1.01277
\(508\) 25.0509 5.02571i 1.11145 0.222980i
\(509\) 13.0027 0.576333 0.288166 0.957580i \(-0.406954\pi\)
0.288166 + 0.957580i \(0.406954\pi\)
\(510\) 1.37621 + 24.8129i 0.0609398 + 1.09873i
\(511\) 20.2539i 0.895980i
\(512\) −2.38420 22.5015i −0.105368 0.994433i
\(513\) 46.5614 2.05573
\(514\) 14.2031 + 11.6367i 0.626474 + 0.513274i
\(515\) −3.08168 + 2.82409i −0.135795 + 0.124444i
\(516\) 17.2312 3.45693i 0.758563 0.152183i
\(517\) 16.8725 + 23.6854i 0.742051 + 1.04168i
\(518\) −3.59404 + 4.38669i −0.157913 + 0.192740i
\(519\) −47.6493 −2.09157
\(520\) −13.6624 + 3.53808i −0.599135 + 0.155155i
\(521\) −11.8912 −0.520963 −0.260482 0.965479i \(-0.583881\pi\)
−0.260482 + 0.965479i \(0.583881\pi\)
\(522\) 41.9712 + 34.3873i 1.83703 + 1.50509i
\(523\) 30.8439i 1.34871i −0.738407 0.674355i \(-0.764422\pi\)
0.738407 0.674355i \(-0.235578\pi\)
\(524\) 3.41437 + 17.0191i 0.149157 + 0.743483i
\(525\) −47.7767 4.17565i −2.08515 0.182240i
\(526\) 5.26408 + 4.31289i 0.229525 + 0.188051i
\(527\) 5.59160i 0.243574i
\(528\) 32.0411 + 19.9030i 1.39441 + 0.866167i
\(529\) −22.6326 −0.984024
\(530\) 13.2932 0.737287i 0.577418 0.0320257i
\(531\) 22.0636i 0.957479i
\(532\) −51.9871 + 10.4296i −2.25393 + 0.452182i
\(533\) 4.56324i 0.197656i
\(534\) −22.1141 + 26.9912i −0.956970 + 1.16803i
\(535\) 14.3078 + 15.6129i 0.618581 + 0.675002i
\(536\) −1.51404 0.804485i −0.0653967 0.0347484i
\(537\) 4.81666i 0.207854i
\(538\) −11.6699 + 14.2437i −0.503126 + 0.614088i
\(539\) −8.43025 11.8343i −0.363116 0.509739i
\(540\) −21.3947 15.6318i −0.920682 0.672688i
\(541\) 39.1716i 1.68412i 0.539386 + 0.842059i \(0.318656\pi\)
−0.539386 + 0.842059i \(0.681344\pi\)
\(542\) −16.3239 + 19.9240i −0.701171 + 0.855811i
\(543\) −61.5060 −2.63948
\(544\) 4.47727 14.9807i 0.191962 0.642292i
\(545\) 13.2753 + 14.4862i 0.568651 + 0.620519i
\(546\) 23.4144 + 19.1835i 1.00204 + 0.820980i
\(547\) 6.39490i 0.273426i −0.990611 0.136713i \(-0.956346\pi\)
0.990611 0.136713i \(-0.0436538\pi\)
\(548\) −24.1965 + 4.85430i −1.03362 + 0.207366i
\(549\) 14.4862i 0.618254i
\(550\) 3.61146 23.1723i 0.153993 0.988072i
\(551\) 59.3074i 2.52658i
\(552\) −4.30475 2.28732i −0.183222 0.0973549i
\(553\) 12.9835i 0.552115i
\(554\) −5.54869 + 6.77243i −0.235741 + 0.287733i
\(555\) 5.10568 + 5.57138i 0.216724 + 0.236492i
\(556\) 0.981910 + 4.89438i 0.0416423 + 0.207568i
\(557\) −33.1557 −1.40485 −0.702426 0.711757i \(-0.747900\pi\)
−0.702426 + 0.711757i \(0.747900\pi\)
\(558\) −11.2509 9.21796i −0.476290 0.390227i
\(559\) 6.89662i 0.291696i
\(560\) 27.3893 + 12.6610i 1.15741 + 0.535026i
\(561\) 15.1223 + 21.2285i 0.638464 + 0.896268i
\(562\) −34.1186 27.9536i −1.43921 1.17915i
\(563\) 17.7167i 0.746669i −0.927697 0.373334i \(-0.878214\pi\)
0.927697 0.373334i \(-0.121786\pi\)
\(564\) 9.80734 + 48.8852i 0.412963 + 2.05844i
\(565\) −29.1269 31.7836i −1.22538 1.33714i
\(566\) 17.1883 + 14.0825i 0.722477 + 0.591930i
\(567\) 5.37794i 0.225852i
\(568\) 12.6758 23.8559i 0.531864 1.00097i
\(569\) 8.78729i 0.368382i −0.982890 0.184191i \(-0.941033\pi\)
0.982890 0.184191i \(-0.0589665\pi\)
\(570\) 3.91287 + 70.5485i 0.163892 + 2.95495i
\(571\) −25.7489 −1.07756 −0.538780 0.842447i \(-0.681115\pi\)
−0.538780 + 0.842447i \(0.681115\pi\)
\(572\) −10.1310 + 10.7916i −0.423598 + 0.451221i
\(573\) 39.7860i 1.66209i
\(574\) −6.18316 + 7.54682i −0.258080 + 0.314998i
\(575\) −0.263888 + 3.01933i −0.0110049 + 0.125915i
\(576\) 22.7619 + 33.7050i 0.948412 + 1.40437i
\(577\) 20.5682i 0.856266i −0.903716 0.428133i \(-0.859171\pi\)
0.903716 0.428133i \(-0.140829\pi\)
\(578\) −8.38945 + 10.2397i −0.348955 + 0.425916i
\(579\) 22.7209 0.944247
\(580\) −19.9110 + 27.2515i −0.826760 + 1.13156i
\(581\) −28.3355 −1.17555
\(582\) −9.39770 7.69959i −0.389547 0.319158i
\(583\) 11.3729 8.10155i 0.471016 0.335532i
\(584\) 14.9956 + 7.96790i 0.620523 + 0.329714i
\(585\) 18.7018 17.1386i 0.773226 0.708594i
\(586\) 29.6147 36.1461i 1.22337 1.49318i
\(587\) −19.1163 −0.789013 −0.394506 0.918893i \(-0.629084\pi\)
−0.394506 + 0.918893i \(0.629084\pi\)
\(588\) −4.90019 24.4252i −0.202080 1.00728i
\(589\) 15.8981i 0.655071i
\(590\) 13.7030 0.760016i 0.564142 0.0312894i
\(591\) −16.8605 −0.693548
\(592\) −1.83392 4.38669i −0.0753738 0.180292i
\(593\) −0.402117 −0.0165130 −0.00825649 0.999966i \(-0.502628\pi\)
−0.00825649 + 0.999966i \(0.502628\pi\)
\(594\) −27.7271 1.87249i −1.13766 0.0768291i
\(595\) 14.0868 + 15.3717i 0.577504 + 0.630179i
\(596\) 26.8288 5.38238i 1.09895 0.220471i
\(597\) 26.9022i 1.10104i
\(598\) 1.21234 1.47971i 0.0495761 0.0605099i
\(599\) 1.68550i 0.0688678i 0.999407 + 0.0344339i \(0.0109628\pi\)
−0.999407 + 0.0344339i \(0.989037\pi\)
\(600\) 21.8870 33.7303i 0.893533 1.37703i
\(601\) 36.3221i 1.48161i 0.671720 + 0.740805i \(0.265556\pi\)
−0.671720 + 0.740805i \(0.734444\pi\)
\(602\) 9.34486 11.4058i 0.380868 0.464867i
\(603\) 3.08168 0.125496
\(604\) 1.19125 + 5.93785i 0.0484713 + 0.241608i
\(605\) −9.78096 22.5684i −0.397653 0.917536i
\(606\) −38.6959 31.7038i −1.57191 1.28788i
\(607\) 24.6864i 1.00199i −0.865450 0.500996i \(-0.832967\pi\)
0.865450 0.500996i \(-0.167033\pi\)
\(608\) 12.7299 42.5933i 0.516264 1.72739i
\(609\) 72.3874 2.93329
\(610\) 8.99687 0.498999i 0.364273 0.0202039i
\(611\) −19.5658 −0.791547
\(612\) 5.52796 + 27.5544i 0.223455 + 1.11382i
\(613\) −8.75083 −0.353443 −0.176721 0.984261i \(-0.556549\pi\)
−0.176721 + 0.984261i \(0.556549\pi\)
\(614\) −3.44693 2.82409i −0.139107 0.113971i
\(615\) 8.78378 + 9.58496i 0.354196 + 0.386503i
\(616\) 31.3775 4.12012i 1.26424 0.166004i
\(617\) 42.8075i 1.72337i −0.507447 0.861683i \(-0.669411\pi\)
0.507447 0.861683i \(-0.330589\pi\)
\(618\) −4.76363 + 5.81423i −0.191621 + 0.233883i
\(619\) 30.3386i 1.21941i −0.792628 0.609706i \(-0.791288\pi\)
0.792628 0.609706i \(-0.208712\pi\)
\(620\) 5.33741 7.30511i 0.214356 0.293380i
\(621\) 3.59149 0.144121
\(622\) −1.74124 1.42661i −0.0698175 0.0572019i
\(623\) 29.2758i 1.17291i
\(624\) −23.4144 + 9.78876i −0.937326 + 0.391864i
\(625\) −24.6210 4.33684i −0.984839 0.173474i
\(626\) 22.7097 + 18.6062i 0.907662 + 0.743653i
\(627\) 42.9959 + 60.3572i 1.71709 + 2.41043i
\(628\) −11.2790 + 2.26280i −0.450083 + 0.0902956i
\(629\) 3.28541i 0.130998i
\(630\) −54.1523 + 3.00348i −2.15748 + 0.119662i
\(631\) 36.0437i 1.43488i 0.696622 + 0.717438i \(0.254685\pi\)
−0.696622 + 0.717438i \(0.745315\pi\)
\(632\) 9.61275 + 5.10772i 0.382375 + 0.203174i
\(633\) −53.6579 −2.13271
\(634\) −14.5215 11.8976i −0.576724 0.472514i
\(635\) −19.2997 21.0601i −0.765886 0.835744i
\(636\) 23.4729 4.70913i 0.930761 0.186729i
\(637\) 9.77595 0.387337
\(638\) −2.38508 + 35.3173i −0.0944260 + 1.39823i
\(639\) 48.5563i 1.92086i
\(640\) −20.1490 + 15.2977i −0.796458 + 0.604694i
\(641\) 13.5255 0.534225 0.267112 0.963665i \(-0.413930\pi\)
0.267112 + 0.963665i \(0.413930\pi\)
\(642\) 29.4569 + 24.1342i 1.16257 + 0.952500i
\(643\) 8.27118 0.326183 0.163092 0.986611i \(-0.447853\pi\)
0.163092 + 0.986611i \(0.447853\pi\)
\(644\) −4.01000 + 0.804485i −0.158016 + 0.0317011i
\(645\) −13.2753 14.4862i −0.522714 0.570392i
\(646\) 19.4679 23.7614i 0.765954 0.934881i
\(647\) −18.8778 −0.742163 −0.371081 0.928600i \(-0.621013\pi\)
−0.371081 + 0.928600i \(0.621013\pi\)
\(648\) −3.98173 2.11569i −0.156417 0.0831120i
\(649\) 11.7235 8.35131i 0.460186 0.327818i
\(650\) 11.2884 + 11.0247i 0.442769 + 0.432425i
\(651\) −19.4044 −0.760518
\(652\) 4.80637 + 23.9576i 0.188232 + 0.938253i
\(653\) 8.12920i 0.318120i 0.987269 + 0.159060i \(0.0508464\pi\)
−0.987269 + 0.159060i \(0.949154\pi\)
\(654\) 27.3311 + 22.3925i 1.06873 + 0.875618i
\(655\) 14.3078 13.1119i 0.559053 0.512323i
\(656\) −3.15507 7.54682i −0.123185 0.294654i
\(657\) −30.5221 −1.19078
\(658\) 32.3585 + 26.5115i 1.26146 + 1.03353i
\(659\) −12.5621 −0.489351 −0.244675 0.969605i \(-0.578681\pi\)
−0.244675 + 0.969605i \(0.578681\pi\)
\(660\) 0.507042 42.1686i 0.0197366 1.64141i
\(661\) 23.0384 0.896091 0.448045 0.894011i \(-0.352120\pi\)
0.448045 + 0.894011i \(0.352120\pi\)
\(662\) 34.1032 + 27.9410i 1.32546 + 1.08596i
\(663\) −17.5362 −0.681051
\(664\) 11.1472 20.9791i 0.432596 0.814146i
\(665\) 40.0519 + 43.7051i 1.55315 + 1.69481i
\(666\) 6.61062 + 5.41612i 0.256156 + 0.209870i
\(667\) 4.57465i 0.177131i
\(668\) 26.5971 5.33591i 1.02907 0.206453i
\(669\) −22.6942 −0.877407
\(670\) 0.106154 + 1.91393i 0.00410107 + 0.0739416i
\(671\) 7.69720 5.48316i 0.297147 0.211675i
\(672\) 51.9871 + 15.5374i 2.00545 + 0.599367i
\(673\) 44.5570 1.71754 0.858772 0.512358i \(-0.171228\pi\)
0.858772 + 0.512358i \(0.171228\pi\)
\(674\) −16.9037 + 20.6317i −0.651105 + 0.794703i
\(675\) −2.57933 + 29.5120i −0.0992784 + 1.13592i
\(676\) 3.15529 + 15.7277i 0.121357 + 0.604911i
\(677\) −40.7002 −1.56423 −0.782117 0.623132i \(-0.785860\pi\)
−0.782117 + 0.623132i \(0.785860\pi\)
\(678\) −59.9662 49.1307i −2.30299 1.88685i
\(679\) −10.1932 −0.391177
\(680\) −16.9227 + 4.38239i −0.648957 + 0.168057i
\(681\) 13.0487i 0.500027i
\(682\) 0.639351 9.46726i 0.0244820 0.362520i
\(683\) 38.3418 1.46711 0.733553 0.679632i \(-0.237860\pi\)
0.733553 + 0.679632i \(0.237860\pi\)
\(684\) 15.7172 + 78.3431i 0.600962 + 2.99553i
\(685\) 18.6415 + 20.3418i 0.712255 + 0.777221i
\(686\) 9.66556 + 7.91905i 0.369033 + 0.302351i
\(687\) −27.2707 −1.04044
\(688\) 4.76839 + 11.4058i 0.181793 + 0.434843i
\(689\) 9.39478i 0.357913i
\(690\) 0.301817 + 5.44172i 0.0114900 + 0.207163i
\(691\) 37.4135i 1.42328i −0.702546 0.711638i \(-0.747954\pi\)
0.702546 0.711638i \(-0.252046\pi\)
\(692\) −6.59298 32.8631i −0.250628 1.24927i
\(693\) −46.3295 + 33.0032i −1.75991 + 1.25369i
\(694\) 20.4015 + 16.7151i 0.774430 + 0.634495i
\(695\) 4.11467 3.77073i 0.156078 0.143032i
\(696\) −28.4773 + 53.5943i −1.07943 + 2.03149i
\(697\) 5.65220i 0.214092i
\(698\) −9.13581 7.48503i −0.345796 0.283312i
\(699\) 64.8805 2.45401
\(700\) −3.73073 33.5287i −0.141008 1.26727i
\(701\) 27.1663i 1.02606i −0.858371 0.513029i \(-0.828523\pi\)
0.858371 0.513029i \(-0.171477\pi\)
\(702\) 11.8498 14.4632i 0.447242 0.545879i
\(703\) 9.34113i 0.352308i
\(704\) −9.29348 + 24.8522i −0.350261 + 0.936652i
\(705\) 41.0974 37.6622i 1.54782 1.41844i
\(706\) 5.90593 + 4.83876i 0.222273 + 0.182109i
\(707\) −41.9712 −1.57849
\(708\) 24.1965 4.85430i 0.909361 0.182436i
\(709\) 8.91175 0.334688 0.167344 0.985899i \(-0.446481\pi\)
0.167344 + 0.985899i \(0.446481\pi\)
\(710\) −30.1567 + 1.67260i −1.13176 + 0.0627715i
\(711\) −19.5658 −0.733774
\(712\) −21.6753 11.5171i −0.812316 0.431623i
\(713\) 1.22629i 0.0459251i
\(714\) 29.0019 + 23.7614i 1.08537 + 0.889250i
\(715\) 16.1854 + 3.45005i 0.605300 + 0.129025i
\(716\) 3.32199 0.666456i 0.124148 0.0249066i
\(717\) 32.8272 1.22595
\(718\) 12.8745 15.7139i 0.480472 0.586438i
\(719\) 19.6576i 0.733104i −0.930398 0.366552i \(-0.880538\pi\)
0.930398 0.366552i \(-0.119462\pi\)
\(720\) 19.0798 41.2749i 0.711063 1.53823i
\(721\) 6.30636i 0.234861i
\(722\) 38.3223 46.7741i 1.42621 1.74075i
\(723\) 52.8157i 1.96424i
\(724\) −8.51027 42.4199i −0.316282 1.57652i
\(725\) 37.5908 + 3.28541i 1.39609 + 0.122017i
\(726\) −23.1766 37.6715i −0.860164 1.39812i
\(727\) −38.5802 −1.43086 −0.715431 0.698684i \(-0.753769\pi\)
−0.715431 + 0.698684i \(0.753769\pi\)
\(728\) −9.99091 + 18.8029i −0.370288 + 0.696882i
\(729\) −42.4329 −1.57159
\(730\) −1.05138 18.9563i −0.0389134 0.701603i
\(731\) 8.54241i 0.315952i
\(732\) 15.8866 3.18716i 0.587184 0.117801i
\(733\) 12.6124 0.465849 0.232925 0.972495i \(-0.425170\pi\)
0.232925 + 0.972495i \(0.425170\pi\)
\(734\) −21.7845 + 26.5890i −0.804081 + 0.981418i
\(735\) −20.5341 + 18.8177i −0.757411 + 0.694102i
\(736\) 0.981910 3.28541i 0.0361937 0.121102i
\(737\) 1.16645 + 1.63745i 0.0429667 + 0.0603162i
\(738\) 11.3729 + 9.31785i 0.418641 + 0.342995i
\(739\) 36.1035 1.32809 0.664044 0.747693i \(-0.268839\pi\)
0.664044 + 0.747693i \(0.268839\pi\)
\(740\) −3.13606 + 4.29220i −0.115284 + 0.157785i
\(741\) −49.8593 −1.83163
\(742\) 12.7299 15.5374i 0.467328 0.570395i
\(743\) 1.73620i 0.0636949i 0.999493 + 0.0318474i \(0.0101391\pi\)
−0.999493 + 0.0318474i \(0.989861\pi\)
\(744\) 7.63371 14.3667i 0.279865 0.526707i
\(745\) −20.6694 22.5547i −0.757269 0.826341i
\(746\) −5.48270 + 6.69188i −0.200736 + 0.245007i
\(747\) 42.7008i 1.56234i
\(748\) −12.5486 + 13.3669i −0.458823 + 0.488743i
\(749\) 31.9502 1.16743
\(750\) −44.9325 1.42803i −1.64070 0.0521442i
\(751\) 29.1062i 1.06210i 0.847340 + 0.531051i \(0.178203\pi\)
−0.847340 + 0.531051i \(0.821797\pi\)
\(752\) −32.3585 + 13.5280i −1.17999 + 0.493315i
\(753\) 62.9850i 2.29530i
\(754\) −18.4225 15.0936i −0.670907 0.549678i
\(755\) 4.99190 4.57465i 0.181674 0.166488i
\(756\) −39.1951 + 7.86331i −1.42551 + 0.285986i
\(757\) 40.9371i 1.48788i 0.668245 + 0.743941i \(0.267046\pi\)
−0.668245 + 0.743941i \(0.732954\pi\)
\(758\) −30.9371 25.3470i −1.12369 0.920644i
\(759\) 3.31647 + 4.65562i 0.120380 + 0.168988i
\(760\) −48.1149 + 12.4601i −1.74531 + 0.451975i
\(761\) 30.0158i 1.08807i −0.839062 0.544036i \(-0.816896\pi\)
0.839062 0.544036i \(-0.183104\pi\)
\(762\) −39.7342 32.5544i −1.43942 1.17932i
\(763\) 29.6445 1.07320
\(764\) −27.4399 + 5.50499i −0.992741 + 0.199163i
\(765\) 23.1648 21.2285i 0.837524 0.767518i
\(766\) 22.4436 27.3935i 0.810922 0.989767i
\(767\) 9.68441i 0.349684i
\(768\) −31.9553 + 32.3779i −1.15309 + 1.16834i
\(769\) 1.43745i 0.0518359i 0.999664 + 0.0259180i \(0.00825087\pi\)
−0.999664 + 0.0259180i \(0.991749\pi\)
\(770\) −22.0931 27.6369i −0.796180 0.995965i
\(771\) 36.9149i 1.32946i
\(772\) 3.14377 + 15.6703i 0.113147 + 0.563985i
\(773\) 24.6410i 0.886276i −0.896453 0.443138i \(-0.853865\pi\)
0.896453 0.443138i \(-0.146135\pi\)
\(774\) −17.1883 14.0825i −0.617820 0.506184i
\(775\) −10.0767 0.880698i −0.361966 0.0316356i
\(776\) 4.01000 7.54682i 0.143950 0.270915i
\(777\) 11.4013 0.409019
\(778\) −11.5724 + 14.1247i −0.414891 + 0.506393i
\(779\) 16.0704i 0.575783i
\(780\) 22.9101 + 16.7390i 0.820312 + 0.599354i
\(781\) −25.8003 + 18.3791i −0.923207 + 0.657654i
\(782\) 1.50164 1.83283i 0.0536987 0.0655417i
\(783\) 44.7142i 1.59795i
\(784\) 16.1677 6.75919i 0.577419 0.241400i
\(785\) 8.68961 + 9.48220i 0.310145 + 0.338434i
\(786\) 22.1169 26.9946i 0.788883 0.962867i
\(787\) 27.6295i 0.984886i −0.870345 0.492443i \(-0.836104\pi\)
0.870345 0.492443i \(-0.163896\pi\)
\(788\) −2.33290 11.6285i −0.0831061 0.414247i
\(789\) 13.6817i 0.487080i
\(790\) −0.673975 12.1517i −0.0239790 0.432337i
\(791\) −65.0419 −2.31262
\(792\) −6.20891 47.2851i −0.220624 1.68020i
\(793\) 6.35843i 0.225794i
\(794\) 4.01000 + 3.28541i 0.142309 + 0.116595i
\(795\) −18.0840 19.7335i −0.641373 0.699874i
\(796\) −18.5541 + 3.72232i −0.657633 + 0.131934i
\(797\) 35.2228i 1.24766i −0.781562 0.623828i \(-0.785577\pi\)
0.781562 0.623828i \(-0.214423\pi\)
\(798\) 82.4587 + 67.5589i 2.91901 + 2.39156i
\(799\) −24.2349 −0.857369
\(800\) 26.2917 + 10.4281i 0.929553 + 0.368688i
\(801\) 44.1179 1.55883
\(802\) −31.3976 + 38.3222i −1.10869 + 1.35320i
\(803\) −11.5529 16.2179i −0.407694 0.572316i
\(804\) 0.678013 + 3.37959i 0.0239117 + 0.119189i
\(805\) 3.08938 + 3.37117i 0.108886 + 0.118818i
\(806\) 4.93839 + 4.04605i 0.173947 + 0.142516i
\(807\) 37.0202 1.30317
\(808\) 16.5115 31.0747i 0.580873 1.09320i
\(809\) 8.35131i 0.293616i −0.989165 0.146808i \(-0.953100\pi\)
0.989165 0.146808i \(-0.0469000\pi\)
\(810\) 0.279169 + 5.03338i 0.00980902 + 0.176855i
\(811\) 26.0717 0.915502 0.457751 0.889080i \(-0.348655\pi\)
0.457751 + 0.889080i \(0.348655\pi\)
\(812\) 10.0159 + 49.9246i 0.351488 + 1.75201i
\(813\) 51.7839 1.81614
\(814\) −0.375658 + 5.56260i −0.0131668 + 0.194969i
\(815\) 20.1410 18.4574i 0.705508 0.646536i
\(816\) −29.0019 + 12.1247i −1.01527 + 0.424450i
\(817\) 24.2879i 0.849726i
\(818\) 26.1243 + 21.4038i 0.913413 + 0.748365i
\(819\) 38.2715i 1.33731i
\(820\) −5.39525 + 7.38428i −0.188410 + 0.257870i
\(821\) 43.0645i 1.50296i 0.659755 + 0.751480i \(0.270660\pi\)
−0.659755 + 0.751480i \(0.729340\pi\)
\(822\) 38.3790 + 31.4442i 1.33862 + 1.09674i
\(823\) −1.08310 −0.0377546 −0.0188773 0.999822i \(-0.506009\pi\)
−0.0188773 + 0.999822i \(0.506009\pi\)
\(824\) −4.66911 2.48093i −0.162656 0.0864272i
\(825\) −40.6380 + 23.9085i −1.41483 + 0.832389i
\(826\) 13.1223 16.0164i 0.456583 0.557280i
\(827\) 1.85103i 0.0643667i 0.999482 + 0.0321834i \(0.0102461\pi\)
−0.999482 + 0.0321834i \(0.989754\pi\)
\(828\) 1.21234 + 6.04295i 0.0421316 + 0.210007i
\(829\) −18.5763 −0.645180 −0.322590 0.946539i \(-0.604554\pi\)
−0.322590 + 0.946539i \(0.604554\pi\)
\(830\) −26.5201 + 1.47090i −0.920525 + 0.0510556i
\(831\) 17.6020 0.610606
\(832\) −9.99091 14.7942i −0.346372 0.512896i
\(833\) 12.1088 0.419547
\(834\) 6.36041 7.76316i 0.220243 0.268816i
\(835\) −20.4910 22.3600i −0.709119 0.773799i
\(836\) −35.6784 + 38.0050i −1.23396 + 1.31443i
\(837\) 11.9862i 0.414304i
\(838\) 22.6522 + 18.5591i 0.782508 + 0.641113i
\(839\) 48.0140i 1.65763i 0.559525 + 0.828814i \(0.310984\pi\)
−0.559525 + 0.828814i \(0.689016\pi\)
\(840\) −15.2081 58.7265i −0.524729 2.02626i
\(841\) −27.9545 −0.963950
\(842\) −3.20291 + 3.90930i −0.110380 + 0.134723i
\(843\) 88.6764i 3.05418i
\(844\) −7.42436 37.0071i −0.255557 1.27384i
\(845\) 13.2221 12.1169i 0.454855 0.416835i
\(846\) 39.9521 48.7633i 1.37358 1.67652i
\(847\) −35.0725 12.1251i −1.20510 0.416622i
\(848\) 6.49564 + 15.5374i 0.223061 + 0.533555i
\(849\) 44.6734i 1.53319i
\(850\) 13.9823 + 13.6556i 0.479588 + 0.468384i
\(851\) 0.720523i 0.0246992i
\(852\) −53.2503 + 10.6831i −1.82432 + 0.365996i
\(853\) −26.5228 −0.908123 −0.454062 0.890970i \(-0.650025\pi\)
−0.454062 + 0.890970i \(0.650025\pi\)
\(854\) 8.61562 10.5158i 0.294820 0.359842i
\(855\) 65.8624 60.3572i 2.25245 2.06417i
\(856\) −12.5692 + 23.6553i −0.429607 + 0.808522i
\(857\) 13.7800 0.470716 0.235358 0.971909i \(-0.424374\pi\)
0.235358 + 0.971909i \(0.424374\pi\)
\(858\) 29.6910 + 2.00511i 1.01363 + 0.0684534i
\(859\) 38.3871i 1.30975i 0.755737 + 0.654875i \(0.227279\pi\)
−0.755737 + 0.654875i \(0.772721\pi\)
\(860\) 8.15407 11.1602i 0.278052 0.380559i
\(861\) 19.6147 0.668466
\(862\) 33.5708 40.9747i 1.14343 1.39560i
\(863\) 29.8246 1.01524 0.507620 0.861581i \(-0.330525\pi\)
0.507620 + 0.861581i \(0.330525\pi\)
\(864\) 9.59753 32.1127i 0.326514 1.09250i
\(865\) −27.6277 + 25.3184i −0.939370 + 0.860851i
\(866\) 38.3222 + 31.3976i 1.30224 + 1.06693i
\(867\) 26.6136 0.903847
\(868\) −2.68489 13.3829i −0.0911309 0.454247i
\(869\) −7.40586 10.3963i −0.251227 0.352669i
\(870\) 67.7496 3.75764i 2.29693 0.127396i
\(871\) −1.35265 −0.0458327
\(872\) −11.6622 + 21.9482i −0.394931 + 0.743261i
\(873\) 15.3608i 0.519885i
\(874\) 4.26950 5.21112i 0.144418 0.176269i
\(875\) −29.9203 + 22.9650i −1.01149 + 0.776359i
\(876\) −6.71529 33.4727i −0.226889 1.13094i
\(877\) 38.6836 1.30625 0.653127 0.757249i \(-0.273457\pi\)
0.653127 + 0.757249i \(0.273457\pi\)
\(878\) 25.4597 31.0747i 0.859223 1.04872i
\(879\) −93.9459 −3.16872
\(880\) 29.1533 5.48496i 0.982758 0.184898i
\(881\) −29.9680 −1.00965 −0.504825 0.863222i \(-0.668443\pi\)
−0.504825 + 0.863222i \(0.668443\pi\)
\(882\) −19.9619 + 24.3644i −0.672151 + 0.820391i
\(883\) 40.7513 1.37139 0.685696 0.727888i \(-0.259498\pi\)
0.685696 + 0.727888i \(0.259498\pi\)
\(884\) −2.42640 12.0945i −0.0816085 0.406782i
\(885\) −18.6415 20.3418i −0.626627 0.683783i
\(886\) −11.5914 + 14.1478i −0.389420 + 0.475304i
\(887\) 9.27185i 0.311318i 0.987811 + 0.155659i \(0.0497501\pi\)
−0.987811 + 0.155659i \(0.950250\pi\)
\(888\) −4.48527 + 8.44130i −0.150516 + 0.283271i
\(889\) −43.0974 −1.44544
\(890\) 1.51971 + 27.4002i 0.0509409 + 0.918456i
\(891\) 3.06761 + 4.30627i 0.102769 + 0.144265i
\(892\) −3.14007 15.6519i −0.105137 0.524063i
\(893\) −68.9050 −2.30582
\(894\) −42.5541 34.8648i −1.42322 1.16605i
\(895\) −2.55933 2.79277i −0.0855489 0.0933519i
\(896\) −3.52273 + 38.0046i −0.117686 + 1.26965i
\(897\) −3.84587 −0.128410
\(898\) 5.92616 7.23314i 0.197758 0.241373i
\(899\) 15.2674 0.509197
\(900\) −50.5269 + 5.62210i −1.68423 + 0.187403i
\(901\) 11.6367i 0.387675i
\(902\) −0.646279 + 9.56986i −0.0215187 + 0.318641i
\(903\) −29.6445 −0.986507
\(904\) 25.5875 48.1559i 0.851029 1.60164i
\(905\) −35.6620 + 32.6811i −1.18545 + 1.08636i
\(906\) 7.71643 9.41826i 0.256361 0.312901i
\(907\) 34.9632 1.16093 0.580467 0.814284i \(-0.302870\pi\)
0.580467 + 0.814284i \(0.302870\pi\)
\(908\) 8.99951 1.80548i 0.298659 0.0599170i
\(909\) 63.2495i 2.09785i
\(910\) 23.7691 1.31832i 0.787939 0.0437020i
\(911\) 13.7800i 0.456552i 0.973596 + 0.228276i \(0.0733088\pi\)
−0.973596 + 0.228276i \(0.926691\pi\)
\(912\) −82.4587 + 34.4732i −2.73048 + 1.14152i
\(913\) −22.6890 + 16.1627i −0.750897 + 0.534908i
\(914\) 21.9242 26.7595i 0.725188 0.885125i
\(915\) −12.2393 13.3557i −0.404620 0.441526i
\(916\) −3.77330 18.8082i −0.124673 0.621441i
\(917\) 29.2795i 0.966896i
\(918\) 14.6776 17.9147i 0.484433 0.591272i
\(919\) 14.0762 0.464330 0.232165 0.972676i \(-0.425419\pi\)
0.232165 + 0.972676i \(0.425419\pi\)
\(920\) −3.71132 + 0.961101i −0.122359 + 0.0316866i
\(921\) 8.95880i 0.295203i
\(922\) −14.4900 11.8717i −0.477202 0.390974i
\(923\) 21.3129i 0.701521i
\(924\) −46.3869 43.5471i −1.52602 1.43259i
\(925\) 5.92069 + 0.517464i 0.194671 + 0.0170141i
\(926\) −24.7079 + 30.1572i −0.811953 + 0.991026i
\(927\) 9.50351 0.312136
\(928\) −40.9035 12.2248i −1.34272 0.401300i
\(929\) 15.9340 0.522778 0.261389 0.965234i \(-0.415819\pi\)
0.261389 + 0.965234i \(0.415819\pi\)
\(930\) −18.1612 + 1.00728i −0.595528 + 0.0330302i
\(931\) 34.4281 1.12833
\(932\) 8.97718 + 44.7472i 0.294057 + 1.46574i
\(933\) 4.52560i 0.148162i
\(934\) −4.72145 + 5.76274i −0.154491 + 0.188563i
\(935\) 20.0478 + 4.27336i 0.655635 + 0.139754i
\(936\) 28.3355 + 15.0560i 0.926174 + 0.492122i
\(937\) 18.5883 0.607253 0.303627 0.952791i \(-0.401802\pi\)
0.303627 + 0.952791i \(0.401802\pi\)
\(938\) 2.23705 + 1.83283i 0.0730422 + 0.0598439i
\(939\) 59.0240i 1.92617i
\(940\) 31.6615 + 23.1332i 1.03268 + 0.754521i
\(941\) 40.6090i 1.32382i 0.749585 + 0.661908i \(0.230253\pi\)
−0.749585 + 0.661908i \(0.769747\pi\)
\(942\) 17.8901 + 14.6575i 0.582892 + 0.477567i
\(943\) 1.23958i 0.0403664i
\(944\) 6.69589 + 16.0164i 0.217933 + 0.521288i
\(945\) 30.1967 + 32.9510i 0.982298 + 1.07190i
\(946\) 0.976749 14.4633i 0.0317569 0.470243i
\(947\) 0.895476 0.0290991 0.0145495 0.999894i \(-0.495369\pi\)
0.0145495 + 0.999894i \(0.495369\pi\)
\(948\) −4.30475 21.4572i −0.139812 0.696899i
\(949\) 13.3971 0.434888
\(950\) 39.7546 + 38.8259i 1.28981 + 1.25968i
\(951\) 37.7424i 1.22388i
\(952\) −12.3751 + 23.2900i −0.401079 + 0.754833i
\(953\) −6.76328 −0.219084 −0.109542 0.993982i \(-0.534938\pi\)
−0.109542 + 0.993982i \(0.534938\pi\)
\(954\) −23.4144 19.1835i −0.758069 0.621090i
\(955\) 21.1403 + 23.0685i 0.684083 + 0.746479i
\(956\) 4.54213 + 22.6405i 0.146903 + 0.732245i
\(957\) 57.9626 41.2902i 1.87367 1.33472i
\(958\) −29.3860 + 35.8670i −0.949419 + 1.15881i
\(959\) 41.6275 1.34422
\(960\) 49.4629 + 11.8432i 1.59641 + 0.382239i
\(961\) 26.9074 0.867980
\(962\) −2.90161 2.37730i −0.0935516 0.0766474i
\(963\) 48.1480i 1.55155i
\(964\) −36.4263 + 7.30783i −1.17321 + 0.235370i
\(965\) 13.1739 12.0727i 0.424082 0.388634i
\(966\) 6.36041 + 5.21112i 0.204643 + 0.167665i
\(967\) 40.1851i 1.29226i −0.763225 0.646132i \(-0.776385\pi\)
0.763225 0.646132i \(-0.223615\pi\)
\(968\) 22.7747 21.1970i 0.732007 0.681297i
\(969\) −61.7575 −1.98394
\(970\) −9.54009 + 0.529128i −0.306314 + 0.0169893i
\(971\) 10.4004i 0.333765i −0.985977 0.166883i \(-0.946630\pi\)
0.985977 0.166883i \(-0.0533701\pi\)
\(972\) −5.20950 25.9670i −0.167095 0.832892i
\(973\) 8.42026i 0.269941i
\(974\) 33.0642 40.3564i 1.05945 1.29310i
\(975\) 2.76202 31.6023i 0.0884554 1.01208i
\(976\) 4.39628 + 10.5158i 0.140721 + 0.336601i
\(977\) 39.5947i 1.26675i 0.773847 + 0.633373i \(0.218330\pi\)
−0.773847 + 0.633373i \(0.781670\pi\)
\(978\) 31.1337 38.0001i 0.995546 1.21511i
\(979\) 16.6991 + 23.4420i 0.533706 + 0.749209i
\(980\) −15.8195 11.5584i −0.505336 0.369219i
\(981\) 44.6734i 1.42631i
\(982\) 5.09568 6.21951i 0.162610 0.198473i
\(983\) −21.1857 −0.675718 −0.337859 0.941197i \(-0.609703\pi\)
−0.337859 + 0.941197i \(0.609703\pi\)
\(984\) −7.71643 + 14.5224i −0.245991 + 0.462956i
\(985\) −9.77595 + 8.95880i −0.311488 + 0.285451i
\(986\) −22.8188 18.6955i −0.726697 0.595387i
\(987\) 84.1017i 2.67699i
\(988\) −6.89877 34.3873i −0.219479 1.09400i
\(989\) 1.87343i 0.0595717i
\(990\) −41.6481 + 33.2937i −1.32366 + 1.05814i
\(991\) 31.5123i 1.00102i 0.865731 + 0.500510i \(0.166854\pi\)
−0.865731 + 0.500510i \(0.833146\pi\)
\(992\) 10.9647 + 3.27702i 0.348130 + 0.104046i
\(993\) 88.6365i 2.81279i
\(994\) −28.8788 + 35.2478i −0.915978 + 1.11799i
\(995\) 14.2945 + 15.5983i 0.453165 + 0.494499i
\(996\) −46.8288 + 9.39478i −1.48383 + 0.297685i
\(997\) 4.10073 0.129871 0.0649357 0.997889i \(-0.479316\pi\)
0.0649357 + 0.997889i \(0.479316\pi\)
\(998\) −15.5267 12.7211i −0.491490 0.402680i
\(999\) 7.04264i 0.222819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.g.b.219.17 yes 24
4.3 odd 2 inner 220.2.g.b.219.20 yes 24
5.4 even 2 inner 220.2.g.b.219.8 yes 24
11.10 odd 2 inner 220.2.g.b.219.7 yes 24
20.19 odd 2 inner 220.2.g.b.219.5 24
44.43 even 2 inner 220.2.g.b.219.6 yes 24
55.54 odd 2 inner 220.2.g.b.219.18 yes 24
220.219 even 2 inner 220.2.g.b.219.19 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.g.b.219.5 24 20.19 odd 2 inner
220.2.g.b.219.6 yes 24 44.43 even 2 inner
220.2.g.b.219.7 yes 24 11.10 odd 2 inner
220.2.g.b.219.8 yes 24 5.4 even 2 inner
220.2.g.b.219.17 yes 24 1.1 even 1 trivial
220.2.g.b.219.18 yes 24 55.54 odd 2 inner
220.2.g.b.219.19 yes 24 220.219 even 2 inner
220.2.g.b.219.20 yes 24 4.3 odd 2 inner