Properties

Label 2178.2.a.bb
Level $2178$
Weight $2$
Character orbit 2178.a
Self dual yes
Analytic conductor $17.391$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,2,Mod(1,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2178.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,1,0,-7,2,0,1,0,0,2,-7,0,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3914175602\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + (3 \beta - 1) q^{5} + (\beta - 4) q^{7} + q^{8} + (3 \beta - 1) q^{10} + ( - 2 \beta + 2) q^{13} + (\beta - 4) q^{14} + q^{16} + 4 \beta q^{17} + ( - 2 \beta + 2) q^{19} + (3 \beta - 1) q^{20}+ \cdots + ( - 7 \beta + 10) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + q^{5} - 7 q^{7} + 2 q^{8} + q^{10} + 2 q^{13} - 7 q^{14} + 2 q^{16} + 4 q^{17} + 2 q^{19} + q^{20} + 2 q^{23} + 13 q^{25} + 2 q^{26} - 7 q^{28} - 3 q^{29} + 15 q^{31} + 2 q^{32}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
1.00000 0 1.00000 −2.85410 0 −4.61803 1.00000 0 −2.85410
1.2 1.00000 0 1.00000 3.85410 0 −2.38197 1.00000 0 3.85410
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2178.2.a.bb 2
3.b odd 2 1 726.2.a.j 2
11.b odd 2 1 2178.2.a.t 2
11.d odd 10 2 198.2.f.c 4
12.b even 2 1 5808.2.a.cg 2
33.d even 2 1 726.2.a.l 2
33.f even 10 2 66.2.e.a 4
33.f even 10 2 726.2.e.f 4
33.h odd 10 2 726.2.e.n 4
33.h odd 10 2 726.2.e.r 4
132.d odd 2 1 5808.2.a.cb 2
132.n odd 10 2 528.2.y.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.e.a 4 33.f even 10 2
198.2.f.c 4 11.d odd 10 2
528.2.y.d 4 132.n odd 10 2
726.2.a.j 2 3.b odd 2 1
726.2.a.l 2 33.d even 2 1
726.2.e.f 4 33.f even 10 2
726.2.e.n 4 33.h odd 10 2
726.2.e.r 4 33.h odd 10 2
2178.2.a.t 2 11.b odd 2 1
2178.2.a.bb 2 1.a even 1 1 trivial
5808.2.a.cb 2 132.d odd 2 1
5808.2.a.cg 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2178))\):

\( T_{5}^{2} - T_{5} - 11 \) Copy content Toggle raw display
\( T_{7}^{2} + 7T_{7} + 11 \) Copy content Toggle raw display
\( T_{13}^{2} - 2T_{13} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$7$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$29$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} - 15T + 55 \) Copy content Toggle raw display
$37$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$53$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$59$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$61$ \( T^{2} - 18T + 76 \) Copy content Toggle raw display
$67$ \( (T - 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 16T + 44 \) Copy content Toggle raw display
$73$ \( T^{2} - 7T - 49 \) Copy content Toggle raw display
$79$ \( T^{2} - 3T - 59 \) Copy content Toggle raw display
$83$ \( T^{2} + 17T + 11 \) Copy content Toggle raw display
$89$ \( T^{2} - 10T - 20 \) Copy content Toggle raw display
$97$ \( T^{2} - 7T - 49 \) Copy content Toggle raw display
show more
show less