Properties

Label 2160.2.w.d.1457.1
Level $2160$
Weight $2$
Character 2160.1457
Analytic conductor $17.248$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,2,Mod(593,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,4,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.1
Root \(-0.323042 - 0.323042i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1457
Dual form 2160.2.w.d.593.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 1.87083i) q^{5} +(2.79129 + 2.79129i) q^{7} +1.80341i q^{11} +(-2.79129 + 2.79129i) q^{13} +(1.87083 - 1.87083i) q^{17} +3.00000i q^{19} +(-0.578661 - 0.578661i) q^{23} +(-2.00000 + 4.58258i) q^{25} -6.83723 q^{29} +1.00000 q^{31} +(1.80341 - 8.64064i) q^{35} +(-5.00000 - 5.00000i) q^{37} -1.80341i q^{41} +(-7.79129 + 7.79129i) q^{43} +(-3.09557 + 3.09557i) q^{47} +8.58258i q^{49} +(7.41589 + 7.41589i) q^{53} +(3.37386 - 2.20871i) q^{55} -6.83723 q^{59} -1.00000 q^{61} +(8.64064 + 1.80341i) q^{65} +(0.582576 + 0.582576i) q^{67} +1.80341i q^{71} +(3.37386 - 3.37386i) q^{73} +(-5.03383 + 5.03383i) q^{77} -1.41742i q^{79} +(6.25857 + 6.25857i) q^{83} +(-5.79129 - 1.20871i) q^{85} -5.41022 q^{89} -15.5826 q^{91} +(5.61249 - 3.67423i) q^{95} +(5.58258 + 5.58258i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 4 q^{13} - 16 q^{25} + 8 q^{31} - 40 q^{37} - 44 q^{43} - 28 q^{55} - 8 q^{61} - 32 q^{67} - 28 q^{73} - 28 q^{85} - 88 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.22474 1.87083i −0.547723 0.836660i
\(6\) 0 0
\(7\) 2.79129 + 2.79129i 1.05501 + 1.05501i 0.998396 + 0.0566113i \(0.0180296\pi\)
0.0566113 + 0.998396i \(0.481970\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.80341i 0.543747i 0.962333 + 0.271874i \(0.0876433\pi\)
−0.962333 + 0.271874i \(0.912357\pi\)
\(12\) 0 0
\(13\) −2.79129 + 2.79129i −0.774164 + 0.774164i −0.978832 0.204668i \(-0.934389\pi\)
0.204668 + 0.978832i \(0.434389\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.87083 1.87083i 0.453743 0.453743i −0.442852 0.896595i \(-0.646033\pi\)
0.896595 + 0.442852i \(0.146033\pi\)
\(18\) 0 0
\(19\) 3.00000i 0.688247i 0.938924 + 0.344124i \(0.111824\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.578661 0.578661i −0.120659 0.120659i 0.644199 0.764858i \(-0.277191\pi\)
−0.764858 + 0.644199i \(0.777191\pi\)
\(24\) 0 0
\(25\) −2.00000 + 4.58258i −0.400000 + 0.916515i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.83723 −1.26964 −0.634821 0.772659i \(-0.718926\pi\)
−0.634821 + 0.772659i \(0.718926\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.80341 8.64064i 0.304831 1.46053i
\(36\) 0 0
\(37\) −5.00000 5.00000i −0.821995 0.821995i 0.164399 0.986394i \(-0.447432\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.80341i 0.281645i −0.990035 0.140822i \(-0.955025\pi\)
0.990035 0.140822i \(-0.0449746\pi\)
\(42\) 0 0
\(43\) −7.79129 + 7.79129i −1.18816 + 1.18816i −0.210585 + 0.977576i \(0.567537\pi\)
−0.977576 + 0.210585i \(0.932463\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.09557 + 3.09557i −0.451536 + 0.451536i −0.895864 0.444328i \(-0.853442\pi\)
0.444328 + 0.895864i \(0.353442\pi\)
\(48\) 0 0
\(49\) 8.58258i 1.22608i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.41589 + 7.41589i 1.01865 + 1.01865i 0.999823 + 0.0188284i \(0.00599361\pi\)
0.0188284 + 0.999823i \(0.494006\pi\)
\(54\) 0 0
\(55\) 3.37386 2.20871i 0.454932 0.297823i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.83723 −0.890132 −0.445066 0.895498i \(-0.646820\pi\)
−0.445066 + 0.895498i \(0.646820\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.64064 + 1.80341i 1.07174 + 0.223685i
\(66\) 0 0
\(67\) 0.582576 + 0.582576i 0.0711729 + 0.0711729i 0.741797 0.670624i \(-0.233974\pi\)
−0.670624 + 0.741797i \(0.733974\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.80341i 0.214025i 0.994258 + 0.107012i \(0.0341285\pi\)
−0.994258 + 0.107012i \(0.965872\pi\)
\(72\) 0 0
\(73\) 3.37386 3.37386i 0.394881 0.394881i −0.481542 0.876423i \(-0.659923\pi\)
0.876423 + 0.481542i \(0.159923\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.03383 + 5.03383i −0.573658 + 0.573658i
\(78\) 0 0
\(79\) 1.41742i 0.159473i −0.996816 0.0797363i \(-0.974592\pi\)
0.996816 0.0797363i \(-0.0254078\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.25857 + 6.25857i 0.686967 + 0.686967i 0.961560 0.274593i \(-0.0885432\pi\)
−0.274593 + 0.961560i \(0.588543\pi\)
\(84\) 0 0
\(85\) −5.79129 1.20871i −0.628153 0.131103i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.41022 −0.573482 −0.286741 0.958008i \(-0.592572\pi\)
−0.286741 + 0.958008i \(0.592572\pi\)
\(90\) 0 0
\(91\) −15.5826 −1.63350
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.61249 3.67423i 0.575829 0.376969i
\(96\) 0 0
\(97\) 5.58258 + 5.58258i 0.566825 + 0.566825i 0.931238 0.364413i \(-0.118730\pi\)
−0.364413 + 0.931238i \(0.618730\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.60681i 0.358891i 0.983768 + 0.179446i \(0.0574304\pi\)
−0.983768 + 0.179446i \(0.942570\pi\)
\(102\) 0 0
\(103\) −5.58258 + 5.58258i −0.550068 + 0.550068i −0.926460 0.376393i \(-0.877164\pi\)
0.376393 + 0.926460i \(0.377164\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.74166 3.74166i 0.361720 0.361720i −0.502726 0.864446i \(-0.667670\pi\)
0.864446 + 0.502726i \(0.167670\pi\)
\(108\) 0 0
\(109\) 13.7477i 1.31679i 0.752671 + 0.658397i \(0.228765\pi\)
−0.752671 + 0.658397i \(0.771235\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.15732 1.15732i −0.108872 0.108872i 0.650572 0.759444i \(-0.274529\pi\)
−0.759444 + 0.650572i \(0.774529\pi\)
\(114\) 0 0
\(115\) −0.373864 + 1.79129i −0.0348630 + 0.167038i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.4440 0.957404
\(120\) 0 0
\(121\) 7.74773 0.704339
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0227 1.87083i 0.985901 0.167332i
\(126\) 0 0
\(127\) 5.00000 + 5.00000i 0.443678 + 0.443678i 0.893246 0.449568i \(-0.148422\pi\)
−0.449568 + 0.893246i \(0.648422\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22.3151i 1.94968i 0.222907 + 0.974840i \(0.428445\pi\)
−0.222907 + 0.974840i \(0.571555\pi\)
\(132\) 0 0
\(133\) −8.37386 + 8.37386i −0.726106 + 0.726106i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.1183 14.1183i 1.20621 1.20621i 0.233959 0.972246i \(-0.424832\pi\)
0.972246 0.233959i \(-0.0751683\pi\)
\(138\) 0 0
\(139\) 15.1652i 1.28629i 0.765744 + 0.643146i \(0.222371\pi\)
−0.765744 + 0.643146i \(0.777629\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.03383 5.03383i −0.420950 0.420950i
\(144\) 0 0
\(145\) 8.37386 + 12.7913i 0.695412 + 1.06226i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.0847 −1.56348 −0.781739 0.623606i \(-0.785667\pi\)
−0.781739 + 0.623606i \(0.785667\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.22474 1.87083i −0.0983739 0.150269i
\(156\) 0 0
\(157\) 7.79129 + 7.79129i 0.621812 + 0.621812i 0.945995 0.324182i \(-0.105089\pi\)
−0.324182 + 0.945995i \(0.605089\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.23042i 0.254593i
\(162\) 0 0
\(163\) 5.00000 5.00000i 0.391630 0.391630i −0.483638 0.875268i \(-0.660685\pi\)
0.875268 + 0.483638i \(0.160685\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.5453 + 15.5453i −1.20293 + 1.20293i −0.229660 + 0.973271i \(0.573761\pi\)
−0.973271 + 0.229660i \(0.926239\pi\)
\(168\) 0 0
\(169\) 2.58258i 0.198660i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.6688 11.6688i −0.887161 0.887161i 0.107088 0.994250i \(-0.465847\pi\)
−0.994250 + 0.107088i \(0.965847\pi\)
\(174\) 0 0
\(175\) −18.3739 + 7.20871i −1.38893 + 0.544927i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −17.7477 −1.31918 −0.659589 0.751626i \(-0.729270\pi\)
−0.659589 + 0.751626i \(0.729270\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.23042 + 15.4779i −0.237505 + 1.13796i
\(186\) 0 0
\(187\) 3.37386 + 3.37386i 0.246721 + 0.246721i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.7083i 1.35368i −0.736128 0.676842i \(-0.763348\pi\)
0.736128 0.676842i \(-0.236652\pi\)
\(192\) 0 0
\(193\) −2.79129 + 2.79129i −0.200921 + 0.200921i −0.800395 0.599473i \(-0.795377\pi\)
0.599473 + 0.800395i \(0.295377\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.87083 1.87083i 0.133291 0.133291i −0.637314 0.770605i \(-0.719954\pi\)
0.770605 + 0.637314i \(0.219954\pi\)
\(198\) 0 0
\(199\) 10.7477i 0.761886i 0.924598 + 0.380943i \(0.124401\pi\)
−0.924598 + 0.380943i \(0.875599\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −19.0847 19.0847i −1.33948 1.33948i
\(204\) 0 0
\(205\) −3.37386 + 2.20871i −0.235641 + 0.154263i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.41022 −0.374233
\(210\) 0 0
\(211\) 17.7477 1.22180 0.610902 0.791706i \(-0.290807\pi\)
0.610902 + 0.791706i \(0.290807\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 24.1185 + 5.03383i 1.64487 + 0.343304i
\(216\) 0 0
\(217\) 2.79129 + 2.79129i 0.189485 + 0.189485i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.4440i 0.702542i
\(222\) 0 0
\(223\) 0.582576 0.582576i 0.0390122 0.0390122i −0.687332 0.726344i \(-0.741218\pi\)
0.726344 + 0.687332i \(0.241218\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.8036 11.8036i 0.783435 0.783435i −0.196974 0.980409i \(-0.563111\pi\)
0.980409 + 0.196974i \(0.0631115\pi\)
\(228\) 0 0
\(229\) 24.1652i 1.59688i −0.602076 0.798439i \(-0.705659\pi\)
0.602076 0.798439i \(-0.294341\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.42157 9.42157i −0.617227 0.617227i 0.327592 0.944819i \(-0.393763\pi\)
−0.944819 + 0.327592i \(0.893763\pi\)
\(234\) 0 0
\(235\) 9.58258 + 2.00000i 0.625098 + 0.130466i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.2474 −0.792222 −0.396111 0.918203i \(-0.629640\pi\)
−0.396111 + 0.918203i \(0.629640\pi\)
\(240\) 0 0
\(241\) 15.7477 1.01440 0.507200 0.861828i \(-0.330680\pi\)
0.507200 + 0.861828i \(0.330680\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 16.0565 10.5115i 1.02581 0.671553i
\(246\) 0 0
\(247\) −8.37386 8.37386i −0.532816 0.532816i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.21362i 0.455320i 0.973741 + 0.227660i \(0.0731075\pi\)
−0.973741 + 0.227660i \(0.926893\pi\)
\(252\) 0 0
\(253\) 1.04356 1.04356i 0.0656081 0.0656081i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.96640 + 4.96640i −0.309796 + 0.309796i −0.844830 0.535035i \(-0.820299\pi\)
0.535035 + 0.844830i \(0.320299\pi\)
\(258\) 0 0
\(259\) 27.9129i 1.73442i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.9274 17.9274i −1.10545 1.10545i −0.993741 0.111707i \(-0.964368\pi\)
−0.111707 0.993741i \(-0.535632\pi\)
\(264\) 0 0
\(265\) 4.79129 22.9564i 0.294326 1.41020i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.9219 1.58049 0.790243 0.612793i \(-0.209954\pi\)
0.790243 + 0.612793i \(0.209954\pi\)
\(270\) 0 0
\(271\) 1.00000 0.0607457 0.0303728 0.999539i \(-0.490331\pi\)
0.0303728 + 0.999539i \(0.490331\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.26424 3.60681i −0.498353 0.217499i
\(276\) 0 0
\(277\) −17.7913 17.7913i −1.06897 1.06897i −0.997438 0.0715369i \(-0.977210\pi\)
−0.0715369 0.997438i \(-0.522790\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.1185i 1.43879i 0.694602 + 0.719395i \(0.255581\pi\)
−0.694602 + 0.719395i \(0.744419\pi\)
\(282\) 0 0
\(283\) 17.7913 17.7913i 1.05758 1.05758i 0.0593447 0.998238i \(-0.481099\pi\)
0.998238 0.0593447i \(-0.0189011\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.03383 5.03383i 0.297137 0.297137i
\(288\) 0 0
\(289\) 10.0000i 0.588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.83156 4.83156i −0.282263 0.282263i 0.551748 0.834011i \(-0.313961\pi\)
−0.834011 + 0.551748i \(0.813961\pi\)
\(294\) 0 0
\(295\) 8.37386 + 12.7913i 0.487545 + 0.744738i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.23042 0.186820
\(300\) 0 0
\(301\) −43.4955 −2.50704
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.22474 + 1.87083i 0.0701287 + 0.107123i
\(306\) 0 0
\(307\) −11.7477 11.7477i −0.670478 0.670478i 0.287348 0.957826i \(-0.407226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.7253i 1.57216i 0.618126 + 0.786079i \(0.287892\pi\)
−0.618126 + 0.786079i \(0.712108\pi\)
\(312\) 0 0
\(313\) 1.16515 1.16515i 0.0658583 0.0658583i −0.673411 0.739269i \(-0.735171\pi\)
0.739269 + 0.673411i \(0.235171\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.29784 3.29784i 0.185225 0.185225i −0.608403 0.793628i \(-0.708190\pi\)
0.793628 + 0.608403i \(0.208190\pi\)
\(318\) 0 0
\(319\) 12.3303i 0.690364i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.61249 + 5.61249i 0.312287 + 0.312287i
\(324\) 0 0
\(325\) −7.20871 18.3739i −0.399867 1.01920i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −17.2813 −0.952747
\(330\) 0 0
\(331\) 14.7477 0.810608 0.405304 0.914182i \(-0.367166\pi\)
0.405304 + 0.914182i \(0.367166\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.376393 1.80341i 0.0205645 0.0985306i
\(336\) 0 0
\(337\) 22.7913 + 22.7913i 1.24152 + 1.24152i 0.959370 + 0.282150i \(0.0910477\pi\)
0.282150 + 0.959370i \(0.408952\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.80341i 0.0976599i
\(342\) 0 0
\(343\) −4.41742 + 4.41742i −0.238518 + 0.238518i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.9891 15.9891i 0.858340 0.858340i −0.132802 0.991143i \(-0.542398\pi\)
0.991143 + 0.132802i \(0.0423976\pi\)
\(348\) 0 0
\(349\) 28.5826i 1.52999i −0.644036 0.764995i \(-0.722741\pi\)
0.644036 0.764995i \(-0.277259\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.58434 2.58434i −0.137550 0.137550i 0.634979 0.772529i \(-0.281009\pi\)
−0.772529 + 0.634979i \(0.781009\pi\)
\(354\) 0 0
\(355\) 3.37386 2.20871i 0.179066 0.117226i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.1015 0.797025 0.398513 0.917163i \(-0.369526\pi\)
0.398513 + 0.917163i \(0.369526\pi\)
\(360\) 0 0
\(361\) 10.0000 0.526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.4440 2.17980i −0.546666 0.114096i
\(366\) 0 0
\(367\) −13.9564 13.9564i −0.728520 0.728520i 0.241805 0.970325i \(-0.422261\pi\)
−0.970325 + 0.241805i \(0.922261\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 41.3998i 2.14937i
\(372\) 0 0
\(373\) 5.58258 5.58258i 0.289055 0.289055i −0.547652 0.836706i \(-0.684478\pi\)
0.836706 + 0.547652i \(0.184478\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.0847 19.0847i 0.982911 0.982911i
\(378\) 0 0
\(379\) 19.7477i 1.01437i 0.861836 + 0.507186i \(0.169314\pi\)
−0.861836 + 0.507186i \(0.830686\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.98888 5.98888i −0.306017 0.306017i 0.537345 0.843362i \(-0.319427\pi\)
−0.843362 + 0.537345i \(0.819427\pi\)
\(384\) 0 0
\(385\) 15.5826 + 3.25227i 0.794162 + 0.165751i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.0847 0.967632 0.483816 0.875170i \(-0.339250\pi\)
0.483816 + 0.875170i \(0.339250\pi\)
\(390\) 0 0
\(391\) −2.16515 −0.109496
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.65176 + 1.73598i −0.133424 + 0.0873468i
\(396\) 0 0
\(397\) −15.1216 15.1216i −0.758931 0.758931i 0.217197 0.976128i \(-0.430309\pi\)
−0.976128 + 0.217197i \(0.930309\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.7083i 0.934247i 0.884192 + 0.467124i \(0.154710\pi\)
−0.884192 + 0.467124i \(0.845290\pi\)
\(402\) 0 0
\(403\) −2.79129 + 2.79129i −0.139044 + 0.139044i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.01703 9.01703i 0.446958 0.446958i
\(408\) 0 0
\(409\) 5.83485i 0.288515i 0.989540 + 0.144257i \(0.0460793\pi\)
−0.989540 + 0.144257i \(0.953921\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −19.0847 19.0847i −0.939096 0.939096i
\(414\) 0 0
\(415\) 4.04356 19.3739i 0.198491 0.951026i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −32.7591 −1.60039 −0.800194 0.599741i \(-0.795270\pi\)
−0.800194 + 0.599741i \(0.795270\pi\)
\(420\) 0 0
\(421\) 12.2523 0.597139 0.298570 0.954388i \(-0.403490\pi\)
0.298570 + 0.954388i \(0.403490\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.83156 + 12.3149i 0.234365 + 0.597359i
\(426\) 0 0
\(427\) −2.79129 2.79129i −0.135080 0.135080i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 27.7253i 1.33548i 0.744394 + 0.667741i \(0.232739\pi\)
−0.744394 + 0.667741i \(0.767261\pi\)
\(432\) 0 0
\(433\) 18.3739 18.3739i 0.882992 0.882992i −0.110846 0.993838i \(-0.535356\pi\)
0.993838 + 0.110846i \(0.0353561\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.73598 1.73598i 0.0830433 0.0830433i
\(438\) 0 0
\(439\) 1.41742i 0.0676500i −0.999428 0.0338250i \(-0.989231\pi\)
0.999428 0.0338250i \(-0.0107689\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.6688 + 11.6688i 0.554401 + 0.554401i 0.927708 0.373307i \(-0.121776\pi\)
−0.373307 + 0.927708i \(0.621776\pi\)
\(444\) 0 0
\(445\) 6.62614 + 10.1216i 0.314109 + 0.479809i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.5117 −0.968007 −0.484003 0.875066i \(-0.660818\pi\)
−0.484003 + 0.875066i \(0.660818\pi\)
\(450\) 0 0
\(451\) 3.25227 0.153144
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19.0847 + 29.1523i 0.894704 + 1.36668i
\(456\) 0 0
\(457\) 5.58258 + 5.58258i 0.261142 + 0.261142i 0.825518 0.564376i \(-0.190883\pi\)
−0.564376 + 0.825518i \(0.690883\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.5287i 1.37529i 0.726047 + 0.687645i \(0.241355\pi\)
−0.726047 + 0.687645i \(0.758645\pi\)
\(462\) 0 0
\(463\) 26.1652 26.1652i 1.21600 1.21600i 0.246976 0.969022i \(-0.420563\pi\)
0.969022 0.246976i \(-0.0794369\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.0511 24.0511i 1.11295 1.11295i 0.120202 0.992749i \(-0.461646\pi\)
0.992749 0.120202i \(-0.0383542\pi\)
\(468\) 0 0
\(469\) 3.25227i 0.150176i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.0509 14.0509i −0.646059 0.646059i
\(474\) 0 0
\(475\) −13.7477 6.00000i −0.630789 0.275299i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.0847 −0.872001 −0.436001 0.899946i \(-0.643605\pi\)
−0.436001 + 0.899946i \(0.643605\pi\)
\(480\) 0 0
\(481\) 27.9129 1.27272
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.60681 17.2813i 0.163777 0.784702i
\(486\) 0 0
\(487\) 13.3739 + 13.3739i 0.606028 + 0.606028i 0.941906 0.335878i \(-0.109033\pi\)
−0.335878 + 0.941906i \(0.609033\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 29.5287i 1.33261i −0.745678 0.666306i \(-0.767874\pi\)
0.745678 0.666306i \(-0.232126\pi\)
\(492\) 0 0
\(493\) −12.7913 + 12.7913i −0.576091 + 0.576091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.03383 + 5.03383i −0.225798 + 0.225798i
\(498\) 0 0
\(499\) 9.33030i 0.417682i −0.977950 0.208841i \(-0.933031\pi\)
0.977950 0.208841i \(-0.0669691\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.8261 12.8261i −0.571888 0.571888i 0.360768 0.932656i \(-0.382515\pi\)
−0.932656 + 0.360768i \(0.882515\pi\)
\(504\) 0 0
\(505\) 6.74773 4.41742i 0.300270 0.196573i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 27.3489 1.21222 0.606110 0.795381i \(-0.292729\pi\)
0.606110 + 0.795381i \(0.292729\pi\)
\(510\) 0 0
\(511\) 18.8348 0.833205
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.2813 + 3.60681i 0.761504 + 0.158935i
\(516\) 0 0
\(517\) −5.58258 5.58258i −0.245521 0.245521i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.01703i 0.395043i 0.980299 + 0.197522i \(0.0632893\pi\)
−0.980299 + 0.197522i \(0.936711\pi\)
\(522\) 0 0
\(523\) −1.62614 + 1.62614i −0.0711060 + 0.0711060i −0.741765 0.670659i \(-0.766011\pi\)
0.670659 + 0.741765i \(0.266011\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.87083 1.87083i 0.0814946 0.0814946i
\(528\) 0 0
\(529\) 22.3303i 0.970883i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.03383 + 5.03383i 0.218039 + 0.218039i
\(534\) 0 0
\(535\) −11.5826 2.41742i −0.500758 0.104514i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15.4779 −0.666679
\(540\) 0 0
\(541\) 35.4955 1.52607 0.763034 0.646358i \(-0.223709\pi\)
0.763034 + 0.646358i \(0.223709\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 25.7196 16.8375i 1.10171 0.721237i
\(546\) 0 0
\(547\) 1.04356 + 1.04356i 0.0446194 + 0.0446194i 0.729064 0.684445i \(-0.239955\pi\)
−0.684445 + 0.729064i \(0.739955\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.5117i 0.873827i
\(552\) 0 0
\(553\) 3.95644 3.95644i 0.168245 0.168245i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.3598 11.3598i 0.481331 0.481331i −0.424226 0.905557i \(-0.639454\pi\)
0.905557 + 0.424226i \(0.139454\pi\)
\(558\) 0 0
\(559\) 43.4955i 1.83966i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.15732 + 1.15732i 0.0487753 + 0.0487753i 0.731074 0.682298i \(-0.239020\pi\)
−0.682298 + 0.731074i \(0.739020\pi\)
\(564\) 0 0
\(565\) −0.747727 + 3.58258i −0.0314571 + 0.150720i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.6577 −0.740248 −0.370124 0.928982i \(-0.620685\pi\)
−0.370124 + 0.928982i \(0.620685\pi\)
\(570\) 0 0
\(571\) −32.4955 −1.35989 −0.679946 0.733262i \(-0.737997\pi\)
−0.679946 + 0.733262i \(0.737997\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.80908 1.49444i 0.158850 0.0623223i
\(576\) 0 0
\(577\) 3.37386 + 3.37386i 0.140456 + 0.140456i 0.773839 0.633383i \(-0.218334\pi\)
−0.633383 + 0.773839i \(0.718334\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 34.9389i 1.44951i
\(582\) 0 0
\(583\) −13.3739 + 13.3739i −0.553889 + 0.553889i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.5285 + 19.5285i −0.806027 + 0.806027i −0.984030 0.178003i \(-0.943036\pi\)
0.178003 + 0.984030i \(0.443036\pi\)
\(588\) 0 0
\(589\) 3.00000i 0.123613i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.5174 + 22.5174i 0.924677 + 0.924677i 0.997355 0.0726780i \(-0.0231545\pi\)
−0.0726780 + 0.997355i \(0.523155\pi\)
\(594\) 0 0
\(595\) −12.7913 19.5390i −0.524392 0.801022i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.6577 −0.721473 −0.360736 0.932668i \(-0.617475\pi\)
−0.360736 + 0.932668i \(0.617475\pi\)
\(600\) 0 0
\(601\) 12.2523 0.499781 0.249890 0.968274i \(-0.419605\pi\)
0.249890 + 0.968274i \(0.419605\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.48899 14.4947i −0.385782 0.589292i
\(606\) 0 0
\(607\) 8.95644 + 8.95644i 0.363531 + 0.363531i 0.865111 0.501580i \(-0.167248\pi\)
−0.501580 + 0.865111i \(0.667248\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.2813i 0.699126i
\(612\) 0 0
\(613\) 10.0000 10.0000i 0.403896 0.403896i −0.475707 0.879604i \(-0.657808\pi\)
0.879604 + 0.475707i \(0.157808\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.3766 + 10.3766i −0.417747 + 0.417747i −0.884427 0.466680i \(-0.845450\pi\)
0.466680 + 0.884427i \(0.345450\pi\)
\(618\) 0 0
\(619\) 10.4174i 0.418712i −0.977840 0.209356i \(-0.932863\pi\)
0.977840 0.209356i \(-0.0671367\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15.1015 15.1015i −0.605028 0.605028i
\(624\) 0 0
\(625\) −17.0000 18.3303i −0.680000 0.733212i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.7083 −0.745948
\(630\) 0 0
\(631\) −12.2523 −0.487755 −0.243878 0.969806i \(-0.578420\pi\)
−0.243878 + 0.969806i \(0.578420\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.23042 15.4779i 0.128195 0.614220i
\(636\) 0 0
\(637\) −23.9564 23.9564i −0.949189 0.949189i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 37.4166i 1.47787i −0.673779 0.738933i \(-0.735330\pi\)
0.673779 0.738933i \(-0.264670\pi\)
\(642\) 0 0
\(643\) 2.79129 2.79129i 0.110078 0.110078i −0.649923 0.760000i \(-0.725199\pi\)
0.760000 + 0.649923i \(0.225199\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.53939 3.53939i 0.139148 0.139148i −0.634102 0.773250i \(-0.718630\pi\)
0.773250 + 0.634102i \(0.218630\pi\)
\(648\) 0 0
\(649\) 12.3303i 0.484007i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.9330 19.9330i −0.780040 0.780040i 0.199797 0.979837i \(-0.435972\pi\)
−0.979837 + 0.199797i \(0.935972\pi\)
\(654\) 0 0
\(655\) 41.7477 27.3303i 1.63122 1.06788i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.98320 −0.155164 −0.0775818 0.996986i \(-0.524720\pi\)
−0.0775818 + 0.996986i \(0.524720\pi\)
\(660\) 0 0
\(661\) −31.4955 −1.22503 −0.612516 0.790459i \(-0.709842\pi\)
−0.612516 + 0.790459i \(0.709842\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 25.9219 + 5.41022i 1.00521 + 0.209799i
\(666\) 0 0
\(667\) 3.95644 + 3.95644i 0.153194 + 0.153194i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.80341i 0.0696197i
\(672\) 0 0
\(673\) 9.53901 9.53901i 0.367702 0.367702i −0.498937 0.866639i \(-0.666276\pi\)
0.866639 + 0.498937i \(0.166276\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17.4161 + 17.4161i −0.669356 + 0.669356i −0.957567 0.288211i \(-0.906940\pi\)
0.288211 + 0.957567i \(0.406940\pi\)
\(678\) 0 0
\(679\) 31.1652i 1.19601i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.41589 7.41589i −0.283761 0.283761i 0.550846 0.834607i \(-0.314305\pi\)
−0.834607 + 0.550846i \(0.814305\pi\)
\(684\) 0 0
\(685\) −43.7042 9.12159i −1.66985 0.348518i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −41.3998 −1.57721
\(690\) 0 0
\(691\) −15.7477 −0.599072 −0.299536 0.954085i \(-0.596832\pi\)
−0.299536 + 0.954085i \(0.596832\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28.3714 18.5734i 1.07619 0.704531i
\(696\) 0 0
\(697\) −3.37386 3.37386i −0.127794 0.127794i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 40.3492i 1.52397i 0.647597 + 0.761983i \(0.275774\pi\)
−0.647597 + 0.761983i \(0.724226\pi\)
\(702\) 0 0
\(703\) 15.0000 15.0000i 0.565736 0.565736i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.0677 + 10.0677i −0.378633 + 0.378633i
\(708\) 0 0
\(709\) 30.6606i 1.15148i 0.817632 + 0.575742i \(0.195287\pi\)
−0.817632 + 0.575742i \(0.804713\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.578661 0.578661i −0.0216710 0.0216710i
\(714\) 0 0
\(715\) −3.25227 + 15.5826i −0.121628 + 0.582755i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.1015 −0.563190 −0.281595 0.959533i \(-0.590863\pi\)
−0.281595 + 0.959533i \(0.590863\pi\)
\(720\) 0 0
\(721\) −31.1652 −1.16065
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.6745 31.3321i 0.507857 1.16365i
\(726\) 0 0
\(727\) −18.8348 18.8348i −0.698546 0.698546i 0.265551 0.964097i \(-0.414446\pi\)
−0.964097 + 0.265551i \(0.914446\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 29.1523i 1.07824i
\(732\) 0 0
\(733\) 35.5826 35.5826i 1.31427 1.31427i 0.396039 0.918234i \(-0.370385\pi\)
0.918234 0.396039i \(-0.129615\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.05062 + 1.05062i −0.0387001 + 0.0387001i
\(738\) 0 0
\(739\) 30.4955i 1.12179i −0.827886 0.560897i \(-0.810456\pi\)
0.827886 0.560897i \(-0.189544\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.0792 + 27.0792i 0.993441 + 0.993441i 0.999979 0.00653793i \(-0.00208110\pi\)
−0.00653793 + 0.999979i \(0.502081\pi\)
\(744\) 0 0
\(745\) 23.3739 + 35.7042i 0.856352 + 1.30810i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 20.8881 0.763234
\(750\) 0 0
\(751\) 17.7477 0.647624 0.323812 0.946121i \(-0.395036\pi\)
0.323812 + 0.946121i \(0.395036\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.44949 + 3.74166i 0.0891461 + 0.136173i
\(756\) 0 0
\(757\) −5.00000 5.00000i −0.181728 0.181728i 0.610380 0.792108i \(-0.291017\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.7253i 1.00504i −0.864565 0.502521i \(-0.832406\pi\)
0.864565 0.502521i \(-0.167594\pi\)
\(762\) 0 0
\(763\) −38.3739 + 38.3739i −1.38923 + 1.38923i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.0847 19.0847i 0.689108 0.689108i
\(768\) 0 0
\(769\) 9.33030i 0.336459i 0.985748 + 0.168230i \(0.0538050\pi\)
−0.985748 + 0.168230i \(0.946195\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −29.3265 29.3265i −1.05480 1.05480i −0.998409 0.0563904i \(-0.982041\pi\)
−0.0563904 0.998409i \(-0.517959\pi\)
\(774\) 0 0
\(775\) −2.00000 + 4.58258i −0.0718421 + 0.164611i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.41022 0.193841
\(780\) 0 0
\(781\) −3.25227 −0.116375
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.03383 24.1185i 0.179665 0.860826i
\(786\) 0 0
\(787\) 5.46099 + 5.46099i 0.194663 + 0.194663i 0.797708 0.603044i \(-0.206046\pi\)
−0.603044 + 0.797708i \(0.706046\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.46084i 0.229721i
\(792\) 0 0
\(793\) 2.79129 2.79129i 0.0991215 0.0991215i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.96640 + 4.96640i −0.175919 + 0.175919i −0.789574 0.613655i \(-0.789699\pi\)
0.613655 + 0.789574i \(0.289699\pi\)
\(798\) 0 0
\(799\) 11.5826i 0.409762i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.08445 + 6.08445i 0.214715 + 0.214715i
\(804\) 0 0
\(805\) −6.04356 + 3.95644i −0.213008 + 0.139446i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35.6132 1.25209 0.626046 0.779786i \(-0.284672\pi\)
0.626046 + 0.779786i \(0.284672\pi\)
\(810\) 0 0
\(811\) 31.4955 1.10595 0.552977 0.833196i \(-0.313492\pi\)
0.552977 + 0.833196i \(0.313492\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.4779 3.23042i −0.542166 0.113157i
\(816\) 0 0
\(817\) −23.3739 23.3739i −0.817748 0.817748i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.3151i 0.778802i −0.921068 0.389401i \(-0.872682\pi\)
0.921068 0.389401i \(-0.127318\pi\)
\(822\) 0 0
\(823\) 1.04356 1.04356i 0.0363762 0.0363762i −0.688685 0.725061i \(-0.741812\pi\)
0.725061 + 0.688685i \(0.241812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −16.9723 + 16.9723i −0.590185 + 0.590185i −0.937681 0.347496i \(-0.887032\pi\)
0.347496 + 0.937681i \(0.387032\pi\)
\(828\) 0 0
\(829\) 7.25227i 0.251882i −0.992038 0.125941i \(-0.959805\pi\)
0.992038 0.125941i \(-0.0401950\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16.0565 + 16.0565i 0.556326 + 0.556326i
\(834\) 0 0
\(835\) 48.1216 + 10.0436i 1.66532 + 0.347572i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −54.6978 −1.88838 −0.944190 0.329402i \(-0.893153\pi\)
−0.944190 + 0.329402i \(0.893153\pi\)
\(840\) 0 0
\(841\) 17.7477 0.611991
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4.83156 + 3.16300i −0.166211 + 0.108810i
\(846\) 0 0
\(847\) 21.6261 + 21.6261i 0.743083 + 0.743083i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.78661i 0.198362i
\(852\) 0 0
\(853\) −32.3303 + 32.3303i −1.10697 + 1.10697i −0.113422 + 0.993547i \(0.536181\pi\)
−0.993547 + 0.113422i \(0.963819\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.70806 8.70806i 0.297462 0.297462i −0.542557 0.840019i \(-0.682544\pi\)
0.840019 + 0.542557i \(0.182544\pi\)
\(858\) 0 0
\(859\) 27.6606i 0.943768i 0.881661 + 0.471884i \(0.156426\pi\)
−0.881661 + 0.471884i \(0.843574\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 33.6075 + 33.6075i 1.14401 + 1.14401i 0.987709 + 0.156303i \(0.0499577\pi\)
0.156303 + 0.987709i \(0.450042\pi\)
\(864\) 0 0
\(865\) −7.53901 + 36.1216i −0.256334 + 1.22817i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.55619 0.0867129
\(870\) 0 0
\(871\) −3.25227 −0.110199
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 35.9896 + 25.5455i 1.21667 + 0.863596i
\(876\) 0 0
\(877\) 7.79129 + 7.79129i 0.263093 + 0.263093i 0.826309 0.563216i \(-0.190436\pi\)
−0.563216 + 0.826309i \(0.690436\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13.2981i 0.448023i 0.974586 + 0.224012i \(0.0719154\pi\)
−0.974586 + 0.224012i \(0.928085\pi\)
\(882\) 0 0
\(883\) 11.6261 11.6261i 0.391251 0.391251i −0.483882 0.875133i \(-0.660774\pi\)
0.875133 + 0.483882i \(0.160774\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.85403 + 5.85403i −0.196559 + 0.196559i −0.798523 0.601964i \(-0.794385\pi\)
0.601964 + 0.798523i \(0.294385\pi\)
\(888\) 0 0
\(889\) 27.9129i 0.936168i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.28672 9.28672i −0.310768 0.310768i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.83723 −0.228034
\(900\) 0 0
\(901\) 27.7477 0.924411
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 21.7364 + 33.2030i 0.722544 + 1.10370i
\(906\) 0 0
\(907\) 27.9129 + 27.9129i 0.926832 + 0.926832i 0.997500 0.0706680i \(-0.0225131\pi\)
−0.0706680 + 0.997500i \(0.522513\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.9049i 0.560084i 0.959988 + 0.280042i \(0.0903483\pi\)
−0.959988 + 0.280042i \(0.909652\pi\)
\(912\) 0 0
\(913\) −11.2867 + 11.2867i −0.373537 + 0.373537i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −62.2879 + 62.2879i −2.05693 + 2.05693i
\(918\) 0 0
\(919\) 24.0000i 0.791687i 0.918318 + 0.395843i \(0.129548\pi\)
−0.918318 + 0.395843i \(0.870452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.03383 5.03383i −0.165690 0.165690i
\(924\) 0 0
\(925\) 32.9129 12.9129i 1.08217 0.424573i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −32.7591 −1.07479 −0.537396 0.843330i \(-0.680592\pi\)
−0.537396 + 0.843330i \(0.680592\pi\)
\(930\) 0 0
\(931\) −25.7477 −0.843848
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.17980 10.4440i 0.0712870 0.341557i
\(936\) 0 0
\(937\) 26.7477 + 26.7477i 0.873810 + 0.873810i 0.992885 0.119075i \(-0.0379929\pi\)
−0.119075 + 0.992885i \(0.537993\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29.5287i 0.962609i 0.876554 + 0.481304i \(0.159837\pi\)
−0.876554 + 0.481304i \(0.840163\pi\)
\(942\) 0 0
\(943\) −1.04356 + 1.04356i −0.0339830 + 0.0339830i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.2139 17.2139i 0.559375 0.559375i −0.369754 0.929129i \(-0.620558\pi\)
0.929129 + 0.369754i \(0.120558\pi\)
\(948\) 0 0
\(949\) 18.8348i 0.611405i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.5003 + 16.5003i 0.534499 + 0.534499i 0.921908 0.387409i \(-0.126630\pi\)
−0.387409 + 0.921908i \(0.626630\pi\)
\(954\) 0 0
\(955\) −35.0000 + 22.9129i −1.13257 + 0.741443i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 78.8164 2.54511
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.64064 + 1.80341i 0.278152 + 0.0580537i
\(966\) 0 0
\(967\) 17.3303 + 17.3303i 0.557305 + 0.557305i 0.928539 0.371234i \(-0.121065\pi\)
−0.371234 + 0.928539i \(0.621065\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.7083i 0.600377i −0.953880 0.300189i \(-0.902950\pi\)
0.953880 0.300189i \(-0.0970497\pi\)
\(972\) 0 0
\(973\) −42.3303 + 42.3303i −1.35705 + 1.35705i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 35.8547 35.8547i 1.14709 1.14709i 0.159972 0.987121i \(-0.448859\pi\)
0.987121 0.159972i \(-0.0511406\pi\)
\(978\) 0 0
\(979\) 9.75682i 0.311829i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −19.6633 19.6633i −0.627163 0.627163i 0.320190 0.947353i \(-0.396253\pi\)
−0.947353 + 0.320190i \(0.896253\pi\)
\(984\) 0 0
\(985\) −5.79129 1.20871i −0.184526 0.0385128i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.01703 0.286725
\(990\) 0 0
\(991\) −45.7477 −1.45322 −0.726612 0.687048i \(-0.758906\pi\)
−0.726612 + 0.687048i \(0.758906\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.1072 13.1632i 0.637440 0.417302i
\(996\) 0 0
\(997\) 12.2087 + 12.2087i 0.386654 + 0.386654i 0.873492 0.486838i \(-0.161850\pi\)
−0.486838 + 0.873492i \(0.661850\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.w.d.1457.1 8
3.2 odd 2 inner 2160.2.w.d.1457.4 8
4.3 odd 2 135.2.f.a.107.1 yes 8
5.3 odd 4 inner 2160.2.w.d.593.3 8
12.11 even 2 135.2.f.a.107.4 yes 8
15.8 even 4 inner 2160.2.w.d.593.2 8
20.3 even 4 135.2.f.a.53.4 yes 8
20.7 even 4 675.2.f.i.593.1 8
20.19 odd 2 675.2.f.i.107.4 8
36.7 odd 6 405.2.m.c.377.4 16
36.11 even 6 405.2.m.c.377.1 16
36.23 even 6 405.2.m.c.107.4 16
36.31 odd 6 405.2.m.c.107.1 16
60.23 odd 4 135.2.f.a.53.1 8
60.47 odd 4 675.2.f.i.593.4 8
60.59 even 2 675.2.f.i.107.1 8
180.23 odd 12 405.2.m.c.188.4 16
180.43 even 12 405.2.m.c.53.4 16
180.83 odd 12 405.2.m.c.53.1 16
180.103 even 12 405.2.m.c.188.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.f.a.53.1 8 60.23 odd 4
135.2.f.a.53.4 yes 8 20.3 even 4
135.2.f.a.107.1 yes 8 4.3 odd 2
135.2.f.a.107.4 yes 8 12.11 even 2
405.2.m.c.53.1 16 180.83 odd 12
405.2.m.c.53.4 16 180.43 even 12
405.2.m.c.107.1 16 36.31 odd 6
405.2.m.c.107.4 16 36.23 even 6
405.2.m.c.188.1 16 180.103 even 12
405.2.m.c.188.4 16 180.23 odd 12
405.2.m.c.377.1 16 36.11 even 6
405.2.m.c.377.4 16 36.7 odd 6
675.2.f.i.107.1 8 60.59 even 2
675.2.f.i.107.4 8 20.19 odd 2
675.2.f.i.593.1 8 20.7 even 4
675.2.f.i.593.4 8 60.47 odd 4
2160.2.w.d.593.2 8 15.8 even 4 inner
2160.2.w.d.593.3 8 5.3 odd 4 inner
2160.2.w.d.1457.1 8 1.1 even 1 trivial
2160.2.w.d.1457.4 8 3.2 odd 2 inner