Properties

Label 675.2.f.i.593.1
Level $675$
Weight $2$
Character 675.593
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(107,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,4,0,0,0,0,0,4,0,0,-4,0,0,0,0,0,-4,0,0,0,0,0,44,0, 0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.1
Root \(-1.54779 - 1.54779i\) of defining polynomial
Character \(\chi\) \(=\) 675.593
Dual form 675.2.f.i.107.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.54779 - 1.54779i) q^{2} +2.79129i q^{4} +(2.79129 - 2.79129i) q^{7} +(1.22474 - 1.22474i) q^{8} -1.80341i q^{11} +(2.79129 + 2.79129i) q^{13} -8.64064 q^{14} +1.79129 q^{16} +(1.87083 + 1.87083i) q^{17} +3.00000i q^{19} +(-2.79129 + 2.79129i) q^{22} +(0.578661 - 0.578661i) q^{23} -8.64064i q^{26} +(7.79129 + 7.79129i) q^{28} +6.83723 q^{29} -1.00000 q^{31} +(-5.22202 - 5.22202i) q^{32} -5.79129i q^{34} +(5.00000 - 5.00000i) q^{37} +(4.64336 - 4.64336i) q^{38} -1.80341i q^{41} +(-7.79129 - 7.79129i) q^{43} +5.03383 q^{44} -1.79129 q^{46} +(3.09557 + 3.09557i) q^{47} -8.58258i q^{49} +(-7.79129 + 7.79129i) q^{52} +(7.41589 - 7.41589i) q^{53} -6.83723i q^{56} +(-10.5826 - 10.5826i) q^{58} -6.83723 q^{59} -1.00000 q^{61} +(1.54779 + 1.54779i) q^{62} +12.5826i q^{64} +(0.582576 - 0.582576i) q^{67} +(-5.22202 + 5.22202i) q^{68} -1.80341i q^{71} +(-3.37386 - 3.37386i) q^{73} -15.4779 q^{74} -8.37386 q^{76} +(-5.03383 - 5.03383i) q^{77} -1.41742i q^{79} +(-2.79129 + 2.79129i) q^{82} +(-6.25857 + 6.25857i) q^{83} +24.1185i q^{86} +(-2.20871 - 2.20871i) q^{88} +5.41022 q^{89} +15.5826 q^{91} +(1.61521 + 1.61521i) q^{92} -9.58258i q^{94} +(-5.58258 + 5.58258i) q^{97} +(-13.2840 + 13.2840i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} + 4 q^{13} - 4 q^{16} - 4 q^{22} + 44 q^{28} - 8 q^{31} + 40 q^{37} - 44 q^{43} + 4 q^{46} - 44 q^{52} - 48 q^{58} - 8 q^{61} - 32 q^{67} + 28 q^{73} - 12 q^{76} - 4 q^{82} - 36 q^{88} + 88 q^{91}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.54779 1.54779i −1.09445 1.09445i −0.995047 0.0994033i \(-0.968307\pi\)
−0.0994033 0.995047i \(-0.531693\pi\)
\(3\) 0 0
\(4\) 2.79129i 1.39564i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.79129 2.79129i 1.05501 1.05501i 0.0566113 0.998396i \(-0.481970\pi\)
0.998396 0.0566113i \(-0.0180296\pi\)
\(8\) 1.22474 1.22474i 0.433013 0.433013i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.80341i 0.543747i −0.962333 0.271874i \(-0.912357\pi\)
0.962333 0.271874i \(-0.0876433\pi\)
\(12\) 0 0
\(13\) 2.79129 + 2.79129i 0.774164 + 0.774164i 0.978832 0.204668i \(-0.0656113\pi\)
−0.204668 + 0.978832i \(0.565611\pi\)
\(14\) −8.64064 −2.30931
\(15\) 0 0
\(16\) 1.79129 0.447822
\(17\) 1.87083 + 1.87083i 0.453743 + 0.453743i 0.896595 0.442852i \(-0.146033\pi\)
−0.442852 + 0.896595i \(0.646033\pi\)
\(18\) 0 0
\(19\) 3.00000i 0.688247i 0.938924 + 0.344124i \(0.111824\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.79129 + 2.79129i −0.595105 + 0.595105i
\(23\) 0.578661 0.578661i 0.120659 0.120659i −0.644199 0.764858i \(-0.722809\pi\)
0.764858 + 0.644199i \(0.222809\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 8.64064i 1.69457i
\(27\) 0 0
\(28\) 7.79129 + 7.79129i 1.47242 + 1.47242i
\(29\) 6.83723 1.26964 0.634821 0.772659i \(-0.281074\pi\)
0.634821 + 0.772659i \(0.281074\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) −5.22202 5.22202i −0.923132 0.923132i
\(33\) 0 0
\(34\) 5.79129i 0.993198i
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 5.00000i 0.821995 0.821995i −0.164399 0.986394i \(-0.552568\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 4.64336 4.64336i 0.753253 0.753253i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.80341i 0.281645i −0.990035 0.140822i \(-0.955025\pi\)
0.990035 0.140822i \(-0.0449746\pi\)
\(42\) 0 0
\(43\) −7.79129 7.79129i −1.18816 1.18816i −0.977576 0.210585i \(-0.932463\pi\)
−0.210585 0.977576i \(-0.567537\pi\)
\(44\) 5.03383 0.758878
\(45\) 0 0
\(46\) −1.79129 −0.264111
\(47\) 3.09557 + 3.09557i 0.451536 + 0.451536i 0.895864 0.444328i \(-0.146558\pi\)
−0.444328 + 0.895864i \(0.646558\pi\)
\(48\) 0 0
\(49\) 8.58258i 1.22608i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.79129 + 7.79129i −1.08046 + 1.08046i
\(53\) 7.41589 7.41589i 1.01865 1.01865i 0.0188284 0.999823i \(-0.494006\pi\)
0.999823 0.0188284i \(-0.00599361\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6.83723i 0.913663i
\(57\) 0 0
\(58\) −10.5826 10.5826i −1.38956 1.38956i
\(59\) −6.83723 −0.890132 −0.445066 0.895498i \(-0.646820\pi\)
−0.445066 + 0.895498i \(0.646820\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 1.54779 + 1.54779i 0.196569 + 0.196569i
\(63\) 0 0
\(64\) 12.5826i 1.57282i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.582576 0.582576i 0.0711729 0.0711729i −0.670624 0.741797i \(-0.733974\pi\)
0.741797 + 0.670624i \(0.233974\pi\)
\(68\) −5.22202 + 5.22202i −0.633263 + 0.633263i
\(69\) 0 0
\(70\) 0 0
\(71\) 1.80341i 0.214025i −0.994258 0.107012i \(-0.965872\pi\)
0.994258 0.107012i \(-0.0341285\pi\)
\(72\) 0 0
\(73\) −3.37386 3.37386i −0.394881 0.394881i 0.481542 0.876423i \(-0.340077\pi\)
−0.876423 + 0.481542i \(0.840077\pi\)
\(74\) −15.4779 −1.79927
\(75\) 0 0
\(76\) −8.37386 −0.960548
\(77\) −5.03383 5.03383i −0.573658 0.573658i
\(78\) 0 0
\(79\) 1.41742i 0.159473i −0.996816 0.0797363i \(-0.974592\pi\)
0.996816 0.0797363i \(-0.0254078\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2.79129 + 2.79129i −0.308246 + 0.308246i
\(83\) −6.25857 + 6.25857i −0.686967 + 0.686967i −0.961560 0.274593i \(-0.911457\pi\)
0.274593 + 0.961560i \(0.411457\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 24.1185i 2.60077i
\(87\) 0 0
\(88\) −2.20871 2.20871i −0.235450 0.235450i
\(89\) 5.41022 0.573482 0.286741 0.958008i \(-0.407428\pi\)
0.286741 + 0.958008i \(0.407428\pi\)
\(90\) 0 0
\(91\) 15.5826 1.63350
\(92\) 1.61521 + 1.61521i 0.168397 + 0.168397i
\(93\) 0 0
\(94\) 9.58258i 0.988367i
\(95\) 0 0
\(96\) 0 0
\(97\) −5.58258 + 5.58258i −0.566825 + 0.566825i −0.931238 0.364413i \(-0.881270\pi\)
0.364413 + 0.931238i \(0.381270\pi\)
\(98\) −13.2840 + 13.2840i −1.34189 + 1.34189i
\(99\) 0 0
\(100\) 0 0
\(101\) 3.60681i 0.358891i 0.983768 + 0.179446i \(0.0574304\pi\)
−0.983768 + 0.179446i \(0.942570\pi\)
\(102\) 0 0
\(103\) −5.58258 5.58258i −0.550068 0.550068i 0.376393 0.926460i \(-0.377164\pi\)
−0.926460 + 0.376393i \(0.877164\pi\)
\(104\) 6.83723 0.670446
\(105\) 0 0
\(106\) −22.9564 −2.22973
\(107\) −3.74166 3.74166i −0.361720 0.361720i 0.502726 0.864446i \(-0.332330\pi\)
−0.864446 + 0.502726i \(0.832330\pi\)
\(108\) 0 0
\(109\) 13.7477i 1.31679i −0.752671 0.658397i \(-0.771235\pi\)
0.752671 0.658397i \(-0.228765\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 5.00000 5.00000i 0.472456 0.472456i
\(113\) −1.15732 + 1.15732i −0.108872 + 0.108872i −0.759444 0.650572i \(-0.774529\pi\)
0.650572 + 0.759444i \(0.274529\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 19.0847i 1.77197i
\(117\) 0 0
\(118\) 10.5826 + 10.5826i 0.974205 + 0.974205i
\(119\) 10.4440 0.957404
\(120\) 0 0
\(121\) 7.74773 0.704339
\(122\) 1.54779 + 1.54779i 0.140130 + 0.140130i
\(123\) 0 0
\(124\) 2.79129i 0.250665i
\(125\) 0 0
\(126\) 0 0
\(127\) 5.00000 5.00000i 0.443678 0.443678i −0.449568 0.893246i \(-0.648422\pi\)
0.893246 + 0.449568i \(0.148422\pi\)
\(128\) 9.03110 9.03110i 0.798244 0.798244i
\(129\) 0 0
\(130\) 0 0
\(131\) 22.3151i 1.94968i −0.222907 0.974840i \(-0.571555\pi\)
0.222907 0.974840i \(-0.428445\pi\)
\(132\) 0 0
\(133\) 8.37386 + 8.37386i 0.726106 + 0.726106i
\(134\) −1.80341 −0.155791
\(135\) 0 0
\(136\) 4.58258 0.392953
\(137\) 14.1183 + 14.1183i 1.20621 + 1.20621i 0.972246 + 0.233959i \(0.0751683\pi\)
0.233959 + 0.972246i \(0.424832\pi\)
\(138\) 0 0
\(139\) 15.1652i 1.28629i 0.765744 + 0.643146i \(0.222371\pi\)
−0.765744 + 0.643146i \(0.777629\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.79129 + 2.79129i −0.234240 + 0.234240i
\(143\) 5.03383 5.03383i 0.420950 0.420950i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.4440i 0.864355i
\(147\) 0 0
\(148\) 13.9564 + 13.9564i 1.14721 + 1.14721i
\(149\) 19.0847 1.56348 0.781739 0.623606i \(-0.214333\pi\)
0.781739 + 0.623606i \(0.214333\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 3.67423 + 3.67423i 0.298020 + 0.298020i
\(153\) 0 0
\(154\) 15.5826i 1.25568i
\(155\) 0 0
\(156\) 0 0
\(157\) −7.79129 + 7.79129i −0.621812 + 0.621812i −0.945995 0.324182i \(-0.894911\pi\)
0.324182 + 0.945995i \(0.394911\pi\)
\(158\) −2.19387 + 2.19387i −0.174535 + 0.174535i
\(159\) 0 0
\(160\) 0 0
\(161\) 3.23042i 0.254593i
\(162\) 0 0
\(163\) 5.00000 + 5.00000i 0.391630 + 0.391630i 0.875268 0.483638i \(-0.160685\pi\)
−0.483638 + 0.875268i \(0.660685\pi\)
\(164\) 5.03383 0.393076
\(165\) 0 0
\(166\) 19.3739 1.50370
\(167\) 15.5453 + 15.5453i 1.20293 + 1.20293i 0.973271 + 0.229660i \(0.0737613\pi\)
0.229660 + 0.973271i \(0.426239\pi\)
\(168\) 0 0
\(169\) 2.58258i 0.198660i
\(170\) 0 0
\(171\) 0 0
\(172\) 21.7477 21.7477i 1.65825 1.65825i
\(173\) −11.6688 + 11.6688i −0.887161 + 0.887161i −0.994250 0.107088i \(-0.965847\pi\)
0.107088 + 0.994250i \(0.465847\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.23042i 0.243502i
\(177\) 0 0
\(178\) −8.37386 8.37386i −0.627648 0.627648i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −17.7477 −1.31918 −0.659589 0.751626i \(-0.729270\pi\)
−0.659589 + 0.751626i \(0.729270\pi\)
\(182\) −24.1185 24.1185i −1.78778 1.78778i
\(183\) 0 0
\(184\) 1.41742i 0.104494i
\(185\) 0 0
\(186\) 0 0
\(187\) 3.37386 3.37386i 0.246721 0.246721i
\(188\) −8.64064 + 8.64064i −0.630183 + 0.630183i
\(189\) 0 0
\(190\) 0 0
\(191\) 18.7083i 1.35368i 0.736128 + 0.676842i \(0.236652\pi\)
−0.736128 + 0.676842i \(0.763348\pi\)
\(192\) 0 0
\(193\) 2.79129 + 2.79129i 0.200921 + 0.200921i 0.800395 0.599473i \(-0.204623\pi\)
−0.599473 + 0.800395i \(0.704623\pi\)
\(194\) 17.2813 1.24072
\(195\) 0 0
\(196\) 23.9564 1.71117
\(197\) 1.87083 + 1.87083i 0.133291 + 0.133291i 0.770605 0.637314i \(-0.219954\pi\)
−0.637314 + 0.770605i \(0.719954\pi\)
\(198\) 0 0
\(199\) 10.7477i 0.761886i 0.924598 + 0.380943i \(0.124401\pi\)
−0.924598 + 0.380943i \(0.875599\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 5.58258 5.58258i 0.392789 0.392789i
\(203\) 19.0847 19.0847i 1.33948 1.33948i
\(204\) 0 0
\(205\) 0 0
\(206\) 17.2813i 1.20404i
\(207\) 0 0
\(208\) 5.00000 + 5.00000i 0.346688 + 0.346688i
\(209\) 5.41022 0.374233
\(210\) 0 0
\(211\) −17.7477 −1.22180 −0.610902 0.791706i \(-0.709193\pi\)
−0.610902 + 0.791706i \(0.709193\pi\)
\(212\) 20.6999 + 20.6999i 1.42167 + 1.42167i
\(213\) 0 0
\(214\) 11.5826i 0.791769i
\(215\) 0 0
\(216\) 0 0
\(217\) −2.79129 + 2.79129i −0.189485 + 0.189485i
\(218\) −21.2786 + 21.2786i −1.44117 + 1.44117i
\(219\) 0 0
\(220\) 0 0
\(221\) 10.4440i 0.702542i
\(222\) 0 0
\(223\) 0.582576 + 0.582576i 0.0390122 + 0.0390122i 0.726344 0.687332i \(-0.241218\pi\)
−0.687332 + 0.726344i \(0.741218\pi\)
\(224\) −29.1523 −1.94782
\(225\) 0 0
\(226\) 3.58258 0.238309
\(227\) −11.8036 11.8036i −0.783435 0.783435i 0.196974 0.980409i \(-0.436889\pi\)
−0.980409 + 0.196974i \(0.936889\pi\)
\(228\) 0 0
\(229\) 24.1652i 1.59688i 0.602076 + 0.798439i \(0.294341\pi\)
−0.602076 + 0.798439i \(0.705659\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.37386 8.37386i 0.549771 0.549771i
\(233\) −9.42157 + 9.42157i −0.617227 + 0.617227i −0.944819 0.327592i \(-0.893763\pi\)
0.327592 + 0.944819i \(0.393763\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 19.0847i 1.24231i
\(237\) 0 0
\(238\) −16.1652 16.1652i −1.04783 1.04783i
\(239\) −12.2474 −0.792222 −0.396111 0.918203i \(-0.629640\pi\)
−0.396111 + 0.918203i \(0.629640\pi\)
\(240\) 0 0
\(241\) 15.7477 1.01440 0.507200 0.861828i \(-0.330680\pi\)
0.507200 + 0.861828i \(0.330680\pi\)
\(242\) −11.9918 11.9918i −0.770864 0.770864i
\(243\) 0 0
\(244\) 2.79129i 0.178694i
\(245\) 0 0
\(246\) 0 0
\(247\) −8.37386 + 8.37386i −0.532816 + 0.532816i
\(248\) −1.22474 + 1.22474i −0.0777714 + 0.0777714i
\(249\) 0 0
\(250\) 0 0
\(251\) 7.21362i 0.455320i −0.973741 0.227660i \(-0.926893\pi\)
0.973741 0.227660i \(-0.0731075\pi\)
\(252\) 0 0
\(253\) −1.04356 1.04356i −0.0656081 0.0656081i
\(254\) −15.4779 −0.971168
\(255\) 0 0
\(256\) −2.79129 −0.174455
\(257\) −4.96640 4.96640i −0.309796 0.309796i 0.535035 0.844830i \(-0.320299\pi\)
−0.844830 + 0.535035i \(0.820299\pi\)
\(258\) 0 0
\(259\) 27.9129i 1.73442i
\(260\) 0 0
\(261\) 0 0
\(262\) −34.5390 + 34.5390i −2.13383 + 2.13383i
\(263\) 17.9274 17.9274i 1.10545 1.10545i 0.111707 0.993741i \(-0.464368\pi\)
0.993741 0.111707i \(-0.0356318\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 25.9219i 1.58937i
\(267\) 0 0
\(268\) 1.62614 + 1.62614i 0.0993321 + 0.0993321i
\(269\) −25.9219 −1.58049 −0.790243 0.612793i \(-0.790046\pi\)
−0.790243 + 0.612793i \(0.790046\pi\)
\(270\) 0 0
\(271\) −1.00000 −0.0607457 −0.0303728 0.999539i \(-0.509669\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 3.35119 + 3.35119i 0.203196 + 0.203196i
\(273\) 0 0
\(274\) 43.7042i 2.64027i
\(275\) 0 0
\(276\) 0 0
\(277\) 17.7913 17.7913i 1.06897 1.06897i 0.0715369 0.997438i \(-0.477210\pi\)
0.997438 0.0715369i \(-0.0227904\pi\)
\(278\) 23.4724 23.4724i 1.40778 1.40778i
\(279\) 0 0
\(280\) 0 0
\(281\) 24.1185i 1.43879i 0.694602 + 0.719395i \(0.255581\pi\)
−0.694602 + 0.719395i \(0.744419\pi\)
\(282\) 0 0
\(283\) 17.7913 + 17.7913i 1.05758 + 1.05758i 0.998238 + 0.0593447i \(0.0189011\pi\)
0.0593447 + 0.998238i \(0.481099\pi\)
\(284\) 5.03383 0.298703
\(285\) 0 0
\(286\) −15.5826 −0.921417
\(287\) −5.03383 5.03383i −0.297137 0.297137i
\(288\) 0 0
\(289\) 10.0000i 0.588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 9.41742 9.41742i 0.551113 0.551113i
\(293\) −4.83156 + 4.83156i −0.282263 + 0.282263i −0.834011 0.551748i \(-0.813961\pi\)
0.551748 + 0.834011i \(0.313961\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 12.2474i 0.711868i
\(297\) 0 0
\(298\) −29.5390 29.5390i −1.71115 1.71115i
\(299\) 3.23042 0.186820
\(300\) 0 0
\(301\) −43.4955 −2.50704
\(302\) −3.09557 3.09557i −0.178130 0.178130i
\(303\) 0 0
\(304\) 5.37386i 0.308212i
\(305\) 0 0
\(306\) 0 0
\(307\) −11.7477 + 11.7477i −0.670478 + 0.670478i −0.957826 0.287348i \(-0.907226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(308\) 14.0509 14.0509i 0.800622 0.800622i
\(309\) 0 0
\(310\) 0 0
\(311\) 27.7253i 1.57216i −0.618126 0.786079i \(-0.712108\pi\)
0.618126 0.786079i \(-0.287892\pi\)
\(312\) 0 0
\(313\) −1.16515 1.16515i −0.0658583 0.0658583i 0.673411 0.739269i \(-0.264829\pi\)
−0.739269 + 0.673411i \(0.764829\pi\)
\(314\) 24.1185 1.36109
\(315\) 0 0
\(316\) 3.95644 0.222567
\(317\) 3.29784 + 3.29784i 0.185225 + 0.185225i 0.793628 0.608403i \(-0.208190\pi\)
−0.608403 + 0.793628i \(0.708190\pi\)
\(318\) 0 0
\(319\) 12.3303i 0.690364i
\(320\) 0 0
\(321\) 0 0
\(322\) −5.00000 + 5.00000i −0.278639 + 0.278639i
\(323\) −5.61249 + 5.61249i −0.312287 + 0.312287i
\(324\) 0 0
\(325\) 0 0
\(326\) 15.4779i 0.857240i
\(327\) 0 0
\(328\) −2.20871 2.20871i −0.121956 0.121956i
\(329\) 17.2813 0.952747
\(330\) 0 0
\(331\) −14.7477 −0.810608 −0.405304 0.914182i \(-0.632834\pi\)
−0.405304 + 0.914182i \(0.632834\pi\)
\(332\) −17.4695 17.4695i −0.958762 0.958762i
\(333\) 0 0
\(334\) 48.1216i 2.63310i
\(335\) 0 0
\(336\) 0 0
\(337\) −22.7913 + 22.7913i −1.24152 + 1.24152i −0.282150 + 0.959370i \(0.591048\pi\)
−0.959370 + 0.282150i \(0.908952\pi\)
\(338\) 3.99728 3.99728i 0.217423 0.217423i
\(339\) 0 0
\(340\) 0 0
\(341\) 1.80341i 0.0976599i
\(342\) 0 0
\(343\) −4.41742 4.41742i −0.238518 0.238518i
\(344\) −19.0847 −1.02898
\(345\) 0 0
\(346\) 36.1216 1.94191
\(347\) −15.9891 15.9891i −0.858340 0.858340i 0.132802 0.991143i \(-0.457602\pi\)
−0.991143 + 0.132802i \(0.957602\pi\)
\(348\) 0 0
\(349\) 28.5826i 1.52999i 0.644036 + 0.764995i \(0.277259\pi\)
−0.644036 + 0.764995i \(0.722741\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9.41742 + 9.41742i −0.501950 + 0.501950i
\(353\) −2.58434 + 2.58434i −0.137550 + 0.137550i −0.772529 0.634979i \(-0.781009\pi\)
0.634979 + 0.772529i \(0.281009\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 15.1015i 0.800377i
\(357\) 0 0
\(358\) 0 0
\(359\) 15.1015 0.797025 0.398513 0.917163i \(-0.369526\pi\)
0.398513 + 0.917163i \(0.369526\pi\)
\(360\) 0 0
\(361\) 10.0000 0.526316
\(362\) 27.4697 + 27.4697i 1.44378 + 1.44378i
\(363\) 0 0
\(364\) 43.4955i 2.27978i
\(365\) 0 0
\(366\) 0 0
\(367\) −13.9564 + 13.9564i −0.728520 + 0.728520i −0.970325 0.241805i \(-0.922261\pi\)
0.241805 + 0.970325i \(0.422261\pi\)
\(368\) 1.03655 1.03655i 0.0540338 0.0540338i
\(369\) 0 0
\(370\) 0 0
\(371\) 41.3998i 2.14937i
\(372\) 0 0
\(373\) −5.58258 5.58258i −0.289055 0.289055i 0.547652 0.836706i \(-0.315522\pi\)
−0.836706 + 0.547652i \(0.815522\pi\)
\(374\) −10.4440 −0.540049
\(375\) 0 0
\(376\) 7.58258 0.391041
\(377\) 19.0847 + 19.0847i 0.982911 + 0.982911i
\(378\) 0 0
\(379\) 19.7477i 1.01437i 0.861836 + 0.507186i \(0.169314\pi\)
−0.861836 + 0.507186i \(0.830686\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 28.9564 28.9564i 1.48154 1.48154i
\(383\) 5.98888 5.98888i 0.306017 0.306017i −0.537345 0.843362i \(-0.680573\pi\)
0.843362 + 0.537345i \(0.180573\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8.64064i 0.439797i
\(387\) 0 0
\(388\) −15.5826 15.5826i −0.791085 0.791085i
\(389\) −19.0847 −0.967632 −0.483816 0.875170i \(-0.660750\pi\)
−0.483816 + 0.875170i \(0.660750\pi\)
\(390\) 0 0
\(391\) 2.16515 0.109496
\(392\) −10.5115 10.5115i −0.530909 0.530909i
\(393\) 0 0
\(394\) 5.79129i 0.291761i
\(395\) 0 0
\(396\) 0 0
\(397\) 15.1216 15.1216i 0.758931 0.758931i −0.217197 0.976128i \(-0.569691\pi\)
0.976128 + 0.217197i \(0.0696914\pi\)
\(398\) 16.6352 16.6352i 0.833847 0.833847i
\(399\) 0 0
\(400\) 0 0
\(401\) 18.7083i 0.934247i 0.884192 + 0.467124i \(0.154710\pi\)
−0.884192 + 0.467124i \(0.845290\pi\)
\(402\) 0 0
\(403\) −2.79129 2.79129i −0.139044 0.139044i
\(404\) −10.0677 −0.500884
\(405\) 0 0
\(406\) −59.0780 −2.93199
\(407\) −9.01703 9.01703i −0.446958 0.446958i
\(408\) 0 0
\(409\) 5.83485i 0.288515i −0.989540 0.144257i \(-0.953921\pi\)
0.989540 0.144257i \(-0.0460793\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15.5826 15.5826i 0.767698 0.767698i
\(413\) −19.0847 + 19.0847i −0.939096 + 0.939096i
\(414\) 0 0
\(415\) 0 0
\(416\) 29.1523i 1.42931i
\(417\) 0 0
\(418\) −8.37386 8.37386i −0.409579 0.409579i
\(419\) −32.7591 −1.60039 −0.800194 0.599741i \(-0.795270\pi\)
−0.800194 + 0.599741i \(0.795270\pi\)
\(420\) 0 0
\(421\) 12.2523 0.597139 0.298570 0.954388i \(-0.403490\pi\)
0.298570 + 0.954388i \(0.403490\pi\)
\(422\) 27.4697 + 27.4697i 1.33720 + 1.33720i
\(423\) 0 0
\(424\) 18.1652i 0.882178i
\(425\) 0 0
\(426\) 0 0
\(427\) −2.79129 + 2.79129i −0.135080 + 0.135080i
\(428\) 10.4440 10.4440i 0.504832 0.504832i
\(429\) 0 0
\(430\) 0 0
\(431\) 27.7253i 1.33548i −0.744394 0.667741i \(-0.767261\pi\)
0.744394 0.667741i \(-0.232739\pi\)
\(432\) 0 0
\(433\) −18.3739 18.3739i −0.882992 0.882992i 0.110846 0.993838i \(-0.464644\pi\)
−0.993838 + 0.110846i \(0.964644\pi\)
\(434\) 8.64064 0.414764
\(435\) 0 0
\(436\) 38.3739 1.83777
\(437\) 1.73598 + 1.73598i 0.0830433 + 0.0830433i
\(438\) 0 0
\(439\) 1.41742i 0.0676500i −0.999428 0.0338250i \(-0.989231\pi\)
0.999428 0.0338250i \(-0.0107689\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 16.1652 16.1652i 0.768898 0.768898i
\(443\) −11.6688 + 11.6688i −0.554401 + 0.554401i −0.927708 0.373307i \(-0.878224\pi\)
0.373307 + 0.927708i \(0.378224\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.80341i 0.0853937i
\(447\) 0 0
\(448\) 35.1216 + 35.1216i 1.65934 + 1.65934i
\(449\) 20.5117 0.968007 0.484003 0.875066i \(-0.339182\pi\)
0.484003 + 0.875066i \(0.339182\pi\)
\(450\) 0 0
\(451\) −3.25227 −0.153144
\(452\) −3.23042 3.23042i −0.151946 0.151946i
\(453\) 0 0
\(454\) 36.5390i 1.71486i
\(455\) 0 0
\(456\) 0 0
\(457\) −5.58258 + 5.58258i −0.261142 + 0.261142i −0.825518 0.564376i \(-0.809117\pi\)
0.564376 + 0.825518i \(0.309117\pi\)
\(458\) 37.4025 37.4025i 1.74770 1.74770i
\(459\) 0 0
\(460\) 0 0
\(461\) 29.5287i 1.37529i 0.726047 + 0.687645i \(0.241355\pi\)
−0.726047 + 0.687645i \(0.758645\pi\)
\(462\) 0 0
\(463\) 26.1652 + 26.1652i 1.21600 + 1.21600i 0.969022 + 0.246976i \(0.0794369\pi\)
0.246976 + 0.969022i \(0.420563\pi\)
\(464\) 12.2474 0.568574
\(465\) 0 0
\(466\) 29.1652 1.35105
\(467\) −24.0511 24.0511i −1.11295 1.11295i −0.992749 0.120202i \(-0.961646\pi\)
−0.120202 0.992749i \(-0.538354\pi\)
\(468\) 0 0
\(469\) 3.25227i 0.150176i
\(470\) 0 0
\(471\) 0 0
\(472\) −8.37386 + 8.37386i −0.385438 + 0.385438i
\(473\) −14.0509 + 14.0509i −0.646059 + 0.646059i
\(474\) 0 0
\(475\) 0 0
\(476\) 29.1523i 1.33619i
\(477\) 0 0
\(478\) 18.9564 + 18.9564i 0.867047 + 0.867047i
\(479\) −19.0847 −0.872001 −0.436001 0.899946i \(-0.643605\pi\)
−0.436001 + 0.899946i \(0.643605\pi\)
\(480\) 0 0
\(481\) 27.9129 1.27272
\(482\) −24.3741 24.3741i −1.11021 1.11021i
\(483\) 0 0
\(484\) 21.6261i 0.983006i
\(485\) 0 0
\(486\) 0 0
\(487\) 13.3739 13.3739i 0.606028 0.606028i −0.335878 0.941906i \(-0.609033\pi\)
0.941906 + 0.335878i \(0.109033\pi\)
\(488\) −1.22474 + 1.22474i −0.0554416 + 0.0554416i
\(489\) 0 0
\(490\) 0 0
\(491\) 29.5287i 1.33261i 0.745678 + 0.666306i \(0.232126\pi\)
−0.745678 + 0.666306i \(0.767874\pi\)
\(492\) 0 0
\(493\) 12.7913 + 12.7913i 0.576091 + 0.576091i
\(494\) 25.9219 1.16628
\(495\) 0 0
\(496\) −1.79129 −0.0804312
\(497\) −5.03383 5.03383i −0.225798 0.225798i
\(498\) 0 0
\(499\) 9.33030i 0.417682i −0.977950 0.208841i \(-0.933031\pi\)
0.977950 0.208841i \(-0.0669691\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −11.1652 + 11.1652i −0.498325 + 0.498325i
\(503\) 12.8261 12.8261i 0.571888 0.571888i −0.360768 0.932656i \(-0.617485\pi\)
0.932656 + 0.360768i \(0.117485\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.23042i 0.143610i
\(507\) 0 0
\(508\) 13.9564 + 13.9564i 0.619217 + 0.619217i
\(509\) −27.3489 −1.21222 −0.606110 0.795381i \(-0.707271\pi\)
−0.606110 + 0.795381i \(0.707271\pi\)
\(510\) 0 0
\(511\) −18.8348 −0.833205
\(512\) −13.7419 13.7419i −0.607311 0.607311i
\(513\) 0 0
\(514\) 15.3739i 0.678112i
\(515\) 0 0
\(516\) 0 0
\(517\) 5.58258 5.58258i 0.245521 0.245521i
\(518\) −43.2032 + 43.2032i −1.89824 + 1.89824i
\(519\) 0 0
\(520\) 0 0
\(521\) 9.01703i 0.395043i 0.980299 + 0.197522i \(0.0632893\pi\)
−0.980299 + 0.197522i \(0.936711\pi\)
\(522\) 0 0
\(523\) −1.62614 1.62614i −0.0711060 0.0711060i 0.670659 0.741765i \(-0.266011\pi\)
−0.741765 + 0.670659i \(0.766011\pi\)
\(524\) 62.2879 2.72106
\(525\) 0 0
\(526\) −55.4955 −2.41972
\(527\) −1.87083 1.87083i −0.0814946 0.0814946i
\(528\) 0 0
\(529\) 22.3303i 0.970883i
\(530\) 0 0
\(531\) 0 0
\(532\) −23.3739 + 23.3739i −1.01339 + 1.01339i
\(533\) 5.03383 5.03383i 0.218039 0.218039i
\(534\) 0 0
\(535\) 0 0
\(536\) 1.42701i 0.0616376i
\(537\) 0 0
\(538\) 40.1216 + 40.1216i 1.72976 + 1.72976i
\(539\) −15.4779 −0.666679
\(540\) 0 0
\(541\) 35.4955 1.52607 0.763034 0.646358i \(-0.223709\pi\)
0.763034 + 0.646358i \(0.223709\pi\)
\(542\) 1.54779 + 1.54779i 0.0664831 + 0.0664831i
\(543\) 0 0
\(544\) 19.5390i 0.837728i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.04356 1.04356i 0.0446194 0.0446194i −0.684445 0.729064i \(-0.739955\pi\)
0.729064 + 0.684445i \(0.239955\pi\)
\(548\) −39.4082 + 39.4082i −1.68343 + 1.68343i
\(549\) 0 0
\(550\) 0 0
\(551\) 20.5117i 0.873827i
\(552\) 0 0
\(553\) −3.95644 3.95644i −0.168245 0.168245i
\(554\) −55.0742 −2.33988
\(555\) 0 0
\(556\) −42.3303 −1.79520
\(557\) 11.3598 + 11.3598i 0.481331 + 0.481331i 0.905557 0.424226i \(-0.139454\pi\)
−0.424226 + 0.905557i \(0.639454\pi\)
\(558\) 0 0
\(559\) 43.4955i 1.83966i
\(560\) 0 0
\(561\) 0 0
\(562\) 37.3303 37.3303i 1.57468 1.57468i
\(563\) −1.15732 + 1.15732i −0.0487753 + 0.0487753i −0.731074 0.682298i \(-0.760980\pi\)
0.682298 + 0.731074i \(0.260980\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 55.0742i 2.31494i
\(567\) 0 0
\(568\) −2.20871 2.20871i −0.0926755 0.0926755i
\(569\) 17.6577 0.740248 0.370124 0.928982i \(-0.379315\pi\)
0.370124 + 0.928982i \(0.379315\pi\)
\(570\) 0 0
\(571\) 32.4955 1.35989 0.679946 0.733262i \(-0.262003\pi\)
0.679946 + 0.733262i \(0.262003\pi\)
\(572\) 14.0509 + 14.0509i 0.587496 + 0.587496i
\(573\) 0 0
\(574\) 15.5826i 0.650404i
\(575\) 0 0
\(576\) 0 0
\(577\) −3.37386 + 3.37386i −0.140456 + 0.140456i −0.773839 0.633383i \(-0.781666\pi\)
0.633383 + 0.773839i \(0.281666\pi\)
\(578\) −15.4779 + 15.4779i −0.643794 + 0.643794i
\(579\) 0 0
\(580\) 0 0
\(581\) 34.9389i 1.44951i
\(582\) 0 0
\(583\) −13.3739 13.3739i −0.553889 0.553889i
\(584\) −8.26424 −0.341977
\(585\) 0 0
\(586\) 14.9564 0.617845
\(587\) 19.5285 + 19.5285i 0.806027 + 0.806027i 0.984030 0.178003i \(-0.0569636\pi\)
−0.178003 + 0.984030i \(0.556964\pi\)
\(588\) 0 0
\(589\) 3.00000i 0.123613i
\(590\) 0 0
\(591\) 0 0
\(592\) 8.95644 8.95644i 0.368107 0.368107i
\(593\) 22.5174 22.5174i 0.924677 0.924677i −0.0726780 0.997355i \(-0.523155\pi\)
0.997355 + 0.0726780i \(0.0231545\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 53.2708i 2.18206i
\(597\) 0 0
\(598\) −5.00000 5.00000i −0.204465 0.204465i
\(599\) −17.6577 −0.721473 −0.360736 0.932668i \(-0.617475\pi\)
−0.360736 + 0.932668i \(0.617475\pi\)
\(600\) 0 0
\(601\) 12.2523 0.499781 0.249890 0.968274i \(-0.419605\pi\)
0.249890 + 0.968274i \(0.419605\pi\)
\(602\) 67.3217 + 67.3217i 2.74383 + 2.74383i
\(603\) 0 0
\(604\) 5.58258i 0.227152i
\(605\) 0 0
\(606\) 0 0
\(607\) 8.95644 8.95644i 0.363531 0.363531i −0.501580 0.865111i \(-0.667248\pi\)
0.865111 + 0.501580i \(0.167248\pi\)
\(608\) 15.6661 15.6661i 0.635343 0.635343i
\(609\) 0 0
\(610\) 0 0
\(611\) 17.2813i 0.699126i
\(612\) 0 0
\(613\) −10.0000 10.0000i −0.403896 0.403896i 0.475707 0.879604i \(-0.342192\pi\)
−0.879604 + 0.475707i \(0.842192\pi\)
\(614\) 36.3660 1.46761
\(615\) 0 0
\(616\) −12.3303 −0.496802
\(617\) −10.3766 10.3766i −0.417747 0.417747i 0.466680 0.884427i \(-0.345450\pi\)
−0.884427 + 0.466680i \(0.845450\pi\)
\(618\) 0 0
\(619\) 10.4174i 0.418712i −0.977840 0.209356i \(-0.932863\pi\)
0.977840 0.209356i \(-0.0671367\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −42.9129 + 42.9129i −1.72065 + 1.72065i
\(623\) 15.1015 15.1015i 0.605028 0.605028i
\(624\) 0 0
\(625\) 0 0
\(626\) 3.60681i 0.144157i
\(627\) 0 0
\(628\) −21.7477 21.7477i −0.867829 0.867829i
\(629\) 18.7083 0.745948
\(630\) 0 0
\(631\) 12.2523 0.487755 0.243878 0.969806i \(-0.421580\pi\)
0.243878 + 0.969806i \(0.421580\pi\)
\(632\) −1.73598 1.73598i −0.0690537 0.0690537i
\(633\) 0 0
\(634\) 10.2087i 0.405440i
\(635\) 0 0
\(636\) 0 0
\(637\) 23.9564 23.9564i 0.949189 0.949189i
\(638\) −19.0847 + 19.0847i −0.755570 + 0.755570i
\(639\) 0 0
\(640\) 0 0
\(641\) 37.4166i 1.47787i −0.673779 0.738933i \(-0.735330\pi\)
0.673779 0.738933i \(-0.264670\pi\)
\(642\) 0 0
\(643\) 2.79129 + 2.79129i 0.110078 + 0.110078i 0.760000 0.649923i \(-0.225199\pi\)
−0.649923 + 0.760000i \(0.725199\pi\)
\(644\) 9.01703 0.355321
\(645\) 0 0
\(646\) 17.3739 0.683566
\(647\) −3.53939 3.53939i −0.139148 0.139148i 0.634102 0.773250i \(-0.281370\pi\)
−0.773250 + 0.634102i \(0.781370\pi\)
\(648\) 0 0
\(649\) 12.3303i 0.484007i
\(650\) 0 0
\(651\) 0 0
\(652\) −13.9564 + 13.9564i −0.546576 + 0.546576i
\(653\) −19.9330 + 19.9330i −0.780040 + 0.780040i −0.979837 0.199797i \(-0.935972\pi\)
0.199797 + 0.979837i \(0.435972\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.23042i 0.126127i
\(657\) 0 0
\(658\) −26.7477 26.7477i −1.04273 1.04273i
\(659\) −3.98320 −0.155164 −0.0775818 0.996986i \(-0.524720\pi\)
−0.0775818 + 0.996986i \(0.524720\pi\)
\(660\) 0 0
\(661\) −31.4955 −1.22503 −0.612516 0.790459i \(-0.709842\pi\)
−0.612516 + 0.790459i \(0.709842\pi\)
\(662\) 22.8263 + 22.8263i 0.887171 + 0.887171i
\(663\) 0 0
\(664\) 15.3303i 0.594931i
\(665\) 0 0
\(666\) 0 0
\(667\) 3.95644 3.95644i 0.153194 0.153194i
\(668\) −43.3914 + 43.3914i −1.67886 + 1.67886i
\(669\) 0 0
\(670\) 0 0
\(671\) 1.80341i 0.0696197i
\(672\) 0 0
\(673\) −9.53901 9.53901i −0.367702 0.367702i 0.498937 0.866639i \(-0.333724\pi\)
−0.866639 + 0.498937i \(0.833724\pi\)
\(674\) 70.5521 2.71757
\(675\) 0 0
\(676\) −7.20871 −0.277258
\(677\) −17.4161 17.4161i −0.669356 0.669356i 0.288211 0.957567i \(-0.406940\pi\)
−0.957567 + 0.288211i \(0.906940\pi\)
\(678\) 0 0
\(679\) 31.1652i 1.19601i
\(680\) 0 0
\(681\) 0 0
\(682\) 2.79129 2.79129i 0.106884 0.106884i
\(683\) 7.41589 7.41589i 0.283761 0.283761i −0.550846 0.834607i \(-0.685695\pi\)
0.834607 + 0.550846i \(0.185695\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.6745i 0.522093i
\(687\) 0 0
\(688\) −13.9564 13.9564i −0.532084 0.532084i
\(689\) 41.3998 1.57721
\(690\) 0 0
\(691\) 15.7477 0.599072 0.299536 0.954085i \(-0.403168\pi\)
0.299536 + 0.954085i \(0.403168\pi\)
\(692\) −32.5709 32.5709i −1.23816 1.23816i
\(693\) 0 0
\(694\) 49.4955i 1.87882i
\(695\) 0 0
\(696\) 0 0
\(697\) 3.37386 3.37386i 0.127794 0.127794i
\(698\) 44.2397 44.2397i 1.67450 1.67450i
\(699\) 0 0
\(700\) 0 0
\(701\) 40.3492i 1.52397i 0.647597 + 0.761983i \(0.275774\pi\)
−0.647597 + 0.761983i \(0.724226\pi\)
\(702\) 0 0
\(703\) 15.0000 + 15.0000i 0.565736 + 0.565736i
\(704\) 22.6915 0.855218
\(705\) 0 0
\(706\) 8.00000 0.301084
\(707\) 10.0677 + 10.0677i 0.378633 + 0.378633i
\(708\) 0 0
\(709\) 30.6606i 1.15148i −0.817632 0.575742i \(-0.804713\pi\)
0.817632 0.575742i \(-0.195287\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.62614 6.62614i 0.248325 0.248325i
\(713\) −0.578661 + 0.578661i −0.0216710 + 0.0216710i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −23.3739 23.3739i −0.872305 0.872305i
\(719\) −15.1015 −0.563190 −0.281595 0.959533i \(-0.590863\pi\)
−0.281595 + 0.959533i \(0.590863\pi\)
\(720\) 0 0
\(721\) −31.1652 −1.16065
\(722\) −15.4779 15.4779i −0.576027 0.576027i
\(723\) 0 0
\(724\) 49.5390i 1.84110i
\(725\) 0 0
\(726\) 0 0
\(727\) −18.8348 + 18.8348i −0.698546 + 0.698546i −0.964097 0.265551i \(-0.914446\pi\)
0.265551 + 0.964097i \(0.414446\pi\)
\(728\) 19.0847 19.0847i 0.707325 0.707325i
\(729\) 0 0
\(730\) 0 0
\(731\) 29.1523i 1.07824i
\(732\) 0 0
\(733\) −35.5826 35.5826i −1.31427 1.31427i −0.918234 0.396039i \(-0.870385\pi\)
−0.396039 0.918234i \(-0.629615\pi\)
\(734\) 43.2032 1.59466
\(735\) 0 0
\(736\) −6.04356 −0.222769
\(737\) −1.05062 1.05062i −0.0387001 0.0387001i
\(738\) 0 0
\(739\) 30.4955i 1.12179i −0.827886 0.560897i \(-0.810456\pi\)
0.827886 0.560897i \(-0.189544\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −64.0780 + 64.0780i −2.35238 + 2.35238i
\(743\) −27.0792 + 27.0792i −0.993441 + 0.993441i −0.999979 0.00653793i \(-0.997919\pi\)
0.00653793 + 0.999979i \(0.497919\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 17.2813i 0.632712i
\(747\) 0 0
\(748\) 9.41742 + 9.41742i 0.344335 + 0.344335i
\(749\) −20.8881 −0.763234
\(750\) 0 0
\(751\) −17.7477 −0.647624 −0.323812 0.946121i \(-0.604964\pi\)
−0.323812 + 0.946121i \(0.604964\pi\)
\(752\) 5.54506 + 5.54506i 0.202208 + 0.202208i
\(753\) 0 0
\(754\) 59.0780i 2.15149i
\(755\) 0 0
\(756\) 0 0
\(757\) 5.00000 5.00000i 0.181728 0.181728i −0.610380 0.792108i \(-0.708983\pi\)
0.792108 + 0.610380i \(0.208983\pi\)
\(758\) 30.5653 30.5653i 1.11018 1.11018i
\(759\) 0 0
\(760\) 0 0
\(761\) 27.7253i 1.00504i −0.864565 0.502521i \(-0.832406\pi\)
0.864565 0.502521i \(-0.167594\pi\)
\(762\) 0 0
\(763\) −38.3739 38.3739i −1.38923 1.38923i
\(764\) −52.2202 −1.88926
\(765\) 0 0
\(766\) −18.5390 −0.669842
\(767\) −19.0847 19.0847i −0.689108 0.689108i
\(768\) 0 0
\(769\) 9.33030i 0.336459i −0.985748 0.168230i \(-0.946195\pi\)
0.985748 0.168230i \(-0.0538050\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.79129 + 7.79129i −0.280415 + 0.280415i
\(773\) −29.3265 + 29.3265i −1.05480 + 1.05480i −0.0563904 + 0.998409i \(0.517959\pi\)
−0.998409 + 0.0563904i \(0.982041\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 13.6745i 0.490885i
\(777\) 0 0
\(778\) 29.5390 + 29.5390i 1.05902 + 1.05902i
\(779\) 5.41022 0.193841
\(780\) 0 0
\(781\) −3.25227 −0.116375
\(782\) −3.35119 3.35119i −0.119838 0.119838i
\(783\) 0 0
\(784\) 15.3739i 0.549067i
\(785\) 0 0
\(786\) 0 0
\(787\) 5.46099 5.46099i 0.194663 0.194663i −0.603044 0.797708i \(-0.706046\pi\)
0.797708 + 0.603044i \(0.206046\pi\)
\(788\) −5.22202 + 5.22202i −0.186027 + 0.186027i
\(789\) 0 0
\(790\) 0 0
\(791\) 6.46084i 0.229721i
\(792\) 0 0
\(793\) −2.79129 2.79129i −0.0991215 0.0991215i
\(794\) −46.8100 −1.66122
\(795\) 0 0
\(796\) −30.0000 −1.06332
\(797\) −4.96640 4.96640i −0.175919 0.175919i 0.613655 0.789574i \(-0.289699\pi\)
−0.789574 + 0.613655i \(0.789699\pi\)
\(798\) 0 0
\(799\) 11.5826i 0.409762i
\(800\) 0 0
\(801\) 0 0
\(802\) 28.9564 28.9564i 1.02249 1.02249i
\(803\) −6.08445 + 6.08445i −0.214715 + 0.214715i
\(804\) 0 0
\(805\) 0 0
\(806\) 8.64064i 0.304353i
\(807\) 0 0
\(808\) 4.41742 + 4.41742i 0.155404 + 0.155404i
\(809\) −35.6132 −1.25209 −0.626046 0.779786i \(-0.715328\pi\)
−0.626046 + 0.779786i \(0.715328\pi\)
\(810\) 0 0
\(811\) −31.4955 −1.10595 −0.552977 0.833196i \(-0.686508\pi\)
−0.552977 + 0.833196i \(0.686508\pi\)
\(812\) 53.2708 + 53.2708i 1.86944 + 1.86944i
\(813\) 0 0
\(814\) 27.9129i 0.978346i
\(815\) 0 0
\(816\) 0 0
\(817\) 23.3739 23.3739i 0.817748 0.817748i
\(818\) −9.03110 + 9.03110i −0.315765 + 0.315765i
\(819\) 0 0
\(820\) 0 0
\(821\) 22.3151i 0.778802i −0.921068 0.389401i \(-0.872682\pi\)
0.921068 0.389401i \(-0.127318\pi\)
\(822\) 0 0
\(823\) 1.04356 + 1.04356i 0.0363762 + 0.0363762i 0.725061 0.688685i \(-0.241812\pi\)
−0.688685 + 0.725061i \(0.741812\pi\)
\(824\) −13.6745 −0.476372
\(825\) 0 0
\(826\) 59.0780 2.05559
\(827\) 16.9723 + 16.9723i 0.590185 + 0.590185i 0.937681 0.347496i \(-0.112968\pi\)
−0.347496 + 0.937681i \(0.612968\pi\)
\(828\) 0 0
\(829\) 7.25227i 0.251882i 0.992038 + 0.125941i \(0.0401950\pi\)
−0.992038 + 0.125941i \(0.959805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −35.1216 + 35.1216i −1.21762 + 1.21762i
\(833\) 16.0565 16.0565i 0.556326 0.556326i
\(834\) 0 0
\(835\) 0 0
\(836\) 15.1015i 0.522295i
\(837\) 0 0
\(838\) 50.7042 + 50.7042i 1.75155 + 1.75155i
\(839\) −54.6978 −1.88838 −0.944190 0.329402i \(-0.893153\pi\)
−0.944190 + 0.329402i \(0.893153\pi\)
\(840\) 0 0
\(841\) 17.7477 0.611991
\(842\) −18.9639 18.9639i −0.653539 0.653539i
\(843\) 0 0
\(844\) 49.5390i 1.70520i
\(845\) 0 0
\(846\) 0 0
\(847\) 21.6261 21.6261i 0.743083 0.743083i
\(848\) 13.2840 13.2840i 0.456174 0.456174i
\(849\) 0 0
\(850\) 0 0
\(851\) 5.78661i 0.198362i
\(852\) 0 0
\(853\) 32.3303 + 32.3303i 1.10697 + 1.10697i 0.993547 + 0.113422i \(0.0361811\pi\)
0.113422 + 0.993547i \(0.463819\pi\)
\(854\) 8.64064 0.295677
\(855\) 0 0
\(856\) −9.16515 −0.313258
\(857\) 8.70806 + 8.70806i 0.297462 + 0.297462i 0.840019 0.542557i \(-0.182544\pi\)
−0.542557 + 0.840019i \(0.682544\pi\)
\(858\) 0 0
\(859\) 27.6606i 0.943768i 0.881661 + 0.471884i \(0.156426\pi\)
−0.881661 + 0.471884i \(0.843574\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −42.9129 + 42.9129i −1.46162 + 1.46162i
\(863\) −33.6075 + 33.6075i −1.14401 + 1.14401i −0.156303 + 0.987709i \(0.549958\pi\)
−0.987709 + 0.156303i \(0.950042\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 56.8776i 1.93278i
\(867\) 0 0
\(868\) −7.79129 7.79129i −0.264454 0.264454i
\(869\) −2.55619 −0.0867129
\(870\) 0 0
\(871\) 3.25227 0.110199
\(872\) −16.8375 16.8375i −0.570188 0.570188i
\(873\) 0 0
\(874\) 5.37386i 0.181774i
\(875\) 0 0
\(876\) 0 0
\(877\) −7.79129 + 7.79129i −0.263093 + 0.263093i −0.826309 0.563216i \(-0.809564\pi\)
0.563216 + 0.826309i \(0.309564\pi\)
\(878\) −2.19387 + 2.19387i −0.0740395 + 0.0740395i
\(879\) 0 0
\(880\) 0 0
\(881\) 13.2981i 0.448023i 0.974586 + 0.224012i \(0.0719154\pi\)
−0.974586 + 0.224012i \(0.928085\pi\)
\(882\) 0 0
\(883\) 11.6261 + 11.6261i 0.391251 + 0.391251i 0.875133 0.483882i \(-0.160774\pi\)
−0.483882 + 0.875133i \(0.660774\pi\)
\(884\) −29.1523 −0.980499
\(885\) 0 0
\(886\) 36.1216 1.21353
\(887\) 5.85403 + 5.85403i 0.196559 + 0.196559i 0.798523 0.601964i \(-0.205615\pi\)
−0.601964 + 0.798523i \(0.705615\pi\)
\(888\) 0 0
\(889\) 27.9129i 0.936168i
\(890\) 0 0
\(891\) 0 0
\(892\) −1.62614 + 1.62614i −0.0544471 + 0.0544471i
\(893\) −9.28672 + 9.28672i −0.310768 + 0.310768i
\(894\) 0 0
\(895\) 0 0
\(896\) 50.4168i 1.68431i
\(897\) 0 0
\(898\) −31.7477 31.7477i −1.05944 1.05944i
\(899\) −6.83723 −0.228034
\(900\) 0 0
\(901\) 27.7477 0.924411
\(902\) 5.03383 + 5.03383i 0.167608 + 0.167608i
\(903\) 0 0
\(904\) 2.83485i 0.0942857i
\(905\) 0 0
\(906\) 0 0
\(907\) 27.9129 27.9129i 0.926832 0.926832i −0.0706680 0.997500i \(-0.522513\pi\)
0.997500 + 0.0706680i \(0.0225131\pi\)
\(908\) 32.9473 32.9473i 1.09340 1.09340i
\(909\) 0 0
\(910\) 0 0
\(911\) 16.9049i 0.560084i −0.959988 0.280042i \(-0.909652\pi\)
0.959988 0.280042i \(-0.0903483\pi\)
\(912\) 0 0
\(913\) 11.2867 + 11.2867i 0.373537 + 0.373537i
\(914\) 17.2813 0.571614
\(915\) 0 0
\(916\) −67.4519 −2.22867
\(917\) −62.2879 62.2879i −2.05693 2.05693i
\(918\) 0 0
\(919\) 24.0000i 0.791687i 0.918318 + 0.395843i \(0.129548\pi\)
−0.918318 + 0.395843i \(0.870452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 45.7042 45.7042i 1.50519 1.50519i
\(923\) 5.03383 5.03383i 0.165690 0.165690i
\(924\) 0 0
\(925\) 0 0
\(926\) 80.9962i 2.66170i
\(927\) 0 0
\(928\) −35.7042 35.7042i −1.17205 1.17205i
\(929\) 32.7591 1.07479 0.537396 0.843330i \(-0.319408\pi\)
0.537396 + 0.843330i \(0.319408\pi\)
\(930\) 0 0
\(931\) 25.7477 0.843848
\(932\) −26.2983 26.2983i −0.861430 0.861430i
\(933\) 0 0
\(934\) 74.4519i 2.43614i
\(935\) 0 0
\(936\) 0 0
\(937\) −26.7477 + 26.7477i −0.873810 + 0.873810i −0.992885 0.119075i \(-0.962007\pi\)
0.119075 + 0.992885i \(0.462007\pi\)
\(938\) −5.03383 + 5.03383i −0.164360 + 0.164360i
\(939\) 0 0
\(940\) 0 0
\(941\) 29.5287i 0.962609i 0.876554 + 0.481304i \(0.159837\pi\)
−0.876554 + 0.481304i \(0.840163\pi\)
\(942\) 0 0
\(943\) −1.04356 1.04356i −0.0339830 0.0339830i
\(944\) −12.2474 −0.398621
\(945\) 0 0
\(946\) 43.4955 1.41416
\(947\) −17.2139 17.2139i −0.559375 0.559375i 0.369754 0.929129i \(-0.379442\pi\)
−0.929129 + 0.369754i \(0.879442\pi\)
\(948\) 0 0
\(949\) 18.8348i 0.611405i
\(950\) 0 0
\(951\) 0 0
\(952\) 12.7913 12.7913i 0.414568 0.414568i
\(953\) 16.5003 16.5003i 0.534499 0.534499i −0.387409 0.921908i \(-0.626630\pi\)
0.921908 + 0.387409i \(0.126630\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 34.1862i 1.10566i
\(957\) 0 0
\(958\) 29.5390 + 29.5390i 0.954362 + 0.954362i
\(959\) 78.8164 2.54511
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) −43.2032 43.2032i −1.39293 1.39293i
\(963\) 0 0
\(964\) 43.9564i 1.41574i
\(965\) 0 0
\(966\) 0 0
\(967\) 17.3303 17.3303i 0.557305 0.557305i −0.371234 0.928539i \(-0.621065\pi\)
0.928539 + 0.371234i \(0.121065\pi\)
\(968\) 9.48899 9.48899i 0.304988 0.304988i
\(969\) 0 0
\(970\) 0 0
\(971\) 18.7083i 0.600377i 0.953880 + 0.300189i \(0.0970497\pi\)
−0.953880 + 0.300189i \(0.902950\pi\)
\(972\) 0 0
\(973\) 42.3303 + 42.3303i 1.35705 + 1.35705i
\(974\) −41.3998 −1.32653
\(975\) 0 0
\(976\) −1.79129 −0.0573377
\(977\) 35.8547 + 35.8547i 1.14709 + 1.14709i 0.987121 + 0.159972i \(0.0511406\pi\)
0.159972 + 0.987121i \(0.448859\pi\)
\(978\) 0 0
\(979\) 9.75682i 0.311829i
\(980\) 0 0
\(981\) 0 0
\(982\) 45.7042 45.7042i 1.45848 1.45848i
\(983\) 19.6633 19.6633i 0.627163 0.627163i −0.320190 0.947353i \(-0.603747\pi\)
0.947353 + 0.320190i \(0.103747\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 39.5964i 1.26101i
\(987\) 0 0
\(988\) −23.3739 23.3739i −0.743622 0.743622i
\(989\) −9.01703 −0.286725
\(990\) 0 0
\(991\) 45.7477 1.45322 0.726612 0.687048i \(-0.241094\pi\)
0.726612 + 0.687048i \(0.241094\pi\)
\(992\) 5.22202 + 5.22202i 0.165799 + 0.165799i
\(993\) 0 0
\(994\) 15.5826i 0.494249i
\(995\) 0 0
\(996\) 0 0
\(997\) −12.2087 + 12.2087i −0.386654 + 0.386654i −0.873492 0.486838i \(-0.838150\pi\)
0.486838 + 0.873492i \(0.338150\pi\)
\(998\) −14.4413 + 14.4413i −0.457132 + 0.457132i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.f.i.593.1 8
3.2 odd 2 inner 675.2.f.i.593.4 8
5.2 odd 4 inner 675.2.f.i.107.4 8
5.3 odd 4 135.2.f.a.107.1 yes 8
5.4 even 2 135.2.f.a.53.4 yes 8
15.2 even 4 inner 675.2.f.i.107.1 8
15.8 even 4 135.2.f.a.107.4 yes 8
15.14 odd 2 135.2.f.a.53.1 8
20.3 even 4 2160.2.w.d.1457.1 8
20.19 odd 2 2160.2.w.d.593.3 8
45.4 even 6 405.2.m.c.188.1 16
45.13 odd 12 405.2.m.c.107.1 16
45.14 odd 6 405.2.m.c.188.4 16
45.23 even 12 405.2.m.c.107.4 16
45.29 odd 6 405.2.m.c.53.1 16
45.34 even 6 405.2.m.c.53.4 16
45.38 even 12 405.2.m.c.377.1 16
45.43 odd 12 405.2.m.c.377.4 16
60.23 odd 4 2160.2.w.d.1457.4 8
60.59 even 2 2160.2.w.d.593.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.f.a.53.1 8 15.14 odd 2
135.2.f.a.53.4 yes 8 5.4 even 2
135.2.f.a.107.1 yes 8 5.3 odd 4
135.2.f.a.107.4 yes 8 15.8 even 4
405.2.m.c.53.1 16 45.29 odd 6
405.2.m.c.53.4 16 45.34 even 6
405.2.m.c.107.1 16 45.13 odd 12
405.2.m.c.107.4 16 45.23 even 12
405.2.m.c.188.1 16 45.4 even 6
405.2.m.c.188.4 16 45.14 odd 6
405.2.m.c.377.1 16 45.38 even 12
405.2.m.c.377.4 16 45.43 odd 12
675.2.f.i.107.1 8 15.2 even 4 inner
675.2.f.i.107.4 8 5.2 odd 4 inner
675.2.f.i.593.1 8 1.1 even 1 trivial
675.2.f.i.593.4 8 3.2 odd 2 inner
2160.2.w.d.593.2 8 60.59 even 2
2160.2.w.d.593.3 8 20.19 odd 2
2160.2.w.d.1457.1 8 20.3 even 4
2160.2.w.d.1457.4 8 60.23 odd 4