Properties

Label 2160.2.w.d
Level $2160$
Weight $2$
Character orbit 2160.w
Analytic conductor $17.248$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,2,Mod(593,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,4,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1) q^{5} + ( - \beta_{5} + 1) q^{7} + (\beta_{7} + \beta_{3} - \beta_1) q^{11} + ( - \beta_{6} - 1) q^{13} + ( - \beta_{7} - \beta_{4} + \cdots + \beta_1) q^{17} + 3 \beta_{2} q^{19}+ \cdots + ( - 2 \beta_{5} + 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 4 q^{13} - 16 q^{25} + 8 q^{31} - 40 q^{37} - 44 q^{43} - 28 q^{55} - 8 q^{61} - 32 q^{67} - 28 q^{73} - 28 q^{85} - 88 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 23x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 19\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 24\nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 24\nu^{3} + 5\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + \nu^{5} - 24\nu^{3} + 24\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{6} - \nu^{4} - 67\nu^{2} - 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{6} + \nu^{4} - 67\nu^{2} + 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -4\nu^{7} - 91\nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + \beta_{5} + 6\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - 2\beta_{4} + 2\beta_{3} + 2\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{6} - 5\beta_{5} - 18 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -19\beta_{4} - 19\beta_{3} + 29\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -12\beta_{6} - 12\beta_{5} - 67\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -48\beta_{7} + 91\beta_{4} - 91\beta_{3} - 91\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
593.1
1.54779 1.54779i
−0.323042 + 0.323042i
0.323042 0.323042i
−1.54779 + 1.54779i
−0.323042 0.323042i
1.54779 + 1.54779i
−1.54779 1.54779i
0.323042 + 0.323042i
0 0 0 −1.22474 1.87083i 0 −1.79129 + 1.79129i 0 0 0
593.2 0 0 0 −1.22474 + 1.87083i 0 2.79129 2.79129i 0 0 0
593.3 0 0 0 1.22474 1.87083i 0 2.79129 2.79129i 0 0 0
593.4 0 0 0 1.22474 + 1.87083i 0 −1.79129 + 1.79129i 0 0 0
1457.1 0 0 0 −1.22474 1.87083i 0 2.79129 + 2.79129i 0 0 0
1457.2 0 0 0 −1.22474 + 1.87083i 0 −1.79129 1.79129i 0 0 0
1457.3 0 0 0 1.22474 1.87083i 0 −1.79129 1.79129i 0 0 0
1457.4 0 0 0 1.22474 + 1.87083i 0 2.79129 + 2.79129i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 593.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.w.d 8
3.b odd 2 1 inner 2160.2.w.d 8
4.b odd 2 1 135.2.f.a 8
5.c odd 4 1 inner 2160.2.w.d 8
12.b even 2 1 135.2.f.a 8
15.e even 4 1 inner 2160.2.w.d 8
20.d odd 2 1 675.2.f.i 8
20.e even 4 1 135.2.f.a 8
20.e even 4 1 675.2.f.i 8
36.f odd 6 2 405.2.m.c 16
36.h even 6 2 405.2.m.c 16
60.h even 2 1 675.2.f.i 8
60.l odd 4 1 135.2.f.a 8
60.l odd 4 1 675.2.f.i 8
180.v odd 12 2 405.2.m.c 16
180.x even 12 2 405.2.m.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.f.a 8 4.b odd 2 1
135.2.f.a 8 12.b even 2 1
135.2.f.a 8 20.e even 4 1
135.2.f.a 8 60.l odd 4 1
405.2.m.c 16 36.f odd 6 2
405.2.m.c 16 36.h even 6 2
405.2.m.c 16 180.v odd 12 2
405.2.m.c 16 180.x even 12 2
675.2.f.i 8 20.d odd 2 1
675.2.f.i 8 20.e even 4 1
675.2.f.i 8 60.h even 2 1
675.2.f.i 8 60.l odd 4 1
2160.2.w.d 8 1.a even 1 1 trivial
2160.2.w.d 8 3.b odd 2 1 inner
2160.2.w.d 8 5.c odd 4 1 inner
2160.2.w.d 8 15.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 2T_{7}^{3} + 2T_{7}^{2} + 20T_{7} + 100 \) acting on \(S_{2}^{\mathrm{new}}(2160, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 4 T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} - 2 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 34 T^{2} + 100)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 2 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 49)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 9)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + 1394T^{4} + 625 \) Copy content Toggle raw display
$29$ \( (T^{4} - 66 T^{2} + 900)^{2} \) Copy content Toggle raw display
$31$ \( (T - 1)^{8} \) Copy content Toggle raw display
$37$ \( (T^{2} + 10 T + 50)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 34 T^{2} + 100)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 22 T^{3} + \cdots + 2500)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 368T^{4} + 256 \) Copy content Toggle raw display
$53$ \( T^{8} + 12098T^{4} + 1 \) Copy content Toggle raw display
$59$ \( (T^{4} - 66 T^{2} + 900)^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + 16 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 34 T^{2} + 100)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 14 T^{3} + \cdots + 4900)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 114 T^{2} + 225)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 29138 T^{4} + 141158161 \) Copy content Toggle raw display
$89$ \( (T^{4} - 306 T^{2} + 8100)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 4 T^{3} + \cdots + 1600)^{2} \) Copy content Toggle raw display
show more
show less