| L(s) = 1 | + (−1.22 − 1.87i)5-s + (−1.79 + 1.79i)7-s − 5.54i·11-s + (1.79 + 1.79i)13-s + (−1.87 − 1.87i)17-s − 3i·19-s + (−4.32 + 4.32i)23-s + (−2 + 4.58i)25-s + 4.38·29-s + 31-s + (5.54 + 1.15i)35-s + (−5 + 5i)37-s + 5.54i·41-s + (−3.20 − 3.20i)43-s + (0.646 + 0.646i)47-s + ⋯ |
| L(s) = 1 | + (−0.547 − 0.836i)5-s + (−0.677 + 0.677i)7-s − 1.67i·11-s + (0.496 + 0.496i)13-s + (−0.453 − 0.453i)17-s − 0.688i·19-s + (−0.900 + 0.900i)23-s + (−0.400 + 0.916i)25-s + 0.814·29-s + 0.179·31-s + (0.937 + 0.195i)35-s + (−0.821 + 0.821i)37-s + 0.865i·41-s + (−0.489 − 0.489i)43-s + (0.0942 + 0.0942i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.725 - 0.688i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.725 - 0.688i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.1360511492\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1360511492\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.22 + 1.87i)T \) |
| good | 7 | \( 1 + (1.79 - 1.79i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.54iT - 11T^{2} \) |
| 13 | \( 1 + (-1.79 - 1.79i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.87 + 1.87i)T + 17iT^{2} \) |
| 19 | \( 1 + 3iT - 19T^{2} \) |
| 23 | \( 1 + (4.32 - 4.32i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.38T + 29T^{2} \) |
| 31 | \( 1 - T + 31T^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 - 5.54iT - 41T^{2} \) |
| 43 | \( 1 + (3.20 + 3.20i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.646 - 0.646i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.0674 - 0.0674i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.38T + 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 + (8.58 - 8.58i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.54iT - 71T^{2} \) |
| 73 | \( 1 + (10.3 + 10.3i)T + 73iT^{2} \) |
| 79 | \( 1 - 10.5iT - 79T^{2} \) |
| 83 | \( 1 + (8.70 - 8.70i)T - 83iT^{2} \) |
| 89 | \( 1 + 16.6T + 89T^{2} \) |
| 97 | \( 1 + (3.58 - 3.58i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.126385568933227545127928624279, −8.646320064251964009095658166114, −8.103259424333042746316694717321, −6.96636387213015338855280473932, −6.13480051239070892609154136043, −5.49287379006971822267560435436, −4.52359911980322141177769396894, −3.56601618506796362085186402454, −2.79314699437263260360286235908, −1.25921673186694225044250174370,
0.04954073809730819802361876213, 1.84724393808486153519398476509, 2.94287786506769692449053108319, 3.94620837995549763156511838034, 4.41380761662250372374431691069, 5.77726518206430241808883007839, 6.67194622448164182269561882945, 7.10106294105909444773966885211, 7.906925628806811580721540367517, 8.662309240478477237438433704803