Properties

Label 2160.2.q.f.721.1
Level $2160$
Weight $2$
Character 2160.721
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,2,Mod(721,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.721"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-2,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 721.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 2160.721
Dual form 2160.2.q.f.1441.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(-1.18614 + 2.05446i) q^{7} +(-0.686141 + 1.18843i) q^{11} +(-2.37228 - 4.10891i) q^{13} +7.37228 q^{17} -3.37228 q^{19} +(2.18614 + 3.78651i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-2.18614 + 3.78651i) q^{29} +(-3.37228 - 5.84096i) q^{31} +2.37228 q^{35} -4.00000 q^{37} +(-1.50000 - 2.59808i) q^{41} +(-5.68614 + 9.84868i) q^{43} +(0.813859 - 1.40965i) q^{47} +(0.686141 + 1.18843i) q^{49} -11.4891 q^{53} +1.37228 q^{55} +(0.686141 + 1.18843i) q^{59} +(-4.55842 + 7.89542i) q^{61} +(-2.37228 + 4.10891i) q^{65} +(-3.50000 - 6.06218i) q^{67} -6.00000 q^{71} -14.1168 q^{73} +(-1.62772 - 2.81929i) q^{77} +(1.00000 - 1.73205i) q^{79} +(-0.813859 + 1.40965i) q^{83} +(-3.68614 - 6.38458i) q^{85} +1.11684 q^{89} +11.2554 q^{91} +(1.68614 + 2.92048i) q^{95} +(1.31386 - 2.27567i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + q^{7} + 3 q^{11} + 2 q^{13} + 18 q^{17} - 2 q^{19} + 3 q^{23} - 2 q^{25} - 3 q^{29} - 2 q^{31} - 2 q^{35} - 16 q^{37} - 6 q^{41} - 17 q^{43} + 9 q^{47} - 3 q^{49} - 6 q^{55} - 3 q^{59}+ \cdots + 11 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −1.18614 + 2.05446i −0.448319 + 0.776511i −0.998277 0.0586811i \(-0.981310\pi\)
0.549958 + 0.835192i \(0.314644\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.686141 + 1.18843i −0.206879 + 0.358325i −0.950730 0.310021i \(-0.899664\pi\)
0.743851 + 0.668346i \(0.232997\pi\)
\(12\) 0 0
\(13\) −2.37228 4.10891i −0.657952 1.13961i −0.981145 0.193274i \(-0.938089\pi\)
0.323192 0.946333i \(-0.395244\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.37228 1.78804 0.894020 0.448026i \(-0.147873\pi\)
0.894020 + 0.448026i \(0.147873\pi\)
\(18\) 0 0
\(19\) −3.37228 −0.773654 −0.386827 0.922152i \(-0.626429\pi\)
−0.386827 + 0.922152i \(0.626429\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.18614 + 3.78651i 0.455842 + 0.789541i 0.998736 0.0502598i \(-0.0160049\pi\)
−0.542894 + 0.839801i \(0.682672\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.18614 + 3.78651i −0.405956 + 0.703137i −0.994432 0.105378i \(-0.966395\pi\)
0.588476 + 0.808515i \(0.299728\pi\)
\(30\) 0 0
\(31\) −3.37228 5.84096i −0.605680 1.04907i −0.991944 0.126680i \(-0.959568\pi\)
0.386264 0.922388i \(-0.373765\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.37228 0.400989
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) −5.68614 + 9.84868i −0.867128 + 1.50191i −0.00221007 + 0.999998i \(0.500703\pi\)
−0.864918 + 0.501913i \(0.832630\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.813859 1.40965i 0.118714 0.205618i −0.800545 0.599273i \(-0.795456\pi\)
0.919258 + 0.393655i \(0.128790\pi\)
\(48\) 0 0
\(49\) 0.686141 + 1.18843i 0.0980201 + 0.169776i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.4891 −1.57815 −0.789076 0.614295i \(-0.789440\pi\)
−0.789076 + 0.614295i \(0.789440\pi\)
\(54\) 0 0
\(55\) 1.37228 0.185038
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.686141 + 1.18843i 0.0893279 + 0.154720i 0.907227 0.420641i \(-0.138195\pi\)
−0.817899 + 0.575361i \(0.804861\pi\)
\(60\) 0 0
\(61\) −4.55842 + 7.89542i −0.583646 + 1.01090i 0.411397 + 0.911456i \(0.365041\pi\)
−0.995043 + 0.0994483i \(0.968292\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.37228 + 4.10891i −0.294245 + 0.509648i
\(66\) 0 0
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −14.1168 −1.65225 −0.826126 0.563486i \(-0.809460\pi\)
−0.826126 + 0.563486i \(0.809460\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.62772 2.81929i −0.185496 0.321288i
\(78\) 0 0
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.813859 + 1.40965i −0.0893327 + 0.154729i −0.907229 0.420637i \(-0.861807\pi\)
0.817897 + 0.575365i \(0.195140\pi\)
\(84\) 0 0
\(85\) −3.68614 6.38458i −0.399818 0.692505i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.11684 0.118385 0.0591926 0.998247i \(-0.481147\pi\)
0.0591926 + 0.998247i \(0.481147\pi\)
\(90\) 0 0
\(91\) 11.2554 1.17989
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.68614 + 2.92048i 0.172994 + 0.299635i
\(96\) 0 0
\(97\) 1.31386 2.27567i 0.133402 0.231059i −0.791584 0.611061i \(-0.790743\pi\)
0.924986 + 0.380001i \(0.124076\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.37228 + 7.57301i −0.435058 + 0.753543i −0.997300 0.0734297i \(-0.976606\pi\)
0.562242 + 0.826973i \(0.309939\pi\)
\(102\) 0 0
\(103\) −8.00000 13.8564i −0.788263 1.36531i −0.927030 0.374987i \(-0.877647\pi\)
0.138767 0.990325i \(-0.455686\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.4891 −1.40072 −0.700358 0.713791i \(-0.746976\pi\)
−0.700358 + 0.713791i \(0.746976\pi\)
\(108\) 0 0
\(109\) 9.62772 0.922168 0.461084 0.887356i \(-0.347461\pi\)
0.461084 + 0.887356i \(0.347461\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.37228 + 12.7692i 0.693526 + 1.20122i 0.970675 + 0.240395i \(0.0772770\pi\)
−0.277149 + 0.960827i \(0.589390\pi\)
\(114\) 0 0
\(115\) 2.18614 3.78651i 0.203859 0.353094i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.74456 + 15.1460i −0.801613 + 1.38843i
\(120\) 0 0
\(121\) 4.55842 + 7.89542i 0.414402 + 0.717765i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −9.11684 −0.808989 −0.404495 0.914540i \(-0.632553\pi\)
−0.404495 + 0.914540i \(0.632553\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.37228 7.57301i −0.382008 0.661657i 0.609341 0.792908i \(-0.291434\pi\)
−0.991349 + 0.131251i \(0.958101\pi\)
\(132\) 0 0
\(133\) 4.00000 6.92820i 0.346844 0.600751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.941578 + 1.63086i −0.0804444 + 0.139334i −0.903441 0.428713i \(-0.858967\pi\)
0.822996 + 0.568046i \(0.192301\pi\)
\(138\) 0 0
\(139\) 9.05842 + 15.6896i 0.768325 + 1.33078i 0.938470 + 0.345359i \(0.112243\pi\)
−0.170145 + 0.985419i \(0.554424\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.51087 0.544467
\(144\) 0 0
\(145\) 4.37228 0.363098
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.55842 + 16.5557i 0.783056 + 1.35629i 0.930153 + 0.367171i \(0.119674\pi\)
−0.147097 + 0.989122i \(0.546993\pi\)
\(150\) 0 0
\(151\) −5.00000 + 8.66025i −0.406894 + 0.704761i −0.994540 0.104357i \(-0.966722\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.37228 + 5.84096i −0.270868 + 0.469157i
\(156\) 0 0
\(157\) −2.37228 4.10891i −0.189329 0.327927i 0.755698 0.654920i \(-0.227298\pi\)
−0.945027 + 0.326993i \(0.893964\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.3723 −0.817450
\(162\) 0 0
\(163\) −1.48913 −0.116637 −0.0583186 0.998298i \(-0.518574\pi\)
−0.0583186 + 0.998298i \(0.518574\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.81386 6.60580i −0.295125 0.511172i 0.679889 0.733315i \(-0.262028\pi\)
−0.975014 + 0.222143i \(0.928695\pi\)
\(168\) 0 0
\(169\) −4.75544 + 8.23666i −0.365803 + 0.633589i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.62772 8.01544i 0.351839 0.609403i −0.634733 0.772732i \(-0.718890\pi\)
0.986572 + 0.163329i \(0.0522231\pi\)
\(174\) 0 0
\(175\) −1.18614 2.05446i −0.0896638 0.155302i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.25544 −0.243323 −0.121661 0.992572i \(-0.538822\pi\)
−0.121661 + 0.992572i \(0.538822\pi\)
\(180\) 0 0
\(181\) −7.86141 −0.584334 −0.292167 0.956367i \(-0.594376\pi\)
−0.292167 + 0.956367i \(0.594376\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) 0 0
\(187\) −5.05842 + 8.76144i −0.369908 + 0.640700i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.74456 4.75372i 0.198590 0.343967i −0.749482 0.662025i \(-0.769697\pi\)
0.948071 + 0.318058i \(0.103031\pi\)
\(192\) 0 0
\(193\) −1.94158 3.36291i −0.139758 0.242068i 0.787647 0.616127i \(-0.211299\pi\)
−0.927405 + 0.374059i \(0.877966\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.4891 −1.24605 −0.623024 0.782202i \(-0.714096\pi\)
−0.623024 + 0.782202i \(0.714096\pi\)
\(198\) 0 0
\(199\) 9.48913 0.672666 0.336333 0.941743i \(-0.390813\pi\)
0.336333 + 0.941743i \(0.390813\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.18614 8.98266i −0.363996 0.630459i
\(204\) 0 0
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.31386 4.00772i 0.160053 0.277220i
\(210\) 0 0
\(211\) −3.62772 6.28339i −0.249742 0.432567i 0.713712 0.700439i \(-0.247013\pi\)
−0.963454 + 0.267873i \(0.913679\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.3723 0.775583
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −17.4891 30.2921i −1.17645 2.03766i
\(222\) 0 0
\(223\) 6.18614 10.7147i 0.414255 0.717510i −0.581095 0.813836i \(-0.697376\pi\)
0.995350 + 0.0963255i \(0.0307090\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.941578 + 1.63086i −0.0624947 + 0.108244i −0.895580 0.444901i \(-0.853239\pi\)
0.833085 + 0.553145i \(0.186572\pi\)
\(228\) 0 0
\(229\) −9.18614 15.9109i −0.607037 1.05142i −0.991726 0.128373i \(-0.959025\pi\)
0.384689 0.923046i \(-0.374309\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.1168 0.662776 0.331388 0.943494i \(-0.392483\pi\)
0.331388 + 0.943494i \(0.392483\pi\)
\(234\) 0 0
\(235\) −1.62772 −0.106181
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.37228 + 12.7692i 0.476873 + 0.825969i 0.999649 0.0265017i \(-0.00843674\pi\)
−0.522776 + 0.852470i \(0.675103\pi\)
\(240\) 0 0
\(241\) −5.24456 + 9.08385i −0.337832 + 0.585142i −0.984025 0.178032i \(-0.943027\pi\)
0.646193 + 0.763174i \(0.276360\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.686141 1.18843i 0.0438359 0.0759260i
\(246\) 0 0
\(247\) 8.00000 + 13.8564i 0.509028 + 0.881662i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.6060 0.985040 0.492520 0.870301i \(-0.336076\pi\)
0.492520 + 0.870301i \(0.336076\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.686141 1.18843i −0.0428003 0.0741323i 0.843832 0.536608i \(-0.180295\pi\)
−0.886632 + 0.462476i \(0.846961\pi\)
\(258\) 0 0
\(259\) 4.74456 8.21782i 0.294813 0.510631i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.74456 + 4.75372i −0.169237 + 0.293127i −0.938152 0.346224i \(-0.887464\pi\)
0.768915 + 0.639351i \(0.220797\pi\)
\(264\) 0 0
\(265\) 5.74456 + 9.94987i 0.352886 + 0.611216i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.37228 −0.266583 −0.133291 0.991077i \(-0.542555\pi\)
−0.133291 + 0.991077i \(0.542555\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.686141 1.18843i −0.0413758 0.0716651i
\(276\) 0 0
\(277\) −2.62772 + 4.55134i −0.157884 + 0.273464i −0.934106 0.356997i \(-0.883801\pi\)
0.776221 + 0.630461i \(0.217134\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.18614 3.78651i 0.130414 0.225884i −0.793422 0.608672i \(-0.791703\pi\)
0.923836 + 0.382788i \(0.125036\pi\)
\(282\) 0 0
\(283\) −15.9307 27.5928i −0.946982 1.64022i −0.751733 0.659467i \(-0.770782\pi\)
−0.195249 0.980754i \(-0.562551\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.11684 0.420094
\(288\) 0 0
\(289\) 37.3505 2.19709
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.11684 7.13058i −0.240509 0.416573i 0.720351 0.693610i \(-0.243981\pi\)
−0.960859 + 0.277037i \(0.910648\pi\)
\(294\) 0 0
\(295\) 0.686141 1.18843i 0.0399487 0.0691931i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.3723 17.9653i 0.599845 1.03896i
\(300\) 0 0
\(301\) −13.4891 23.3639i −0.777500 1.34667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.11684 0.522029
\(306\) 0 0
\(307\) 33.2337 1.89675 0.948373 0.317156i \(-0.102728\pi\)
0.948373 + 0.317156i \(0.102728\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.62772 + 8.01544i 0.262414 + 0.454514i 0.966883 0.255221i \(-0.0821481\pi\)
−0.704469 + 0.709735i \(0.748815\pi\)
\(312\) 0 0
\(313\) −4.68614 + 8.11663i −0.264876 + 0.458779i −0.967531 0.252752i \(-0.918664\pi\)
0.702655 + 0.711531i \(0.251998\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.37228 + 7.57301i −0.245572 + 0.425343i −0.962292 0.272018i \(-0.912309\pi\)
0.716720 + 0.697361i \(0.245642\pi\)
\(318\) 0 0
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.8614 −1.38333
\(324\) 0 0
\(325\) 4.74456 0.263181
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.93070 + 3.34408i 0.106443 + 0.184365i
\(330\) 0 0
\(331\) −9.11684 + 15.7908i −0.501107 + 0.867943i 0.498892 + 0.866664i \(0.333740\pi\)
−0.999999 + 0.00127880i \(0.999593\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.50000 + 6.06218i −0.191225 + 0.331212i
\(336\) 0 0
\(337\) −1.68614 2.92048i −0.0918499 0.159089i 0.816440 0.577431i \(-0.195945\pi\)
−0.908290 + 0.418342i \(0.862611\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.25544 0.501210
\(342\) 0 0
\(343\) −19.8614 −1.07242
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.0584 + 19.1537i 0.593647 + 1.02823i 0.993736 + 0.111751i \(0.0356459\pi\)
−0.400089 + 0.916476i \(0.631021\pi\)
\(348\) 0 0
\(349\) −0.441578 + 0.764836i −0.0236371 + 0.0409407i −0.877602 0.479390i \(-0.840858\pi\)
0.853965 + 0.520331i \(0.174191\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.1753 26.2843i 0.807698 1.39897i −0.106757 0.994285i \(-0.534047\pi\)
0.914455 0.404689i \(-0.132620\pi\)
\(354\) 0 0
\(355\) 3.00000 + 5.19615i 0.159223 + 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.48913 0.289705 0.144852 0.989453i \(-0.453729\pi\)
0.144852 + 0.989453i \(0.453729\pi\)
\(360\) 0 0
\(361\) −7.62772 −0.401459
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.05842 + 12.2255i 0.369455 + 0.639914i
\(366\) 0 0
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.6277 23.6039i 0.707516 1.22545i
\(372\) 0 0
\(373\) −3.74456 6.48577i −0.193886 0.335821i 0.752649 0.658422i \(-0.228776\pi\)
−0.946535 + 0.322602i \(0.895443\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.7446 1.06840
\(378\) 0 0
\(379\) 10.8614 0.557913 0.278956 0.960304i \(-0.410011\pi\)
0.278956 + 0.960304i \(0.410011\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.4891 19.8997i −0.587067 1.01683i −0.994614 0.103646i \(-0.966949\pi\)
0.407547 0.913184i \(-0.366384\pi\)
\(384\) 0 0
\(385\) −1.62772 + 2.81929i −0.0829562 + 0.143684i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.18614 + 8.98266i −0.262948 + 0.455439i −0.967024 0.254686i \(-0.918028\pi\)
0.704076 + 0.710124i \(0.251361\pi\)
\(390\) 0 0
\(391\) 16.1168 + 27.9152i 0.815064 + 1.41173i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.00000 −0.100631
\(396\) 0 0
\(397\) 11.2554 0.564894 0.282447 0.959283i \(-0.408854\pi\)
0.282447 + 0.959283i \(0.408854\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.05842 + 13.9576i 0.402418 + 0.697009i 0.994017 0.109223i \(-0.0348364\pi\)
−0.591599 + 0.806232i \(0.701503\pi\)
\(402\) 0 0
\(403\) −16.0000 + 27.7128i −0.797017 + 1.38047i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.74456 4.75372i 0.136043 0.235633i
\(408\) 0 0
\(409\) 5.43070 + 9.40625i 0.268531 + 0.465109i 0.968483 0.249081i \(-0.0801285\pi\)
−0.699952 + 0.714190i \(0.746795\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.25544 −0.160190
\(414\) 0 0
\(415\) 1.62772 0.0799016
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.8614 + 27.4728i 0.774880 + 1.34213i 0.934862 + 0.355012i \(0.115523\pi\)
−0.159981 + 0.987120i \(0.551143\pi\)
\(420\) 0 0
\(421\) 19.2337 33.3137i 0.937393 1.62361i 0.167082 0.985943i \(-0.446566\pi\)
0.770311 0.637669i \(-0.220101\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.68614 + 6.38458i −0.178804 + 0.309698i
\(426\) 0 0
\(427\) −10.8139 18.7302i −0.523319 0.906416i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.2337 −1.26363 −0.631816 0.775118i \(-0.717690\pi\)
−0.631816 + 0.775118i \(0.717690\pi\)
\(432\) 0 0
\(433\) 0.627719 0.0301662 0.0150831 0.999886i \(-0.495199\pi\)
0.0150831 + 0.999886i \(0.495199\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.37228 12.7692i −0.352664 0.610832i
\(438\) 0 0
\(439\) 8.11684 14.0588i 0.387396 0.670989i −0.604703 0.796451i \(-0.706708\pi\)
0.992098 + 0.125462i \(0.0400414\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.2446 22.9403i 0.629268 1.08992i −0.358431 0.933556i \(-0.616688\pi\)
0.987699 0.156368i \(-0.0499786\pi\)
\(444\) 0 0
\(445\) −0.558422 0.967215i −0.0264717 0.0458504i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.8614 0.890125 0.445062 0.895500i \(-0.353181\pi\)
0.445062 + 0.895500i \(0.353181\pi\)
\(450\) 0 0
\(451\) 4.11684 0.193855
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.62772 9.74749i −0.263832 0.456970i
\(456\) 0 0
\(457\) −15.0584 + 26.0820i −0.704403 + 1.22006i 0.262503 + 0.964931i \(0.415452\pi\)
−0.966906 + 0.255131i \(0.917881\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.55842 16.5557i 0.445180 0.771075i −0.552885 0.833258i \(-0.686473\pi\)
0.998065 + 0.0621833i \(0.0198063\pi\)
\(462\) 0 0
\(463\) 10.0000 + 17.3205i 0.464739 + 0.804952i 0.999190 0.0402476i \(-0.0128147\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.8832 1.19773 0.598865 0.800850i \(-0.295619\pi\)
0.598865 + 0.800850i \(0.295619\pi\)
\(468\) 0 0
\(469\) 16.6060 0.766792
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.80298 13.5152i −0.358782 0.621428i
\(474\) 0 0
\(475\) 1.68614 2.92048i 0.0773654 0.134001i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.7446 20.3422i 0.536623 0.929458i −0.462460 0.886640i \(-0.653033\pi\)
0.999083 0.0428178i \(-0.0136335\pi\)
\(480\) 0 0
\(481\) 9.48913 + 16.4356i 0.432667 + 0.749401i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.62772 −0.119319
\(486\) 0 0
\(487\) 1.25544 0.0568893 0.0284446 0.999595i \(-0.490945\pi\)
0.0284446 + 0.999595i \(0.490945\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.80298 3.12286i −0.0813676 0.140933i 0.822470 0.568808i \(-0.192595\pi\)
−0.903838 + 0.427876i \(0.859262\pi\)
\(492\) 0 0
\(493\) −16.1168 + 27.9152i −0.725866 + 1.25724i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.11684 12.3267i 0.319234 0.552930i
\(498\) 0 0
\(499\) −1.05842 1.83324i −0.0473815 0.0820671i 0.841362 0.540472i \(-0.181754\pi\)
−0.888743 + 0.458405i \(0.848421\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.8614 0.974752 0.487376 0.873192i \(-0.337954\pi\)
0.487376 + 0.873192i \(0.337954\pi\)
\(504\) 0 0
\(505\) 8.74456 0.389128
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.67527 + 8.09780i 0.207228 + 0.358929i 0.950840 0.309682i \(-0.100223\pi\)
−0.743613 + 0.668611i \(0.766889\pi\)
\(510\) 0 0
\(511\) 16.7446 29.0024i 0.740736 1.28299i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.00000 + 13.8564i −0.352522 + 0.610586i
\(516\) 0 0
\(517\) 1.11684 + 1.93443i 0.0491187 + 0.0850762i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 41.2337 1.80648 0.903240 0.429135i \(-0.141182\pi\)
0.903240 + 0.429135i \(0.141182\pi\)
\(522\) 0 0
\(523\) 11.1168 0.486106 0.243053 0.970013i \(-0.421851\pi\)
0.243053 + 0.970013i \(0.421851\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.8614 43.0612i −1.08298 1.87578i
\(528\) 0 0
\(529\) 1.94158 3.36291i 0.0844164 0.146214i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.11684 + 12.3267i −0.308265 + 0.533930i
\(534\) 0 0
\(535\) 7.24456 + 12.5480i 0.313210 + 0.542495i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.88316 −0.0811133
\(540\) 0 0
\(541\) 21.6277 0.929848 0.464924 0.885351i \(-0.346082\pi\)
0.464924 + 0.885351i \(0.346082\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.81386 8.33785i −0.206203 0.357154i
\(546\) 0 0
\(547\) 19.7337 34.1798i 0.843752 1.46142i −0.0429494 0.999077i \(-0.513675\pi\)
0.886701 0.462343i \(-0.152991\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.37228 12.7692i 0.314070 0.543985i
\(552\) 0 0
\(553\) 2.37228 + 4.10891i 0.100880 + 0.174729i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.76631 0.413812 0.206906 0.978361i \(-0.433661\pi\)
0.206906 + 0.978361i \(0.433661\pi\)
\(558\) 0 0
\(559\) 53.9565 2.28212
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.36141 14.4824i −0.352391 0.610360i 0.634277 0.773106i \(-0.281298\pi\)
−0.986668 + 0.162747i \(0.947965\pi\)
\(564\) 0 0
\(565\) 7.37228 12.7692i 0.310154 0.537203i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.80298 8.31901i 0.201352 0.348751i −0.747613 0.664135i \(-0.768800\pi\)
0.948964 + 0.315384i \(0.102133\pi\)
\(570\) 0 0
\(571\) −15.8030 27.3716i −0.661334 1.14546i −0.980265 0.197687i \(-0.936657\pi\)
0.318931 0.947778i \(-0.396676\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.37228 −0.182337
\(576\) 0 0
\(577\) −23.8832 −0.994269 −0.497134 0.867674i \(-0.665614\pi\)
−0.497134 + 0.867674i \(0.665614\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.93070 3.34408i −0.0800991 0.138736i
\(582\) 0 0
\(583\) 7.88316 13.6540i 0.326487 0.565492i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.5000 + 23.3827i −0.557205 + 0.965107i 0.440524 + 0.897741i \(0.354793\pi\)
−0.997728 + 0.0673658i \(0.978541\pi\)
\(588\) 0 0
\(589\) 11.3723 + 19.6974i 0.468587 + 0.811616i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −37.7228 −1.54909 −0.774545 0.632519i \(-0.782021\pi\)
−0.774545 + 0.632519i \(0.782021\pi\)
\(594\) 0 0
\(595\) 17.4891 0.716984
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.1168 + 33.1113i 0.781093 + 1.35289i 0.931305 + 0.364239i \(0.118671\pi\)
−0.150212 + 0.988654i \(0.547996\pi\)
\(600\) 0 0
\(601\) −13.4307 + 23.2627i −0.547850 + 0.948904i 0.450572 + 0.892740i \(0.351220\pi\)
−0.998422 + 0.0561635i \(0.982113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.55842 7.89542i 0.185326 0.320994i
\(606\) 0 0
\(607\) 0.441578 + 0.764836i 0.0179231 + 0.0310437i 0.874848 0.484398i \(-0.160961\pi\)
−0.856925 + 0.515442i \(0.827628\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.72281 −0.312432
\(612\) 0 0
\(613\) −0.233688 −0.00943857 −0.00471928 0.999989i \(-0.501502\pi\)
−0.00471928 + 0.999989i \(0.501502\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.0584 19.1537i −0.445195 0.771101i 0.552870 0.833267i \(-0.313532\pi\)
−0.998066 + 0.0621663i \(0.980199\pi\)
\(618\) 0 0
\(619\) −19.0584 + 33.0102i −0.766023 + 1.32679i 0.173682 + 0.984802i \(0.444434\pi\)
−0.939704 + 0.341988i \(0.888900\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.32473 + 2.29451i −0.0530743 + 0.0919275i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.4891 −1.17581
\(630\) 0 0
\(631\) −33.7228 −1.34248 −0.671242 0.741238i \(-0.734239\pi\)
−0.671242 + 0.741238i \(0.734239\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.55842 + 7.89542i 0.180895 + 0.313320i
\(636\) 0 0
\(637\) 3.25544 5.63858i 0.128985 0.223409i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −19.5000 + 33.7750i −0.770204 + 1.33403i 0.167247 + 0.985915i \(0.446512\pi\)
−0.937451 + 0.348117i \(0.886821\pi\)
\(642\) 0 0
\(643\) 5.50000 + 9.52628i 0.216899 + 0.375680i 0.953858 0.300257i \(-0.0970725\pi\)
−0.736959 + 0.675937i \(0.763739\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0951 0.947276 0.473638 0.880720i \(-0.342941\pi\)
0.473638 + 0.880720i \(0.342941\pi\)
\(648\) 0 0
\(649\) −1.88316 −0.0739203
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.8614 32.6689i −0.738104 1.27843i −0.953348 0.301873i \(-0.902388\pi\)
0.215244 0.976560i \(-0.430945\pi\)
\(654\) 0 0
\(655\) −4.37228 + 7.57301i −0.170839 + 0.295902i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.74456 4.75372i 0.106913 0.185179i −0.807605 0.589724i \(-0.799237\pi\)
0.914518 + 0.404545i \(0.132570\pi\)
\(660\) 0 0
\(661\) −11.1168 19.2549i −0.432395 0.748930i 0.564684 0.825307i \(-0.308998\pi\)
−0.997079 + 0.0763770i \(0.975665\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) −19.1168 −0.740207
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.25544 10.8347i −0.241488 0.418270i
\(672\) 0 0
\(673\) 5.00000 8.66025i 0.192736 0.333828i −0.753420 0.657539i \(-0.771597\pi\)
0.946156 + 0.323711i \(0.104931\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.8614 + 37.8651i −0.840202 + 1.45527i 0.0495215 + 0.998773i \(0.484230\pi\)
−0.889724 + 0.456500i \(0.849103\pi\)
\(678\) 0 0
\(679\) 3.11684 + 5.39853i 0.119613 + 0.207177i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.0951 1.26635 0.633174 0.774009i \(-0.281752\pi\)
0.633174 + 0.774009i \(0.281752\pi\)
\(684\) 0 0
\(685\) 1.88316 0.0719517
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 27.2554 + 47.2078i 1.03835 + 1.79847i
\(690\) 0 0
\(691\) −0.883156 + 1.52967i −0.0335968 + 0.0581914i −0.882335 0.470622i \(-0.844030\pi\)
0.848738 + 0.528813i \(0.177363\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.05842 15.6896i 0.343606 0.595142i
\(696\) 0 0
\(697\) −11.0584 19.1537i −0.418868 0.725500i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −14.1386 −0.534007 −0.267004 0.963696i \(-0.586034\pi\)
−0.267004 + 0.963696i \(0.586034\pi\)
\(702\) 0 0
\(703\) 13.4891 0.508752
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.3723 17.9653i −0.390090 0.675655i
\(708\) 0 0
\(709\) 12.9307 22.3966i 0.485623 0.841123i −0.514241 0.857646i \(-0.671926\pi\)
0.999863 + 0.0165226i \(0.00525955\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.7446 25.5383i 0.552188 0.956418i
\(714\) 0 0
\(715\) −3.25544 5.63858i −0.121746 0.210871i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −38.2337 −1.42588 −0.712938 0.701227i \(-0.752636\pi\)
−0.712938 + 0.701227i \(0.752636\pi\)
\(720\) 0 0
\(721\) 37.9565 1.41357
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.18614 3.78651i −0.0811912 0.140627i
\(726\) 0 0
\(727\) 0.441578 0.764836i 0.0163772 0.0283662i −0.857721 0.514116i \(-0.828120\pi\)
0.874098 + 0.485750i \(0.161453\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −41.9198 + 72.6073i −1.55046 + 2.68548i
\(732\) 0 0
\(733\) −17.1168 29.6472i −0.632225 1.09505i −0.987096 0.160131i \(-0.948808\pi\)
0.354871 0.934915i \(-0.384525\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.60597 0.353840
\(738\) 0 0
\(739\) 23.8832 0.878556 0.439278 0.898351i \(-0.355234\pi\)
0.439278 + 0.898351i \(0.355234\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.5584 21.7518i −0.460724 0.797997i 0.538273 0.842770i \(-0.319077\pi\)
−0.998997 + 0.0447732i \(0.985743\pi\)
\(744\) 0 0
\(745\) 9.55842 16.5557i 0.350193 0.606553i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17.1861 29.7673i 0.627968 1.08767i
\(750\) 0 0
\(751\) −9.11684 15.7908i −0.332678 0.576216i 0.650358 0.759628i \(-0.274619\pi\)
−0.983036 + 0.183412i \(0.941286\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.04755 + 10.4747i 0.219223 + 0.379706i 0.954571 0.297984i \(-0.0963143\pi\)
−0.735347 + 0.677690i \(0.762981\pi\)
\(762\) 0 0
\(763\) −11.4198 + 19.7797i −0.413426 + 0.716074i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.25544 5.63858i 0.117547 0.203597i
\(768\) 0 0
\(769\) 9.06930 + 15.7085i 0.327047 + 0.566462i 0.981925 0.189273i \(-0.0606131\pi\)
−0.654877 + 0.755735i \(0.727280\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −14.7446 −0.530325 −0.265163 0.964204i \(-0.585426\pi\)
−0.265163 + 0.964204i \(0.585426\pi\)
\(774\) 0 0
\(775\) 6.74456 0.242272
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.05842 + 8.76144i 0.181237 + 0.313911i
\(780\) 0 0
\(781\) 4.11684 7.13058i 0.147312 0.255152i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.37228 + 4.10891i −0.0846704 + 0.146653i
\(786\) 0 0
\(787\) −14.0000 24.2487i −0.499046 0.864373i 0.500953 0.865474i \(-0.332983\pi\)
−0.999999 + 0.00110111i \(0.999650\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −34.9783 −1.24368
\(792\) 0 0
\(793\) 43.2554 1.53605
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.62772 + 2.81929i 0.0576568 + 0.0998644i 0.893413 0.449236i \(-0.148304\pi\)
−0.835756 + 0.549100i \(0.814970\pi\)
\(798\) 0 0
\(799\) 6.00000 10.3923i 0.212265 0.367653i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.68614 16.7769i 0.341816 0.592044i
\(804\) 0 0
\(805\) 5.18614 + 8.98266i 0.182787 + 0.316597i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.3505 0.434222 0.217111 0.976147i \(-0.430337\pi\)
0.217111 + 0.976147i \(0.430337\pi\)
\(810\) 0 0
\(811\) −9.37228 −0.329105 −0.164553 0.986368i \(-0.552618\pi\)
−0.164553 + 0.986368i \(0.552618\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.744563 + 1.28962i 0.0260809 + 0.0451734i
\(816\) 0 0
\(817\) 19.1753 33.2125i 0.670858 1.16196i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.4198 44.0284i 0.887158 1.53660i 0.0439382 0.999034i \(-0.486010\pi\)
0.843220 0.537569i \(-0.180657\pi\)
\(822\) 0 0
\(823\) 19.0475 + 32.9913i 0.663956 + 1.15001i 0.979567 + 0.201117i \(0.0644570\pi\)
−0.315612 + 0.948888i \(0.602210\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.13859 0.283007 0.141503 0.989938i \(-0.454806\pi\)
0.141503 + 0.989938i \(0.454806\pi\)
\(828\) 0 0
\(829\) −32.8832 −1.14208 −0.571040 0.820923i \(-0.693460\pi\)
−0.571040 + 0.820923i \(0.693460\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.05842 + 8.76144i 0.175264 + 0.303566i
\(834\) 0 0
\(835\) −3.81386 + 6.60580i −0.131984 + 0.228603i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.1168 + 38.3075i −0.763558 + 1.32252i 0.177447 + 0.984130i \(0.443216\pi\)
−0.941005 + 0.338391i \(0.890117\pi\)
\(840\) 0 0
\(841\) 4.94158 + 8.55906i 0.170399 + 0.295140i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9.51087 0.327184
\(846\) 0 0
\(847\) −21.6277 −0.743137
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.74456 15.1460i −0.299760 0.519199i
\(852\) 0 0
\(853\) 0.883156 1.52967i 0.0302387 0.0523749i −0.850510 0.525959i \(-0.823707\pi\)
0.880749 + 0.473584i \(0.157040\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.7446 20.3422i 0.401187 0.694876i −0.592683 0.805436i \(-0.701931\pi\)
0.993869 + 0.110560i \(0.0352646\pi\)
\(858\) 0 0
\(859\) 0.0584220 + 0.101190i 0.00199333 + 0.00345255i 0.867020 0.498273i \(-0.166032\pi\)
−0.865027 + 0.501725i \(0.832699\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −42.6060 −1.45032 −0.725162 0.688578i \(-0.758235\pi\)
−0.725162 + 0.688578i \(0.758235\pi\)
\(864\) 0 0
\(865\) −9.25544 −0.314694
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.37228 + 2.37686i 0.0465515 + 0.0806295i
\(870\) 0 0
\(871\) −16.6060 + 28.7624i −0.562672 + 0.974576i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.18614 + 2.05446i −0.0400989 + 0.0694533i
\(876\) 0 0
\(877\) 27.9783 + 48.4598i 0.944758 + 1.63637i 0.756234 + 0.654301i \(0.227037\pi\)
0.188524 + 0.982069i \(0.439630\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −27.3505 −0.921463 −0.460731 0.887540i \(-0.652413\pi\)
−0.460731 + 0.887540i \(0.652413\pi\)
\(882\) 0 0
\(883\) −12.7228 −0.428157 −0.214078 0.976816i \(-0.568675\pi\)
−0.214078 + 0.976816i \(0.568675\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.8614 + 32.6689i 0.633304 + 1.09691i 0.986872 + 0.161506i \(0.0516351\pi\)
−0.353568 + 0.935409i \(0.615032\pi\)
\(888\) 0 0
\(889\) 10.8139 18.7302i 0.362685 0.628189i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.74456 + 4.75372i −0.0918433 + 0.159077i
\(894\) 0 0
\(895\) 1.62772 + 2.81929i 0.0544086 + 0.0942385i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29.4891 0.983517
\(900\) 0 0
\(901\) −84.7011 −2.82180
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.93070 + 6.80818i 0.130661 + 0.226311i
\(906\) 0 0
\(907\) −3.50000 + 6.06218i −0.116216 + 0.201291i −0.918265 0.395966i \(-0.870410\pi\)
0.802049 + 0.597258i \(0.203743\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 21.0000 36.3731i 0.695761 1.20509i −0.274162 0.961683i \(-0.588401\pi\)
0.969923 0.243410i \(-0.0782661\pi\)
\(912\) 0 0
\(913\) −1.11684 1.93443i −0.0369621 0.0640203i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.7446 0.685046
\(918\) 0 0
\(919\) −42.4674 −1.40087 −0.700435 0.713716i \(-0.747011\pi\)
−0.700435 + 0.713716i \(0.747011\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14.2337 + 24.6535i 0.468508 + 0.811479i
\(924\) 0 0
\(925\) 2.00000 3.46410i 0.0657596 0.113899i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.9783 + 34.6033i −0.655465 + 1.13530i 0.326312 + 0.945262i \(0.394194\pi\)
−0.981777 + 0.190037i \(0.939139\pi\)
\(930\) 0 0
\(931\) −2.31386 4.00772i −0.0758337 0.131348i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10.1168 0.330856
\(936\) 0 0
\(937\) −17.7228 −0.578979 −0.289490 0.957181i \(-0.593486\pi\)
−0.289490 + 0.957181i \(0.593486\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18.8139 + 32.5866i 0.613314 + 1.06229i 0.990678 + 0.136226i \(0.0434974\pi\)
−0.377363 + 0.926065i \(0.623169\pi\)
\(942\) 0 0
\(943\) 6.55842 11.3595i 0.213572 0.369917i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.3614 + 19.6785i −0.369196 + 0.639466i −0.989440 0.144943i \(-0.953700\pi\)
0.620244 + 0.784409i \(0.287034\pi\)
\(948\) 0 0
\(949\) 33.4891 + 58.0049i 1.08710 + 1.88292i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30.8614 −0.999699 −0.499850 0.866112i \(-0.666611\pi\)
−0.499850 + 0.866112i \(0.666611\pi\)
\(954\) 0 0
\(955\) −5.48913 −0.177624
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.23369 3.86886i −0.0721295 0.124932i
\(960\) 0 0
\(961\) −7.24456 + 12.5480i −0.233696 + 0.404773i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.94158 + 3.36291i −0.0625016 + 0.108256i
\(966\) 0 0
\(967\) 9.44158 + 16.3533i 0.303621 + 0.525886i 0.976953 0.213453i \(-0.0684711\pi\)
−0.673333 + 0.739340i \(0.735138\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.9783 0.737407 0.368704 0.929547i \(-0.379802\pi\)
0.368704 + 0.929547i \(0.379802\pi\)
\(972\) 0 0
\(973\) −42.9783 −1.37782
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.0584 34.7422i −0.641726 1.11150i −0.985047 0.172284i \(-0.944885\pi\)
0.343322 0.939218i \(-0.388448\pi\)
\(978\) 0 0
\(979\) −0.766312 + 1.32729i −0.0244914 + 0.0424204i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7.93070 + 13.7364i −0.252950 + 0.438123i −0.964337 0.264678i \(-0.914734\pi\)
0.711387 + 0.702801i \(0.248068\pi\)
\(984\) 0 0
\(985\) 8.74456 + 15.1460i 0.278625 + 0.482593i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −49.7228 −1.58109
\(990\) 0 0
\(991\) 18.2337 0.579212 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.74456 8.21782i −0.150413 0.260523i
\(996\) 0 0
\(997\) −7.00000 + 12.1244i −0.221692 + 0.383982i −0.955322 0.295567i \(-0.904491\pi\)
0.733630 + 0.679549i \(0.237825\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.q.f.721.1 4
3.2 odd 2 720.2.q.f.241.1 4
4.3 odd 2 270.2.e.c.181.2 4
9.2 odd 6 6480.2.a.be.1.2 2
9.4 even 3 inner 2160.2.q.f.1441.1 4
9.5 odd 6 720.2.q.f.481.2 4
9.7 even 3 6480.2.a.bn.1.2 2
12.11 even 2 90.2.e.c.61.2 yes 4
20.3 even 4 1350.2.j.f.1099.3 8
20.7 even 4 1350.2.j.f.1099.2 8
20.19 odd 2 1350.2.e.l.451.1 4
36.7 odd 6 810.2.a.k.1.1 2
36.11 even 6 810.2.a.i.1.1 2
36.23 even 6 90.2.e.c.31.1 4
36.31 odd 6 270.2.e.c.91.2 4
60.23 odd 4 450.2.j.g.349.1 8
60.47 odd 4 450.2.j.g.349.4 8
60.59 even 2 450.2.e.j.151.1 4
180.7 even 12 4050.2.c.ba.649.3 4
180.23 odd 12 450.2.j.g.49.4 8
180.43 even 12 4050.2.c.ba.649.2 4
180.47 odd 12 4050.2.c.v.649.1 4
180.59 even 6 450.2.e.j.301.2 4
180.67 even 12 1350.2.j.f.199.3 8
180.79 odd 6 4050.2.a.bo.1.2 2
180.83 odd 12 4050.2.c.v.649.4 4
180.103 even 12 1350.2.j.f.199.2 8
180.119 even 6 4050.2.a.bw.1.2 2
180.139 odd 6 1350.2.e.l.901.1 4
180.167 odd 12 450.2.j.g.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.c.31.1 4 36.23 even 6
90.2.e.c.61.2 yes 4 12.11 even 2
270.2.e.c.91.2 4 36.31 odd 6
270.2.e.c.181.2 4 4.3 odd 2
450.2.e.j.151.1 4 60.59 even 2
450.2.e.j.301.2 4 180.59 even 6
450.2.j.g.49.1 8 180.167 odd 12
450.2.j.g.49.4 8 180.23 odd 12
450.2.j.g.349.1 8 60.23 odd 4
450.2.j.g.349.4 8 60.47 odd 4
720.2.q.f.241.1 4 3.2 odd 2
720.2.q.f.481.2 4 9.5 odd 6
810.2.a.i.1.1 2 36.11 even 6
810.2.a.k.1.1 2 36.7 odd 6
1350.2.e.l.451.1 4 20.19 odd 2
1350.2.e.l.901.1 4 180.139 odd 6
1350.2.j.f.199.2 8 180.103 even 12
1350.2.j.f.199.3 8 180.67 even 12
1350.2.j.f.1099.2 8 20.7 even 4
1350.2.j.f.1099.3 8 20.3 even 4
2160.2.q.f.721.1 4 1.1 even 1 trivial
2160.2.q.f.1441.1 4 9.4 even 3 inner
4050.2.a.bo.1.2 2 180.79 odd 6
4050.2.a.bw.1.2 2 180.119 even 6
4050.2.c.v.649.1 4 180.47 odd 12
4050.2.c.v.649.4 4 180.83 odd 12
4050.2.c.ba.649.2 4 180.43 even 12
4050.2.c.ba.649.3 4 180.7 even 12
6480.2.a.be.1.2 2 9.2 odd 6
6480.2.a.bn.1.2 2 9.7 even 3