Properties

Label 2160.2.q.f
Level $2160$
Weight $2$
Character orbit 2160.q
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(721,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.721");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{5} + \beta_{3} q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 1) q^{5} + \beta_{3} q^{7} + (\beta_{3} + \beta_1) q^{11} + ( - 2 \beta_{3} + 2 \beta_{2} + 2) q^{13} + ( - \beta_{2} + 4) q^{17} + \beta_{2} q^{19} + (\beta_{3} - \beta_{2} - 2 \beta_1 + 1) q^{23} - \beta_1 q^{25} + (\beta_{3} - 2 \beta_1) q^{29} + ( - 2 \beta_{3} + 2 \beta_{2} + 2 \beta_1) q^{31} + ( - \beta_{2} - 1) q^{35} - 4 q^{37} + (3 \beta_1 - 3) q^{41} + (\beta_{3} - 9 \beta_1) q^{43} + (\beta_{3} + 4 \beta_1) q^{47} + (\beta_{3} - \beta_{2} + \beta_1 - 2) q^{49} + (4 \beta_{2} + 2) q^{53} + ( - \beta_{2} - 2) q^{55} + (\beta_{3} - \beta_{2} + \beta_1 - 2) q^{59} + (3 \beta_{3} - 2 \beta_1) q^{61} + 2 \beta_{3} q^{65} + (7 \beta_1 - 7) q^{67} - 6 q^{71} + (3 \beta_{2} - 4) q^{73} + (2 \beta_{3} - 2 \beta_{2} + 8 \beta_1 - 10) q^{77} + 2 \beta_1 q^{79} + ( - \beta_{3} - 4 \beta_1) q^{83} + ( - \beta_{3} + \beta_{2} + 5 \beta_1 - 4) q^{85} + ( - 3 \beta_{2} - 9) q^{89} + (2 \beta_{2} + 18) q^{91} + (\beta_{3} - \beta_{2} - \beta_1) q^{95} + (\beta_{3} + 5 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} + q^{7} + 3 q^{11} + 2 q^{13} + 18 q^{17} - 2 q^{19} + 3 q^{23} - 2 q^{25} - 3 q^{29} - 2 q^{31} - 2 q^{35} - 16 q^{37} - 6 q^{41} - 17 q^{43} + 9 q^{47} - 3 q^{49} - 6 q^{55} - 3 q^{59} - q^{61} + 2 q^{65} - 14 q^{67} - 24 q^{71} - 22 q^{73} - 18 q^{77} + 4 q^{79} - 9 q^{83} - 9 q^{85} - 30 q^{89} + 68 q^{91} + q^{95} + 11 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} + \nu^{2} + 2\nu - 9 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 2\beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 8\beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{3} - 2\beta_{2} - 2\beta _1 + 11 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
721.1
−1.18614 + 1.26217i
1.68614 0.396143i
−1.18614 1.26217i
1.68614 + 0.396143i
0 0 0 −0.500000 0.866025i 0 −1.18614 + 2.05446i 0 0 0
721.2 0 0 0 −0.500000 0.866025i 0 1.68614 2.92048i 0 0 0
1441.1 0 0 0 −0.500000 + 0.866025i 0 −1.18614 2.05446i 0 0 0
1441.2 0 0 0 −0.500000 + 0.866025i 0 1.68614 + 2.92048i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.q.f 4
3.b odd 2 1 720.2.q.f 4
4.b odd 2 1 270.2.e.c 4
9.c even 3 1 inner 2160.2.q.f 4
9.c even 3 1 6480.2.a.bn 2
9.d odd 6 1 720.2.q.f 4
9.d odd 6 1 6480.2.a.be 2
12.b even 2 1 90.2.e.c 4
20.d odd 2 1 1350.2.e.l 4
20.e even 4 2 1350.2.j.f 8
36.f odd 6 1 270.2.e.c 4
36.f odd 6 1 810.2.a.k 2
36.h even 6 1 90.2.e.c 4
36.h even 6 1 810.2.a.i 2
60.h even 2 1 450.2.e.j 4
60.l odd 4 2 450.2.j.g 8
180.n even 6 1 450.2.e.j 4
180.n even 6 1 4050.2.a.bw 2
180.p odd 6 1 1350.2.e.l 4
180.p odd 6 1 4050.2.a.bo 2
180.v odd 12 2 450.2.j.g 8
180.v odd 12 2 4050.2.c.v 4
180.x even 12 2 1350.2.j.f 8
180.x even 12 2 4050.2.c.ba 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.e.c 4 12.b even 2 1
90.2.e.c 4 36.h even 6 1
270.2.e.c 4 4.b odd 2 1
270.2.e.c 4 36.f odd 6 1
450.2.e.j 4 60.h even 2 1
450.2.e.j 4 180.n even 6 1
450.2.j.g 8 60.l odd 4 2
450.2.j.g 8 180.v odd 12 2
720.2.q.f 4 3.b odd 2 1
720.2.q.f 4 9.d odd 6 1
810.2.a.i 2 36.h even 6 1
810.2.a.k 2 36.f odd 6 1
1350.2.e.l 4 20.d odd 2 1
1350.2.e.l 4 180.p odd 6 1
1350.2.j.f 8 20.e even 4 2
1350.2.j.f 8 180.x even 12 2
2160.2.q.f 4 1.a even 1 1 trivial
2160.2.q.f 4 9.c even 3 1 inner
4050.2.a.bo 2 180.p odd 6 1
4050.2.a.bw 2 180.n even 6 1
4050.2.c.v 4 180.v odd 12 2
4050.2.c.ba 4 180.x even 12 2
6480.2.a.be 2 9.d odd 6 1
6480.2.a.bn 2 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{4} - T_{7}^{3} + 9T_{7}^{2} + 8T_{7} + 64 \) Copy content Toggle raw display
\( T_{11}^{4} - 3T_{11}^{3} + 15T_{11}^{2} + 18T_{11} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{4} - 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$17$ \( (T^{2} - 9 T + 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + T - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$37$ \( (T + 4)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 17 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$47$ \( T^{4} - 9 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$53$ \( (T^{2} - 132)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$61$ \( T^{4} + T^{3} + \cdots + 5476 \) Copy content Toggle raw display
$67$ \( (T^{2} + 7 T + 49)^{2} \) Copy content Toggle raw display
$71$ \( (T + 6)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 11 T - 44)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 9 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$89$ \( (T^{2} + 15 T - 18)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 11 T^{3} + \cdots + 484 \) Copy content Toggle raw display
show more
show less