Properties

Label 450.2.e.j.151.1
Level $450$
Weight $2$
Character 450.151
Analytic conductor $3.593$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,2,Mod(151,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-2,-2,0,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 450.151
Dual form 450.2.e.j.301.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 1.65831i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.68614 + 0.396143i) q^{6} +(-1.18614 + 2.05446i) q^{7} +1.00000 q^{8} +(-2.50000 + 1.65831i) q^{9} +(-0.686141 + 1.18843i) q^{11} +(-1.18614 + 1.26217i) q^{12} +(2.37228 + 4.10891i) q^{13} +(-1.18614 - 2.05446i) q^{14} +(-0.500000 + 0.866025i) q^{16} +7.37228 q^{17} +(-0.186141 - 2.99422i) q^{18} +3.37228 q^{19} +(4.00000 + 0.939764i) q^{21} +(-0.686141 - 1.18843i) q^{22} +(-2.18614 - 3.78651i) q^{23} +(-0.500000 - 1.65831i) q^{24} -4.74456 q^{26} +(4.00000 + 3.31662i) q^{27} +2.37228 q^{28} +(2.18614 - 3.78651i) q^{29} +(3.37228 + 5.84096i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.31386 + 0.543620i) q^{33} +(-3.68614 + 6.38458i) q^{34} +(2.68614 + 1.33591i) q^{36} +4.00000 q^{37} +(-1.68614 + 2.92048i) q^{38} +(5.62772 - 5.98844i) q^{39} +(1.50000 + 2.59808i) q^{41} +(-2.81386 + 2.99422i) q^{42} +(-5.68614 + 9.84868i) q^{43} +1.37228 q^{44} +4.37228 q^{46} +(-0.813859 + 1.40965i) q^{47} +(1.68614 + 0.396143i) q^{48} +(0.686141 + 1.18843i) q^{49} +(-3.68614 - 12.2255i) q^{51} +(2.37228 - 4.10891i) q^{52} -11.4891 q^{53} +(-4.87228 + 1.80579i) q^{54} +(-1.18614 + 2.05446i) q^{56} +(-1.68614 - 5.59230i) q^{57} +(2.18614 + 3.78651i) q^{58} +(0.686141 + 1.18843i) q^{59} +(-4.55842 + 7.89542i) q^{61} -6.74456 q^{62} +(-0.441578 - 7.10313i) q^{63} +1.00000 q^{64} +(-1.62772 + 1.73205i) q^{66} +(-3.50000 - 6.06218i) q^{67} +(-3.68614 - 6.38458i) q^{68} +(-5.18614 + 5.51856i) q^{69} -6.00000 q^{71} +(-2.50000 + 1.65831i) q^{72} +14.1168 q^{73} +(-2.00000 + 3.46410i) q^{74} +(-1.68614 - 2.92048i) q^{76} +(-1.62772 - 2.81929i) q^{77} +(2.37228 + 7.86797i) q^{78} +(-1.00000 + 1.73205i) q^{79} +(3.50000 - 8.29156i) q^{81} -3.00000 q^{82} +(0.813859 - 1.40965i) q^{83} +(-1.18614 - 3.93398i) q^{84} +(-5.68614 - 9.84868i) q^{86} +(-7.37228 - 1.73205i) q^{87} +(-0.686141 + 1.18843i) q^{88} -1.11684 q^{89} -11.2554 q^{91} +(-2.18614 + 3.78651i) q^{92} +(8.00000 - 8.51278i) q^{93} +(-0.813859 - 1.40965i) q^{94} +(-1.18614 + 1.26217i) q^{96} +(-1.31386 + 2.27567i) q^{97} -1.37228 q^{98} +(-0.255437 - 4.10891i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} + q^{6} + q^{7} + 4 q^{8} - 10 q^{9} + 3 q^{11} + q^{12} - 2 q^{13} + q^{14} - 2 q^{16} + 18 q^{17} + 5 q^{18} + 2 q^{19} + 16 q^{21} + 3 q^{22} - 3 q^{23} - 2 q^{24}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.500000 1.65831i −0.288675 0.957427i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 1.68614 + 0.396143i 0.688364 + 0.161725i
\(7\) −1.18614 + 2.05446i −0.448319 + 0.776511i −0.998277 0.0586811i \(-0.981310\pi\)
0.549958 + 0.835192i \(0.314644\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.50000 + 1.65831i −0.833333 + 0.552771i
\(10\) 0 0
\(11\) −0.686141 + 1.18843i −0.206879 + 0.358325i −0.950730 0.310021i \(-0.899664\pi\)
0.743851 + 0.668346i \(0.232997\pi\)
\(12\) −1.18614 + 1.26217i −0.342409 + 0.364357i
\(13\) 2.37228 + 4.10891i 0.657952 + 1.13961i 0.981145 + 0.193274i \(0.0619106\pi\)
−0.323192 + 0.946333i \(0.604756\pi\)
\(14\) −1.18614 2.05446i −0.317009 0.549076i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 7.37228 1.78804 0.894020 0.448026i \(-0.147873\pi\)
0.894020 + 0.448026i \(0.147873\pi\)
\(18\) −0.186141 2.99422i −0.0438738 0.705744i
\(19\) 3.37228 0.773654 0.386827 0.922152i \(-0.373571\pi\)
0.386827 + 0.922152i \(0.373571\pi\)
\(20\) 0 0
\(21\) 4.00000 + 0.939764i 0.872872 + 0.205073i
\(22\) −0.686141 1.18843i −0.146286 0.253374i
\(23\) −2.18614 3.78651i −0.455842 0.789541i 0.542894 0.839801i \(-0.317328\pi\)
−0.998736 + 0.0502598i \(0.983995\pi\)
\(24\) −0.500000 1.65831i −0.102062 0.338502i
\(25\) 0 0
\(26\) −4.74456 −0.930485
\(27\) 4.00000 + 3.31662i 0.769800 + 0.638285i
\(28\) 2.37228 0.448319
\(29\) 2.18614 3.78651i 0.405956 0.703137i −0.588476 0.808515i \(-0.700272\pi\)
0.994432 + 0.105378i \(0.0336052\pi\)
\(30\) 0 0
\(31\) 3.37228 + 5.84096i 0.605680 + 1.04907i 0.991944 + 0.126680i \(0.0404320\pi\)
−0.386264 + 0.922388i \(0.626235\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 2.31386 + 0.543620i 0.402791 + 0.0946322i
\(34\) −3.68614 + 6.38458i −0.632168 + 1.09495i
\(35\) 0 0
\(36\) 2.68614 + 1.33591i 0.447690 + 0.222651i
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) −1.68614 + 2.92048i −0.273528 + 0.473765i
\(39\) 5.62772 5.98844i 0.901156 0.958918i
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) −2.81386 + 2.99422i −0.434188 + 0.462018i
\(43\) −5.68614 + 9.84868i −0.867128 + 1.50191i −0.00221007 + 0.999998i \(0.500703\pi\)
−0.864918 + 0.501913i \(0.832630\pi\)
\(44\) 1.37228 0.206879
\(45\) 0 0
\(46\) 4.37228 0.644658
\(47\) −0.813859 + 1.40965i −0.118714 + 0.205618i −0.919258 0.393655i \(-0.871210\pi\)
0.800545 + 0.599273i \(0.204544\pi\)
\(48\) 1.68614 + 0.396143i 0.243373 + 0.0571784i
\(49\) 0.686141 + 1.18843i 0.0980201 + 0.169776i
\(50\) 0 0
\(51\) −3.68614 12.2255i −0.516163 1.71192i
\(52\) 2.37228 4.10891i 0.328976 0.569804i
\(53\) −11.4891 −1.57815 −0.789076 0.614295i \(-0.789440\pi\)
−0.789076 + 0.614295i \(0.789440\pi\)
\(54\) −4.87228 + 1.80579i −0.663034 + 0.245737i
\(55\) 0 0
\(56\) −1.18614 + 2.05446i −0.158505 + 0.274538i
\(57\) −1.68614 5.59230i −0.223335 0.740718i
\(58\) 2.18614 + 3.78651i 0.287054 + 0.497193i
\(59\) 0.686141 + 1.18843i 0.0893279 + 0.154720i 0.907227 0.420641i \(-0.138195\pi\)
−0.817899 + 0.575361i \(0.804861\pi\)
\(60\) 0 0
\(61\) −4.55842 + 7.89542i −0.583646 + 1.01090i 0.411397 + 0.911456i \(0.365041\pi\)
−0.995043 + 0.0994483i \(0.968292\pi\)
\(62\) −6.74456 −0.856560
\(63\) −0.441578 7.10313i −0.0556336 0.894910i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.62772 + 1.73205i −0.200358 + 0.213201i
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) −3.68614 6.38458i −0.447010 0.774244i
\(69\) −5.18614 + 5.51856i −0.624338 + 0.664356i
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −2.50000 + 1.65831i −0.294628 + 0.195434i
\(73\) 14.1168 1.65225 0.826126 0.563486i \(-0.190540\pi\)
0.826126 + 0.563486i \(0.190540\pi\)
\(74\) −2.00000 + 3.46410i −0.232495 + 0.402694i
\(75\) 0 0
\(76\) −1.68614 2.92048i −0.193414 0.335002i
\(77\) −1.62772 2.81929i −0.185496 0.321288i
\(78\) 2.37228 + 7.86797i 0.268608 + 0.890872i
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) 0 0
\(81\) 3.50000 8.29156i 0.388889 0.921285i
\(82\) −3.00000 −0.331295
\(83\) 0.813859 1.40965i 0.0893327 0.154729i −0.817897 0.575365i \(-0.804860\pi\)
0.907229 + 0.420637i \(0.138193\pi\)
\(84\) −1.18614 3.93398i −0.129419 0.429233i
\(85\) 0 0
\(86\) −5.68614 9.84868i −0.613152 1.06201i
\(87\) −7.37228 1.73205i −0.790392 0.185695i
\(88\) −0.686141 + 1.18843i −0.0731428 + 0.126687i
\(89\) −1.11684 −0.118385 −0.0591926 0.998247i \(-0.518853\pi\)
−0.0591926 + 0.998247i \(0.518853\pi\)
\(90\) 0 0
\(91\) −11.2554 −1.17989
\(92\) −2.18614 + 3.78651i −0.227921 + 0.394771i
\(93\) 8.00000 8.51278i 0.829561 0.882734i
\(94\) −0.813859 1.40965i −0.0839432 0.145394i
\(95\) 0 0
\(96\) −1.18614 + 1.26217i −0.121060 + 0.128820i
\(97\) −1.31386 + 2.27567i −0.133402 + 0.231059i −0.924986 0.380001i \(-0.875924\pi\)
0.791584 + 0.611061i \(0.209257\pi\)
\(98\) −1.37228 −0.138621
\(99\) −0.255437 4.10891i −0.0256724 0.412961i
\(100\) 0 0
\(101\) 4.37228 7.57301i 0.435058 0.753543i −0.562242 0.826973i \(-0.690061\pi\)
0.997300 + 0.0734297i \(0.0233944\pi\)
\(102\) 12.4307 + 2.92048i 1.23082 + 0.289171i
\(103\) −8.00000 13.8564i −0.788263 1.36531i −0.927030 0.374987i \(-0.877647\pi\)
0.138767 0.990325i \(-0.455686\pi\)
\(104\) 2.37228 + 4.10891i 0.232621 + 0.402912i
\(105\) 0 0
\(106\) 5.74456 9.94987i 0.557961 0.966417i
\(107\) 14.4891 1.40072 0.700358 0.713791i \(-0.253024\pi\)
0.700358 + 0.713791i \(0.253024\pi\)
\(108\) 0.872281 5.12241i 0.0839353 0.492905i
\(109\) 9.62772 0.922168 0.461084 0.887356i \(-0.347461\pi\)
0.461084 + 0.887356i \(0.347461\pi\)
\(110\) 0 0
\(111\) −2.00000 6.63325i −0.189832 0.629600i
\(112\) −1.18614 2.05446i −0.112080 0.194128i
\(113\) 7.37228 + 12.7692i 0.693526 + 1.20122i 0.970675 + 0.240395i \(0.0772770\pi\)
−0.277149 + 0.960827i \(0.589390\pi\)
\(114\) 5.68614 + 1.33591i 0.532556 + 0.125119i
\(115\) 0 0
\(116\) −4.37228 −0.405956
\(117\) −12.7446 6.33830i −1.17824 0.585976i
\(118\) −1.37228 −0.126329
\(119\) −8.74456 + 15.1460i −0.801613 + 1.38843i
\(120\) 0 0
\(121\) 4.55842 + 7.89542i 0.414402 + 0.717765i
\(122\) −4.55842 7.89542i −0.412700 0.714818i
\(123\) 3.55842 3.78651i 0.320852 0.341418i
\(124\) 3.37228 5.84096i 0.302840 0.524534i
\(125\) 0 0
\(126\) 6.37228 + 3.16915i 0.567688 + 0.282330i
\(127\) −9.11684 −0.808989 −0.404495 0.914540i \(-0.632553\pi\)
−0.404495 + 0.914540i \(0.632553\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 19.1753 + 4.50506i 1.68829 + 0.396648i
\(130\) 0 0
\(131\) −4.37228 7.57301i −0.382008 0.661657i 0.609341 0.792908i \(-0.291434\pi\)
−0.991349 + 0.131251i \(0.958101\pi\)
\(132\) −0.686141 2.27567i −0.0597209 0.198072i
\(133\) −4.00000 + 6.92820i −0.346844 + 0.600751i
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) 7.37228 0.632168
\(137\) −0.941578 + 1.63086i −0.0804444 + 0.139334i −0.903441 0.428713i \(-0.858967\pi\)
0.822996 + 0.568046i \(0.192301\pi\)
\(138\) −2.18614 7.25061i −0.186097 0.617213i
\(139\) −9.05842 15.6896i −0.768325 1.33078i −0.938470 0.345359i \(-0.887757\pi\)
0.170145 0.985419i \(-0.445576\pi\)
\(140\) 0 0
\(141\) 2.74456 + 0.644810i 0.231134 + 0.0543028i
\(142\) 3.00000 5.19615i 0.251754 0.436051i
\(143\) −6.51087 −0.544467
\(144\) −0.186141 2.99422i −0.0155117 0.249518i
\(145\) 0 0
\(146\) −7.05842 + 12.2255i −0.584159 + 1.01179i
\(147\) 1.62772 1.73205i 0.134252 0.142857i
\(148\) −2.00000 3.46410i −0.164399 0.284747i
\(149\) −9.55842 16.5557i −0.783056 1.35629i −0.930153 0.367171i \(-0.880326\pi\)
0.147097 0.989122i \(-0.453007\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 3.37228 0.273528
\(153\) −18.4307 + 12.2255i −1.49003 + 0.988377i
\(154\) 3.25544 0.262331
\(155\) 0 0
\(156\) −8.00000 1.87953i −0.640513 0.150483i
\(157\) 2.37228 + 4.10891i 0.189329 + 0.327927i 0.945027 0.326993i \(-0.106036\pi\)
−0.755698 + 0.654920i \(0.772702\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) 5.74456 + 19.0526i 0.455573 + 1.51097i
\(160\) 0 0
\(161\) 10.3723 0.817450
\(162\) 5.43070 + 7.17687i 0.426676 + 0.563868i
\(163\) −1.48913 −0.116637 −0.0583186 0.998298i \(-0.518574\pi\)
−0.0583186 + 0.998298i \(0.518574\pi\)
\(164\) 1.50000 2.59808i 0.117130 0.202876i
\(165\) 0 0
\(166\) 0.813859 + 1.40965i 0.0631677 + 0.109410i
\(167\) 3.81386 + 6.60580i 0.295125 + 0.511172i 0.975014 0.222143i \(-0.0713053\pi\)
−0.679889 + 0.733315i \(0.737972\pi\)
\(168\) 4.00000 + 0.939764i 0.308607 + 0.0725044i
\(169\) −4.75544 + 8.23666i −0.365803 + 0.633589i
\(170\) 0 0
\(171\) −8.43070 + 5.59230i −0.644712 + 0.427654i
\(172\) 11.3723 0.867128
\(173\) 4.62772 8.01544i 0.351839 0.609403i −0.634733 0.772732i \(-0.718890\pi\)
0.986572 + 0.163329i \(0.0522231\pi\)
\(174\) 5.18614 5.51856i 0.393160 0.418361i
\(175\) 0 0
\(176\) −0.686141 1.18843i −0.0517198 0.0895813i
\(177\) 1.62772 1.73205i 0.122347 0.130189i
\(178\) 0.558422 0.967215i 0.0418555 0.0724958i
\(179\) −3.25544 −0.243323 −0.121661 0.992572i \(-0.538822\pi\)
−0.121661 + 0.992572i \(0.538822\pi\)
\(180\) 0 0
\(181\) −7.86141 −0.584334 −0.292167 0.956367i \(-0.594376\pi\)
−0.292167 + 0.956367i \(0.594376\pi\)
\(182\) 5.62772 9.74749i 0.417154 0.722532i
\(183\) 15.3723 + 3.61158i 1.13635 + 0.266976i
\(184\) −2.18614 3.78651i −0.161164 0.279145i
\(185\) 0 0
\(186\) 3.37228 + 11.1846i 0.247268 + 0.820094i
\(187\) −5.05842 + 8.76144i −0.369908 + 0.640700i
\(188\) 1.62772 0.118714
\(189\) −11.5584 + 4.28384i −0.840751 + 0.311604i
\(190\) 0 0
\(191\) 2.74456 4.75372i 0.198590 0.343967i −0.749482 0.662025i \(-0.769697\pi\)
0.948071 + 0.318058i \(0.103031\pi\)
\(192\) −0.500000 1.65831i −0.0360844 0.119678i
\(193\) 1.94158 + 3.36291i 0.139758 + 0.242068i 0.927405 0.374059i \(-0.122034\pi\)
−0.787647 + 0.616127i \(0.788701\pi\)
\(194\) −1.31386 2.27567i −0.0943296 0.163384i
\(195\) 0 0
\(196\) 0.686141 1.18843i 0.0490100 0.0848879i
\(197\) −17.4891 −1.24605 −0.623024 0.782202i \(-0.714096\pi\)
−0.623024 + 0.782202i \(0.714096\pi\)
\(198\) 3.68614 + 1.83324i 0.261963 + 0.130283i
\(199\) −9.48913 −0.672666 −0.336333 0.941743i \(-0.609187\pi\)
−0.336333 + 0.941743i \(0.609187\pi\)
\(200\) 0 0
\(201\) −8.30298 + 8.83518i −0.585647 + 0.623186i
\(202\) 4.37228 + 7.57301i 0.307633 + 0.532835i
\(203\) 5.18614 + 8.98266i 0.363996 + 0.630459i
\(204\) −8.74456 + 9.30506i −0.612242 + 0.651485i
\(205\) 0 0
\(206\) 16.0000 1.11477
\(207\) 11.7446 + 5.84096i 0.816304 + 0.405975i
\(208\) −4.74456 −0.328976
\(209\) −2.31386 + 4.00772i −0.160053 + 0.277220i
\(210\) 0 0
\(211\) 3.62772 + 6.28339i 0.249742 + 0.432567i 0.963454 0.267873i \(-0.0863207\pi\)
−0.713712 + 0.700439i \(0.752987\pi\)
\(212\) 5.74456 + 9.94987i 0.394538 + 0.683360i
\(213\) 3.00000 + 9.94987i 0.205557 + 0.681754i
\(214\) −7.24456 + 12.5480i −0.495228 + 0.857760i
\(215\) 0 0
\(216\) 4.00000 + 3.31662i 0.272166 + 0.225668i
\(217\) −16.0000 −1.08615
\(218\) −4.81386 + 8.33785i −0.326036 + 0.564710i
\(219\) −7.05842 23.4101i −0.476964 1.58191i
\(220\) 0 0
\(221\) 17.4891 + 30.2921i 1.17645 + 2.03766i
\(222\) 6.74456 + 1.58457i 0.452665 + 0.106350i
\(223\) 6.18614 10.7147i 0.414255 0.717510i −0.581095 0.813836i \(-0.697376\pi\)
0.995350 + 0.0963255i \(0.0307090\pi\)
\(224\) 2.37228 0.158505
\(225\) 0 0
\(226\) −14.7446 −0.980794
\(227\) 0.941578 1.63086i 0.0624947 0.108244i −0.833085 0.553145i \(-0.813428\pi\)
0.895580 + 0.444901i \(0.146761\pi\)
\(228\) −4.00000 + 4.25639i −0.264906 + 0.281886i
\(229\) −9.18614 15.9109i −0.607037 1.05142i −0.991726 0.128373i \(-0.959025\pi\)
0.384689 0.923046i \(-0.374309\pi\)
\(230\) 0 0
\(231\) −3.86141 + 4.10891i −0.254062 + 0.270347i
\(232\) 2.18614 3.78651i 0.143527 0.248596i
\(233\) 10.1168 0.662776 0.331388 0.943494i \(-0.392483\pi\)
0.331388 + 0.943494i \(0.392483\pi\)
\(234\) 11.8614 7.86797i 0.775404 0.514345i
\(235\) 0 0
\(236\) 0.686141 1.18843i 0.0446640 0.0773602i
\(237\) 3.37228 + 0.792287i 0.219053 + 0.0514646i
\(238\) −8.74456 15.1460i −0.566826 0.981771i
\(239\) 7.37228 + 12.7692i 0.476873 + 0.825969i 0.999649 0.0265017i \(-0.00843674\pi\)
−0.522776 + 0.852470i \(0.675103\pi\)
\(240\) 0 0
\(241\) −5.24456 + 9.08385i −0.337832 + 0.585142i −0.984025 0.178032i \(-0.943027\pi\)
0.646193 + 0.763174i \(0.276360\pi\)
\(242\) −9.11684 −0.586053
\(243\) −15.5000 1.65831i −0.994325 0.106381i
\(244\) 9.11684 0.583646
\(245\) 0 0
\(246\) 1.50000 + 4.97494i 0.0956365 + 0.317190i
\(247\) 8.00000 + 13.8564i 0.509028 + 0.881662i
\(248\) 3.37228 + 5.84096i 0.214140 + 0.370901i
\(249\) −2.74456 0.644810i −0.173930 0.0408632i
\(250\) 0 0
\(251\) 15.6060 0.985040 0.492520 0.870301i \(-0.336076\pi\)
0.492520 + 0.870301i \(0.336076\pi\)
\(252\) −5.93070 + 3.93398i −0.373599 + 0.247818i
\(253\) 6.00000 0.377217
\(254\) 4.55842 7.89542i 0.286021 0.495403i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.686141 1.18843i −0.0428003 0.0741323i 0.843832 0.536608i \(-0.180295\pi\)
−0.886632 + 0.462476i \(0.846961\pi\)
\(258\) −13.4891 + 14.3537i −0.839796 + 0.893625i
\(259\) −4.74456 + 8.21782i −0.294813 + 0.510631i
\(260\) 0 0
\(261\) 0.813859 + 13.0916i 0.0503766 + 0.810348i
\(262\) 8.74456 0.540241
\(263\) 2.74456 4.75372i 0.169237 0.293127i −0.768915 0.639351i \(-0.779203\pi\)
0.938152 + 0.346224i \(0.112536\pi\)
\(264\) 2.31386 + 0.543620i 0.142408 + 0.0334575i
\(265\) 0 0
\(266\) −4.00000 6.92820i −0.245256 0.424795i
\(267\) 0.558422 + 1.85208i 0.0341749 + 0.113345i
\(268\) −3.50000 + 6.06218i −0.213797 + 0.370306i
\(269\) 4.37228 0.266583 0.133291 0.991077i \(-0.457445\pi\)
0.133291 + 0.991077i \(0.457445\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) −3.68614 + 6.38458i −0.223505 + 0.387122i
\(273\) 5.62772 + 18.6650i 0.340605 + 1.12966i
\(274\) −0.941578 1.63086i −0.0568828 0.0985239i
\(275\) 0 0
\(276\) 7.37228 + 1.73205i 0.443759 + 0.104257i
\(277\) 2.62772 4.55134i 0.157884 0.273464i −0.776221 0.630461i \(-0.782866\pi\)
0.934106 + 0.356997i \(0.116199\pi\)
\(278\) 18.1168 1.08658
\(279\) −18.1168 9.01011i −1.08463 0.539421i
\(280\) 0 0
\(281\) −2.18614 + 3.78651i −0.130414 + 0.225884i −0.923836 0.382788i \(-0.874964\pi\)
0.793422 + 0.608672i \(0.208297\pi\)
\(282\) −1.93070 + 2.05446i −0.114972 + 0.122341i
\(283\) −15.9307 27.5928i −0.946982 1.64022i −0.751733 0.659467i \(-0.770782\pi\)
−0.195249 0.980754i \(-0.562551\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) 3.25544 5.63858i 0.192498 0.333416i
\(287\) −7.11684 −0.420094
\(288\) 2.68614 + 1.33591i 0.158282 + 0.0787191i
\(289\) 37.3505 2.19709
\(290\) 0 0
\(291\) 4.43070 + 1.04095i 0.259732 + 0.0610218i
\(292\) −7.05842 12.2255i −0.413063 0.715446i
\(293\) −4.11684 7.13058i −0.240509 0.416573i 0.720351 0.693610i \(-0.243981\pi\)
−0.960859 + 0.277037i \(0.910648\pi\)
\(294\) 0.686141 + 2.27567i 0.0400165 + 0.132720i
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) −6.68614 + 2.47805i −0.387969 + 0.143791i
\(298\) 19.1168 1.10741
\(299\) 10.3723 17.9653i 0.599845 1.03896i
\(300\) 0 0
\(301\) −13.4891 23.3639i −0.777500 1.34667i
\(302\) 5.00000 + 8.66025i 0.287718 + 0.498342i
\(303\) −14.7446 3.46410i −0.847053 0.199007i
\(304\) −1.68614 + 2.92048i −0.0967068 + 0.167501i
\(305\) 0 0
\(306\) −1.37228 22.0742i −0.0784481 1.26190i
\(307\) 33.2337 1.89675 0.948373 0.317156i \(-0.102728\pi\)
0.948373 + 0.317156i \(0.102728\pi\)
\(308\) −1.62772 + 2.81929i −0.0927479 + 0.160644i
\(309\) −18.9783 + 20.1947i −1.07963 + 1.14884i
\(310\) 0 0
\(311\) 4.62772 + 8.01544i 0.262414 + 0.454514i 0.966883 0.255221i \(-0.0821481\pi\)
−0.704469 + 0.709735i \(0.748815\pi\)
\(312\) 5.62772 5.98844i 0.318607 0.339029i
\(313\) 4.68614 8.11663i 0.264876 0.458779i −0.702655 0.711531i \(-0.748002\pi\)
0.967531 + 0.252752i \(0.0813355\pi\)
\(314\) −4.74456 −0.267751
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −4.37228 + 7.57301i −0.245572 + 0.425343i −0.962292 0.272018i \(-0.912309\pi\)
0.716720 + 0.697361i \(0.245642\pi\)
\(318\) −19.3723 4.55134i −1.08634 0.255227i
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) 0 0
\(321\) −7.24456 24.0275i −0.404352 1.34108i
\(322\) −5.18614 + 8.98266i −0.289012 + 0.500584i
\(323\) 24.8614 1.38333
\(324\) −8.93070 + 1.11469i −0.496150 + 0.0619273i
\(325\) 0 0
\(326\) 0.744563 1.28962i 0.0412375 0.0714255i
\(327\) −4.81386 15.9658i −0.266207 0.882909i
\(328\) 1.50000 + 2.59808i 0.0828236 + 0.143455i
\(329\) −1.93070 3.34408i −0.106443 0.184365i
\(330\) 0 0
\(331\) 9.11684 15.7908i 0.501107 0.867943i −0.498892 0.866664i \(-0.666260\pi\)
0.999999 0.00127880i \(-0.000407055\pi\)
\(332\) −1.62772 −0.0893327
\(333\) −10.0000 + 6.63325i −0.547997 + 0.363500i
\(334\) −7.62772 −0.417370
\(335\) 0 0
\(336\) −2.81386 + 2.99422i −0.153509 + 0.163348i
\(337\) 1.68614 + 2.92048i 0.0918499 + 0.159089i 0.908290 0.418342i \(-0.137389\pi\)
−0.816440 + 0.577431i \(0.804055\pi\)
\(338\) −4.75544 8.23666i −0.258662 0.448015i
\(339\) 17.4891 18.6101i 0.949879 1.01076i
\(340\) 0 0
\(341\) −9.25544 −0.501210
\(342\) −0.627719 10.0974i −0.0339431 0.546002i
\(343\) −19.8614 −1.07242
\(344\) −5.68614 + 9.84868i −0.306576 + 0.531005i
\(345\) 0 0
\(346\) 4.62772 + 8.01544i 0.248788 + 0.430913i
\(347\) −11.0584 19.1537i −0.593647 1.02823i −0.993736 0.111751i \(-0.964354\pi\)
0.400089 0.916476i \(-0.368979\pi\)
\(348\) 2.18614 + 7.25061i 0.117189 + 0.388673i
\(349\) −0.441578 + 0.764836i −0.0236371 + 0.0409407i −0.877602 0.479390i \(-0.840858\pi\)
0.853965 + 0.520331i \(0.174191\pi\)
\(350\) 0 0
\(351\) −4.13859 + 24.3036i −0.220902 + 1.29723i
\(352\) 1.37228 0.0731428
\(353\) 15.1753 26.2843i 0.807698 1.39897i −0.106757 0.994285i \(-0.534047\pi\)
0.914455 0.404689i \(-0.132620\pi\)
\(354\) 0.686141 + 2.27567i 0.0364680 + 0.120951i
\(355\) 0 0
\(356\) 0.558422 + 0.967215i 0.0295963 + 0.0512623i
\(357\) 29.4891 + 6.92820i 1.56073 + 0.366679i
\(358\) 1.62772 2.81929i 0.0860276 0.149004i
\(359\) 5.48913 0.289705 0.144852 0.989453i \(-0.453729\pi\)
0.144852 + 0.989453i \(0.453729\pi\)
\(360\) 0 0
\(361\) −7.62772 −0.401459
\(362\) 3.93070 6.80818i 0.206593 0.357830i
\(363\) 10.8139 11.5070i 0.567580 0.603961i
\(364\) 5.62772 + 9.74749i 0.294973 + 0.510908i
\(365\) 0 0
\(366\) −10.8139 + 11.5070i −0.565249 + 0.601480i
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) 4.37228 0.227921
\(369\) −8.05842 4.00772i −0.419505 0.208634i
\(370\) 0 0
\(371\) 13.6277 23.6039i 0.707516 1.22545i
\(372\) −11.3723 2.67181i −0.589625 0.138527i
\(373\) 3.74456 + 6.48577i 0.193886 + 0.335821i 0.946535 0.322602i \(-0.104557\pi\)
−0.752649 + 0.658422i \(0.771224\pi\)
\(374\) −5.05842 8.76144i −0.261565 0.453043i
\(375\) 0 0
\(376\) −0.813859 + 1.40965i −0.0419716 + 0.0726969i
\(377\) 20.7446 1.06840
\(378\) 2.06930 12.1518i 0.106433 0.625022i
\(379\) −10.8614 −0.557913 −0.278956 0.960304i \(-0.589989\pi\)
−0.278956 + 0.960304i \(0.589989\pi\)
\(380\) 0 0
\(381\) 4.55842 + 15.1186i 0.233535 + 0.774548i
\(382\) 2.74456 + 4.75372i 0.140424 + 0.243222i
\(383\) 11.4891 + 19.8997i 0.587067 + 1.01683i 0.994614 + 0.103646i \(0.0330508\pi\)
−0.407547 + 0.913184i \(0.633616\pi\)
\(384\) 1.68614 + 0.396143i 0.0860455 + 0.0202156i
\(385\) 0 0
\(386\) −3.88316 −0.197647
\(387\) −2.11684 34.0511i −0.107605 1.73092i
\(388\) 2.62772 0.133402
\(389\) 5.18614 8.98266i 0.262948 0.455439i −0.704076 0.710124i \(-0.748639\pi\)
0.967024 + 0.254686i \(0.0819720\pi\)
\(390\) 0 0
\(391\) −16.1168 27.9152i −0.815064 1.41173i
\(392\) 0.686141 + 1.18843i 0.0346553 + 0.0600248i
\(393\) −10.3723 + 11.0371i −0.523212 + 0.556749i
\(394\) 8.74456 15.1460i 0.440545 0.763046i
\(395\) 0 0
\(396\) −3.43070 + 2.27567i −0.172399 + 0.114357i
\(397\) −11.2554 −0.564894 −0.282447 0.959283i \(-0.591146\pi\)
−0.282447 + 0.959283i \(0.591146\pi\)
\(398\) 4.74456 8.21782i 0.237823 0.411922i
\(399\) 13.4891 + 3.16915i 0.675301 + 0.158656i
\(400\) 0 0
\(401\) −8.05842 13.9576i −0.402418 0.697009i 0.591599 0.806232i \(-0.298497\pi\)
−0.994017 + 0.109223i \(0.965164\pi\)
\(402\) −3.50000 11.6082i −0.174564 0.578964i
\(403\) −16.0000 + 27.7128i −0.797017 + 1.38047i
\(404\) −8.74456 −0.435058
\(405\) 0 0
\(406\) −10.3723 −0.514768
\(407\) −2.74456 + 4.75372i −0.136043 + 0.235633i
\(408\) −3.68614 12.2255i −0.182491 0.605255i
\(409\) 5.43070 + 9.40625i 0.268531 + 0.465109i 0.968483 0.249081i \(-0.0801285\pi\)
−0.699952 + 0.714190i \(0.746795\pi\)
\(410\) 0 0
\(411\) 3.17527 + 0.746000i 0.156624 + 0.0367975i
\(412\) −8.00000 + 13.8564i −0.394132 + 0.682656i
\(413\) −3.25544 −0.160190
\(414\) −10.9307 + 7.25061i −0.537215 + 0.356348i
\(415\) 0 0
\(416\) 2.37228 4.10891i 0.116311 0.201456i
\(417\) −21.4891 + 22.8665i −1.05233 + 1.11978i
\(418\) −2.31386 4.00772i −0.113175 0.196024i
\(419\) 15.8614 + 27.4728i 0.774880 + 1.34213i 0.934862 + 0.355012i \(0.115523\pi\)
−0.159981 + 0.987120i \(0.551143\pi\)
\(420\) 0 0
\(421\) 19.2337 33.3137i 0.937393 1.62361i 0.167082 0.985943i \(-0.446566\pi\)
0.770311 0.637669i \(-0.220101\pi\)
\(422\) −7.25544 −0.353189
\(423\) −0.302985 4.87375i −0.0147316 0.236970i
\(424\) −11.4891 −0.557961
\(425\) 0 0
\(426\) −10.1168 2.37686i −0.490163 0.115159i
\(427\) −10.8139 18.7302i −0.523319 0.906416i
\(428\) −7.24456 12.5480i −0.350179 0.606528i
\(429\) 3.25544 + 10.7971i 0.157174 + 0.521287i
\(430\) 0 0
\(431\) −26.2337 −1.26363 −0.631816 0.775118i \(-0.717690\pi\)
−0.631816 + 0.775118i \(0.717690\pi\)
\(432\) −4.87228 + 1.80579i −0.234418 + 0.0868811i
\(433\) −0.627719 −0.0301662 −0.0150831 0.999886i \(-0.504801\pi\)
−0.0150831 + 0.999886i \(0.504801\pi\)
\(434\) 8.00000 13.8564i 0.384012 0.665129i
\(435\) 0 0
\(436\) −4.81386 8.33785i −0.230542 0.399311i
\(437\) −7.37228 12.7692i −0.352664 0.610832i
\(438\) 23.8030 + 5.59230i 1.13735 + 0.267210i
\(439\) −8.11684 + 14.0588i −0.387396 + 0.670989i −0.992098 0.125462i \(-0.959959\pi\)
0.604703 + 0.796451i \(0.293292\pi\)
\(440\) 0 0
\(441\) −3.68614 1.83324i −0.175531 0.0872972i
\(442\) −34.9783 −1.66375
\(443\) −13.2446 + 22.9403i −0.629268 + 1.08992i 0.358431 + 0.933556i \(0.383312\pi\)
−0.987699 + 0.156368i \(0.950021\pi\)
\(444\) −4.74456 + 5.04868i −0.225167 + 0.239600i
\(445\) 0 0
\(446\) 6.18614 + 10.7147i 0.292922 + 0.507356i
\(447\) −22.6753 + 24.1287i −1.07250 + 1.14125i
\(448\) −1.18614 + 2.05446i −0.0560399 + 0.0970639i
\(449\) −18.8614 −0.890125 −0.445062 0.895500i \(-0.646819\pi\)
−0.445062 + 0.895500i \(0.646819\pi\)
\(450\) 0 0
\(451\) −4.11684 −0.193855
\(452\) 7.37228 12.7692i 0.346763 0.600611i
\(453\) −16.8614 3.96143i −0.792218 0.186124i
\(454\) 0.941578 + 1.63086i 0.0441904 + 0.0765401i
\(455\) 0 0
\(456\) −1.68614 5.59230i −0.0789608 0.261883i
\(457\) 15.0584 26.0820i 0.704403 1.22006i −0.262503 0.964931i \(-0.584548\pi\)
0.966906 0.255131i \(-0.0821186\pi\)
\(458\) 18.3723 0.858480
\(459\) 29.4891 + 24.4511i 1.37643 + 1.14128i
\(460\) 0 0
\(461\) −9.55842 + 16.5557i −0.445180 + 0.771075i −0.998065 0.0621833i \(-0.980194\pi\)
0.552885 + 0.833258i \(0.313527\pi\)
\(462\) −1.62772 5.39853i −0.0757283 0.251162i
\(463\) 10.0000 + 17.3205i 0.464739 + 0.804952i 0.999190 0.0402476i \(-0.0128147\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) 2.18614 + 3.78651i 0.101489 + 0.175784i
\(465\) 0 0
\(466\) −5.05842 + 8.76144i −0.234327 + 0.405866i
\(467\) −25.8832 −1.19773 −0.598865 0.800850i \(-0.704381\pi\)
−0.598865 + 0.800850i \(0.704381\pi\)
\(468\) 0.883156 + 14.2063i 0.0408239 + 0.656685i
\(469\) 16.6060 0.766792
\(470\) 0 0
\(471\) 5.62772 5.98844i 0.259312 0.275933i
\(472\) 0.686141 + 1.18843i 0.0315822 + 0.0547019i
\(473\) −7.80298 13.5152i −0.358782 0.621428i
\(474\) −2.37228 + 2.52434i −0.108962 + 0.115947i
\(475\) 0 0
\(476\) 17.4891 0.801613
\(477\) 28.7228 19.0526i 1.31513 0.872357i
\(478\) −14.7446 −0.674401
\(479\) 11.7446 20.3422i 0.536623 0.929458i −0.462460 0.886640i \(-0.653033\pi\)
0.999083 0.0428178i \(-0.0136335\pi\)
\(480\) 0 0
\(481\) 9.48913 + 16.4356i 0.432667 + 0.749401i
\(482\) −5.24456 9.08385i −0.238883 0.413758i
\(483\) −5.18614 17.2005i −0.235978 0.782649i
\(484\) 4.55842 7.89542i 0.207201 0.358883i
\(485\) 0 0
\(486\) 9.18614 12.5942i 0.416692 0.571286i
\(487\) 1.25544 0.0568893 0.0284446 0.999595i \(-0.490945\pi\)
0.0284446 + 0.999595i \(0.490945\pi\)
\(488\) −4.55842 + 7.89542i −0.206350 + 0.357409i
\(489\) 0.744563 + 2.46943i 0.0336703 + 0.111672i
\(490\) 0 0
\(491\) −1.80298 3.12286i −0.0813676 0.140933i 0.822470 0.568808i \(-0.192595\pi\)
−0.903838 + 0.427876i \(0.859262\pi\)
\(492\) −5.05842 1.18843i −0.228051 0.0535786i
\(493\) 16.1168 27.9152i 0.725866 1.25724i
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) −6.74456 −0.302840
\(497\) 7.11684 12.3267i 0.319234 0.552930i
\(498\) 1.93070 2.05446i 0.0865169 0.0920624i
\(499\) 1.05842 + 1.83324i 0.0473815 + 0.0820671i 0.888743 0.458405i \(-0.151579\pi\)
−0.841362 + 0.540472i \(0.818246\pi\)
\(500\) 0 0
\(501\) 9.04755 9.62747i 0.404215 0.430124i
\(502\) −7.80298 + 13.5152i −0.348264 + 0.603211i
\(503\) −21.8614 −0.974752 −0.487376 0.873192i \(-0.662046\pi\)
−0.487376 + 0.873192i \(0.662046\pi\)
\(504\) −0.441578 7.10313i −0.0196694 0.316399i
\(505\) 0 0
\(506\) −3.00000 + 5.19615i −0.133366 + 0.230997i
\(507\) 16.0367 + 3.76767i 0.712214 + 0.167328i
\(508\) 4.55842 + 7.89542i 0.202247 + 0.350303i
\(509\) −4.67527 8.09780i −0.207228 0.358929i 0.743613 0.668611i \(-0.233111\pi\)
−0.950840 + 0.309682i \(0.899777\pi\)
\(510\) 0 0
\(511\) −16.7446 + 29.0024i −0.740736 + 1.28299i
\(512\) 1.00000 0.0441942
\(513\) 13.4891 + 11.1846i 0.595559 + 0.493812i
\(514\) 1.37228 0.0605287
\(515\) 0 0
\(516\) −5.68614 18.8588i −0.250318 0.830212i
\(517\) −1.11684 1.93443i −0.0491187 0.0850762i
\(518\) −4.74456 8.21782i −0.208464 0.361070i
\(519\) −15.6060 3.66648i −0.685026 0.160941i
\(520\) 0 0
\(521\) −41.2337 −1.80648 −0.903240 0.429135i \(-0.858818\pi\)
−0.903240 + 0.429135i \(0.858818\pi\)
\(522\) −11.7446 5.84096i −0.514046 0.255652i
\(523\) 11.1168 0.486106 0.243053 0.970013i \(-0.421851\pi\)
0.243053 + 0.970013i \(0.421851\pi\)
\(524\) −4.37228 + 7.57301i −0.191004 + 0.330829i
\(525\) 0 0
\(526\) 2.74456 + 4.75372i 0.119669 + 0.207272i
\(527\) 24.8614 + 43.0612i 1.08298 + 1.87578i
\(528\) −1.62772 + 1.73205i −0.0708374 + 0.0753778i
\(529\) 1.94158 3.36291i 0.0844164 0.146214i
\(530\) 0 0
\(531\) −3.68614 1.83324i −0.159965 0.0795559i
\(532\) 8.00000 0.346844
\(533\) −7.11684 + 12.3267i −0.308265 + 0.533930i
\(534\) −1.88316 0.442430i −0.0814921 0.0191458i
\(535\) 0 0
\(536\) −3.50000 6.06218i −0.151177 0.261846i
\(537\) 1.62772 + 5.39853i 0.0702412 + 0.232964i
\(538\) −2.18614 + 3.78651i −0.0942512 + 0.163248i
\(539\) −1.88316 −0.0811133
\(540\) 0 0
\(541\) 21.6277 0.929848 0.464924 0.885351i \(-0.346082\pi\)
0.464924 + 0.885351i \(0.346082\pi\)
\(542\) −4.00000 + 6.92820i −0.171815 + 0.297592i
\(543\) 3.93070 + 13.0367i 0.168683 + 0.559457i
\(544\) −3.68614 6.38458i −0.158042 0.273737i
\(545\) 0 0
\(546\) −18.9783 4.45877i −0.812194 0.190818i
\(547\) 19.7337 34.1798i 0.843752 1.46142i −0.0429494 0.999077i \(-0.513675\pi\)
0.886701 0.462343i \(-0.152991\pi\)
\(548\) 1.88316 0.0804444
\(549\) −1.69702 27.2978i −0.0724269 1.16504i
\(550\) 0 0
\(551\) 7.37228 12.7692i 0.314070 0.543985i
\(552\) −5.18614 + 5.51856i −0.220737 + 0.234885i
\(553\) −2.37228 4.10891i −0.100880 0.174729i
\(554\) 2.62772 + 4.55134i 0.111641 + 0.193368i
\(555\) 0 0
\(556\) −9.05842 + 15.6896i −0.384163 + 0.665389i
\(557\) 9.76631 0.413812 0.206906 0.978361i \(-0.433661\pi\)
0.206906 + 0.978361i \(0.433661\pi\)
\(558\) 16.8614 11.1846i 0.713800 0.473482i
\(559\) −53.9565 −2.28212
\(560\) 0 0
\(561\) 17.0584 + 4.00772i 0.720207 + 0.169206i
\(562\) −2.18614 3.78651i −0.0922168 0.159724i
\(563\) 8.36141 + 14.4824i 0.352391 + 0.610360i 0.986668 0.162747i \(-0.0520353\pi\)
−0.634277 + 0.773106i \(0.718702\pi\)
\(564\) −0.813859 2.69927i −0.0342697 0.113660i
\(565\) 0 0
\(566\) 31.8614 1.33923
\(567\) 12.8832 + 17.0256i 0.541042 + 0.715006i
\(568\) −6.00000 −0.251754
\(569\) −4.80298 + 8.31901i −0.201352 + 0.348751i −0.948964 0.315384i \(-0.897867\pi\)
0.747613 + 0.664135i \(0.231200\pi\)
\(570\) 0 0
\(571\) 15.8030 + 27.3716i 0.661334 + 1.14546i 0.980265 + 0.197687i \(0.0633429\pi\)
−0.318931 + 0.947778i \(0.603324\pi\)
\(572\) 3.25544 + 5.63858i 0.136117 + 0.235761i
\(573\) −9.25544 2.17448i −0.386651 0.0908403i
\(574\) 3.55842 6.16337i 0.148526 0.257254i
\(575\) 0 0
\(576\) −2.50000 + 1.65831i −0.104167 + 0.0690963i
\(577\) 23.8832 0.994269 0.497134 0.867674i \(-0.334386\pi\)
0.497134 + 0.867674i \(0.334386\pi\)
\(578\) −18.6753 + 32.3465i −0.776789 + 1.34544i
\(579\) 4.60597 4.90120i 0.191418 0.203687i
\(580\) 0 0
\(581\) 1.93070 + 3.34408i 0.0800991 + 0.138736i
\(582\) −3.11684 + 3.31662i −0.129197 + 0.137479i
\(583\) 7.88316 13.6540i 0.326487 0.565492i
\(584\) 14.1168 0.584159
\(585\) 0 0
\(586\) 8.23369 0.340131
\(587\) 13.5000 23.3827i 0.557205 0.965107i −0.440524 0.897741i \(-0.645207\pi\)
0.997728 0.0673658i \(-0.0214594\pi\)
\(588\) −2.31386 0.543620i −0.0954220 0.0224185i
\(589\) 11.3723 + 19.6974i 0.468587 + 0.811616i
\(590\) 0 0
\(591\) 8.74456 + 29.0024i 0.359703 + 1.19300i
\(592\) −2.00000 + 3.46410i −0.0821995 + 0.142374i
\(593\) −37.7228 −1.54909 −0.774545 0.632519i \(-0.782021\pi\)
−0.774545 + 0.632519i \(0.782021\pi\)
\(594\) 1.19702 7.02939i 0.0491141 0.288419i
\(595\) 0 0
\(596\) −9.55842 + 16.5557i −0.391528 + 0.678147i
\(597\) 4.74456 + 15.7359i 0.194182 + 0.644029i
\(598\) 10.3723 + 17.9653i 0.424154 + 0.734656i
\(599\) 19.1168 + 33.1113i 0.781093 + 1.35289i 0.931305 + 0.364239i \(0.118671\pi\)
−0.150212 + 0.988654i \(0.547996\pi\)
\(600\) 0 0
\(601\) −13.4307 + 23.2627i −0.547850 + 0.948904i 0.450572 + 0.892740i \(0.351220\pi\)
−0.998422 + 0.0561635i \(0.982113\pi\)
\(602\) 26.9783 1.09955
\(603\) 18.8030 + 9.35135i 0.765717 + 0.380816i
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 10.3723 11.0371i 0.421345 0.448352i
\(607\) 0.441578 + 0.764836i 0.0179231 + 0.0310437i 0.874848 0.484398i \(-0.160961\pi\)
−0.856925 + 0.515442i \(0.827628\pi\)
\(608\) −1.68614 2.92048i −0.0683820 0.118441i
\(609\) 12.3030 13.0916i 0.498542 0.530497i
\(610\) 0 0
\(611\) −7.72281 −0.312432
\(612\) 19.8030 + 9.84868i 0.800488 + 0.398109i
\(613\) 0.233688 0.00943857 0.00471928 0.999989i \(-0.498498\pi\)
0.00471928 + 0.999989i \(0.498498\pi\)
\(614\) −16.6168 + 28.7812i −0.670601 + 1.16152i
\(615\) 0 0
\(616\) −1.62772 2.81929i −0.0655827 0.113592i
\(617\) −11.0584 19.1537i −0.445195 0.771101i 0.552870 0.833267i \(-0.313532\pi\)
−0.998066 + 0.0621663i \(0.980199\pi\)
\(618\) −8.00000 26.5330i −0.321807 1.06731i
\(619\) 19.0584 33.0102i 0.766023 1.32679i −0.173682 0.984802i \(-0.555566\pi\)
0.939704 0.341988i \(-0.111100\pi\)
\(620\) 0 0
\(621\) 3.81386 22.3966i 0.153045 0.898746i
\(622\) −9.25544 −0.371109
\(623\) 1.32473 2.29451i 0.0530743 0.0919275i
\(624\) 2.37228 + 7.86797i 0.0949673 + 0.314971i
\(625\) 0 0
\(626\) 4.68614 + 8.11663i 0.187296 + 0.324406i
\(627\) 7.80298 + 1.83324i 0.311621 + 0.0732126i
\(628\) 2.37228 4.10891i 0.0946643 0.163963i
\(629\) 29.4891 1.17581
\(630\) 0 0
\(631\) 33.7228 1.34248 0.671242 0.741238i \(-0.265761\pi\)
0.671242 + 0.741238i \(0.265761\pi\)
\(632\) −1.00000 + 1.73205i −0.0397779 + 0.0688973i
\(633\) 8.60597 9.15759i 0.342057 0.363981i
\(634\) −4.37228 7.57301i −0.173645 0.300763i
\(635\) 0 0
\(636\) 13.6277 14.5012i 0.540374 0.575011i
\(637\) −3.25544 + 5.63858i −0.128985 + 0.223409i
\(638\) −6.00000 −0.237542
\(639\) 15.0000 9.94987i 0.593391 0.393611i
\(640\) 0 0
\(641\) 19.5000 33.7750i 0.770204 1.33403i −0.167247 0.985915i \(-0.553488\pi\)
0.937451 0.348117i \(-0.113179\pi\)
\(642\) 24.4307 + 5.73977i 0.964203 + 0.226531i
\(643\) 5.50000 + 9.52628i 0.216899 + 0.375680i 0.953858 0.300257i \(-0.0970725\pi\)
−0.736959 + 0.675937i \(0.763739\pi\)
\(644\) −5.18614 8.98266i −0.204363 0.353966i
\(645\) 0 0
\(646\) −12.4307 + 21.5306i −0.489079 + 0.847111i
\(647\) −24.0951 −0.947276 −0.473638 0.880720i \(-0.657059\pi\)
−0.473638 + 0.880720i \(0.657059\pi\)
\(648\) 3.50000 8.29156i 0.137493 0.325723i
\(649\) −1.88316 −0.0739203
\(650\) 0 0
\(651\) 8.00000 + 26.5330i 0.313545 + 1.03991i
\(652\) 0.744563 + 1.28962i 0.0291593 + 0.0505054i
\(653\) −18.8614 32.6689i −0.738104 1.27843i −0.953348 0.301873i \(-0.902388\pi\)
0.215244 0.976560i \(-0.430945\pi\)
\(654\) 16.2337 + 3.81396i 0.634787 + 0.149138i
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) −35.2921 + 23.4101i −1.37688 + 0.913316i
\(658\) 3.86141 0.150533
\(659\) 2.74456 4.75372i 0.106913 0.185179i −0.807605 0.589724i \(-0.799237\pi\)
0.914518 + 0.404545i \(0.132570\pi\)
\(660\) 0 0
\(661\) −11.1168 19.2549i −0.432395 0.748930i 0.564684 0.825307i \(-0.308998\pi\)
−0.997079 + 0.0763770i \(0.975665\pi\)
\(662\) 9.11684 + 15.7908i 0.354336 + 0.613728i
\(663\) 41.4891 44.1485i 1.61130 1.71458i
\(664\) 0.813859 1.40965i 0.0315839 0.0547049i
\(665\) 0 0
\(666\) −0.744563 11.9769i −0.0288512 0.464095i
\(667\) −19.1168 −0.740207
\(668\) 3.81386 6.60580i 0.147563 0.255586i
\(669\) −20.8614 4.90120i −0.806549 0.189491i
\(670\) 0 0
\(671\) −6.25544 10.8347i −0.241488 0.418270i
\(672\) −1.18614 3.93398i −0.0457564 0.151757i
\(673\) −5.00000 + 8.66025i −0.192736 + 0.333828i −0.946156 0.323711i \(-0.895069\pi\)
0.753420 + 0.657539i \(0.228403\pi\)
\(674\) −3.37228 −0.129895
\(675\) 0 0
\(676\) 9.51087 0.365803
\(677\) −21.8614 + 37.8651i −0.840202 + 1.45527i 0.0495215 + 0.998773i \(0.484230\pi\)
−0.889724 + 0.456500i \(0.849103\pi\)
\(678\) 7.37228 + 24.4511i 0.283131 + 0.939038i
\(679\) −3.11684 5.39853i −0.119613 0.207177i
\(680\) 0 0
\(681\) −3.17527 0.746000i −0.121676 0.0285868i
\(682\) 4.62772 8.01544i 0.177205 0.306927i
\(683\) −33.0951 −1.26635 −0.633174 0.774009i \(-0.718248\pi\)
−0.633174 + 0.774009i \(0.718248\pi\)
\(684\) 9.05842 + 4.50506i 0.346357 + 0.172255i
\(685\) 0 0
\(686\) 9.93070 17.2005i 0.379156 0.656717i
\(687\) −21.7921 + 23.1889i −0.831421 + 0.884713i
\(688\) −5.68614 9.84868i −0.216782 0.375478i
\(689\) −27.2554 47.2078i −1.03835 1.79847i
\(690\) 0 0
\(691\) 0.883156 1.52967i 0.0335968 0.0581914i −0.848738 0.528813i \(-0.822637\pi\)
0.882335 + 0.470622i \(0.155970\pi\)
\(692\) −9.25544 −0.351839
\(693\) 8.74456 + 4.34896i 0.332178 + 0.165203i
\(694\) 22.1168 0.839544
\(695\) 0 0
\(696\) −7.37228 1.73205i −0.279446 0.0656532i
\(697\) 11.0584 + 19.1537i 0.418868 + 0.725500i
\(698\) −0.441578 0.764836i −0.0167140 0.0289495i
\(699\) −5.05842 16.7769i −0.191327 0.634560i
\(700\) 0 0
\(701\) 14.1386 0.534007 0.267004 0.963696i \(-0.413966\pi\)
0.267004 + 0.963696i \(0.413966\pi\)
\(702\) −18.9783 15.7359i −0.716288 0.593915i
\(703\) 13.4891 0.508752
\(704\) −0.686141 + 1.18843i −0.0258599 + 0.0447907i
\(705\) 0 0
\(706\) 15.1753 + 26.2843i 0.571129 + 0.989224i
\(707\) 10.3723 + 17.9653i 0.390090 + 0.675655i
\(708\) −2.31386 0.543620i −0.0869602 0.0204305i
\(709\) 12.9307 22.3966i 0.485623 0.841123i −0.514241 0.857646i \(-0.671926\pi\)
0.999863 + 0.0165226i \(0.00525955\pi\)
\(710\) 0 0
\(711\) −0.372281 5.98844i −0.0139616 0.224584i
\(712\) −1.11684 −0.0418555
\(713\) 14.7446 25.5383i 0.552188 0.956418i
\(714\) −20.7446 + 22.0742i −0.776346 + 0.826107i
\(715\) 0 0
\(716\) 1.62772 + 2.81929i 0.0608307 + 0.105362i
\(717\) 17.4891 18.6101i 0.653143 0.695008i
\(718\) −2.74456 + 4.75372i −0.102426 + 0.177407i
\(719\) −38.2337 −1.42588 −0.712938 0.701227i \(-0.752636\pi\)
−0.712938 + 0.701227i \(0.752636\pi\)
\(720\) 0 0
\(721\) 37.9565 1.41357
\(722\) 3.81386 6.60580i 0.141937 0.245842i
\(723\) 17.6861 + 4.15520i 0.657755 + 0.154534i
\(724\) 3.93070 + 6.80818i 0.146083 + 0.253024i
\(725\) 0 0
\(726\) 4.55842 + 15.1186i 0.169179 + 0.561103i
\(727\) 0.441578 0.764836i 0.0163772 0.0283662i −0.857721 0.514116i \(-0.828120\pi\)
0.874098 + 0.485750i \(0.161453\pi\)
\(728\) −11.2554 −0.417154
\(729\) 5.00000 + 26.5330i 0.185185 + 0.982704i
\(730\) 0 0
\(731\) −41.9198 + 72.6073i −1.55046 + 2.68548i
\(732\) −4.55842 15.1186i −0.168484 0.558799i
\(733\) 17.1168 + 29.6472i 0.632225 + 1.09505i 0.987096 + 0.160131i \(0.0511915\pi\)
−0.354871 + 0.934915i \(0.615475\pi\)
\(734\) −8.00000 13.8564i −0.295285 0.511449i
\(735\) 0 0
\(736\) −2.18614 + 3.78651i −0.0805822 + 0.139572i
\(737\) 9.60597 0.353840
\(738\) 7.50000 4.97494i 0.276079 0.183130i
\(739\) −23.8832 −0.878556 −0.439278 0.898351i \(-0.644766\pi\)
−0.439278 + 0.898351i \(0.644766\pi\)
\(740\) 0 0
\(741\) 18.9783 20.1947i 0.697183 0.741871i
\(742\) 13.6277 + 23.6039i 0.500289 + 0.866526i
\(743\) 12.5584 + 21.7518i 0.460724 + 0.797997i 0.998997 0.0447732i \(-0.0142565\pi\)
−0.538273 + 0.842770i \(0.680923\pi\)
\(744\) 8.00000 8.51278i 0.293294 0.312094i
\(745\) 0 0
\(746\) −7.48913 −0.274196
\(747\) 0.302985 + 4.87375i 0.0110856 + 0.178321i
\(748\) 10.1168 0.369908
\(749\) −17.1861 + 29.7673i −0.627968 + 1.08767i
\(750\) 0 0
\(751\) 9.11684 + 15.7908i 0.332678 + 0.576216i 0.983036 0.183412i \(-0.0587143\pi\)
−0.650358 + 0.759628i \(0.725381\pi\)
\(752\) −0.813859 1.40965i −0.0296784 0.0514045i
\(753\) −7.80298 25.8796i −0.284357 0.943104i
\(754\) −10.3723 + 17.9653i −0.377736 + 0.654258i
\(755\) 0 0
\(756\) 9.48913 + 7.86797i 0.345116 + 0.286155i
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 5.43070 9.40625i 0.197252 0.341651i
\(759\) −3.00000 9.94987i −0.108893 0.361158i
\(760\) 0 0
\(761\) −6.04755 10.4747i −0.219223 0.379706i 0.735347 0.677690i \(-0.237019\pi\)
−0.954571 + 0.297984i \(0.903686\pi\)
\(762\) −15.3723 3.61158i −0.556879 0.130834i
\(763\) −11.4198 + 19.7797i −0.413426 + 0.716074i
\(764\) −5.48913 −0.198590
\(765\) 0 0
\(766\) −22.9783 −0.830238
\(767\) −3.25544 + 5.63858i −0.117547 + 0.203597i
\(768\) −1.18614 + 1.26217i −0.0428012 + 0.0455446i
\(769\) 9.06930 + 15.7085i 0.327047 + 0.566462i 0.981925 0.189273i \(-0.0606131\pi\)
−0.654877 + 0.755735i \(0.727280\pi\)
\(770\) 0 0
\(771\) −1.62772 + 1.73205i −0.0586209 + 0.0623783i
\(772\) 1.94158 3.36291i 0.0698789 0.121034i
\(773\) −14.7446 −0.530325 −0.265163 0.964204i \(-0.585426\pi\)
−0.265163 + 0.964204i \(0.585426\pi\)
\(774\) 30.5475 + 15.1923i 1.09801 + 0.546076i
\(775\) 0 0
\(776\) −1.31386 + 2.27567i −0.0471648 + 0.0816918i
\(777\) 16.0000 + 3.75906i 0.573997 + 0.134855i
\(778\) 5.18614 + 8.98266i 0.185932 + 0.322044i
\(779\) 5.05842 + 8.76144i 0.181237 + 0.313911i
\(780\) 0 0
\(781\) 4.11684 7.13058i 0.147312 0.255152i
\(782\) 32.2337 1.15267
\(783\) 21.3030 7.89542i 0.761307 0.282159i
\(784\) −1.37228 −0.0490100
\(785\) 0 0
\(786\) −4.37228 14.5012i −0.155954 0.517241i
\(787\) −14.0000 24.2487i −0.499046 0.864373i 0.500953 0.865474i \(-0.332983\pi\)
−0.999999 + 0.00110111i \(0.999650\pi\)
\(788\) 8.74456 + 15.1460i 0.311512 + 0.539555i
\(789\) −9.25544 2.17448i −0.329502 0.0774136i
\(790\) 0 0
\(791\) −34.9783 −1.24368
\(792\) −0.255437 4.10891i −0.00907657 0.146004i
\(793\) −43.2554 −1.53605
\(794\) 5.62772 9.74749i 0.199720 0.345926i
\(795\) 0 0
\(796\) 4.74456 + 8.21782i 0.168167 + 0.291273i
\(797\) 1.62772 + 2.81929i 0.0576568 + 0.0998644i 0.893413 0.449236i \(-0.148304\pi\)
−0.835756 + 0.549100i \(0.814970\pi\)
\(798\) −9.48913 + 10.0974i −0.335911 + 0.357442i
\(799\) −6.00000 + 10.3923i −0.212265 + 0.367653i
\(800\) 0 0
\(801\) 2.79211 1.85208i 0.0986544 0.0654399i
\(802\) 16.1168 0.569106
\(803\) −9.68614 + 16.7769i −0.341816 + 0.592044i
\(804\) 11.8030 + 2.77300i 0.416259 + 0.0977963i
\(805\) 0 0
\(806\) −16.0000 27.7128i −0.563576 0.976142i
\(807\) −2.18614 7.25061i −0.0769558 0.255234i
\(808\) 4.37228 7.57301i 0.153816 0.266418i
\(809\) −12.3505 −0.434222 −0.217111 0.976147i \(-0.569663\pi\)
−0.217111 + 0.976147i \(0.569663\pi\)
\(810\) 0 0
\(811\) 9.37228 0.329105 0.164553 0.986368i \(-0.447382\pi\)
0.164553 + 0.986368i \(0.447382\pi\)
\(812\) 5.18614 8.98266i 0.181998 0.315230i
\(813\) −4.00000 13.2665i −0.140286 0.465276i
\(814\) −2.74456 4.75372i −0.0961969 0.166618i
\(815\) 0 0
\(816\) 12.4307 + 2.92048i 0.435162 + 0.102237i
\(817\) −19.1753 + 33.2125i −0.670858 + 1.16196i
\(818\) −10.8614 −0.379760
\(819\) 28.1386 18.6650i 0.983242 0.652209i
\(820\) 0 0
\(821\) −25.4198 + 44.0284i −0.887158 + 1.53660i −0.0439382 + 0.999034i \(0.513990\pi\)
−0.843220 + 0.537569i \(0.819343\pi\)
\(822\) −2.23369 + 2.37686i −0.0779088 + 0.0829025i
\(823\) 19.0475 + 32.9913i 0.663956 + 1.15001i 0.979567 + 0.201117i \(0.0644570\pi\)
−0.315612 + 0.948888i \(0.602210\pi\)
\(824\) −8.00000 13.8564i −0.278693 0.482711i
\(825\) 0 0
\(826\) 1.62772 2.81929i 0.0566356 0.0980957i
\(827\) −8.13859 −0.283007 −0.141503 0.989938i \(-0.545194\pi\)
−0.141503 + 0.989938i \(0.545194\pi\)
\(828\) −0.813859 13.0916i −0.0282836 0.454964i
\(829\) −32.8832 −1.14208 −0.571040 0.820923i \(-0.693460\pi\)
−0.571040 + 0.820923i \(0.693460\pi\)
\(830\) 0 0
\(831\) −8.86141 2.08191i −0.307399 0.0722206i
\(832\) 2.37228 + 4.10891i 0.0822441 + 0.142451i
\(833\) 5.05842 + 8.76144i 0.175264 + 0.303566i
\(834\) −9.05842 30.0434i −0.313668 1.04032i
\(835\) 0 0
\(836\) 4.62772 0.160053
\(837\) −5.88316 + 34.5484i −0.203352 + 1.19417i
\(838\) −31.7228 −1.09585
\(839\) −22.1168 + 38.3075i −0.763558 + 1.32252i 0.177447 + 0.984130i \(0.443216\pi\)
−0.941005 + 0.338391i \(0.890117\pi\)
\(840\) 0 0
\(841\) 4.94158 + 8.55906i 0.170399 + 0.295140i
\(842\) 19.2337 + 33.3137i 0.662837 + 1.14807i
\(843\) 7.37228 + 1.73205i 0.253915 + 0.0596550i
\(844\) 3.62772 6.28339i 0.124871 0.216283i
\(845\) 0 0
\(846\) 4.37228 + 2.17448i 0.150322 + 0.0747602i
\(847\) −21.6277 −0.743137
\(848\) 5.74456 9.94987i 0.197269 0.341680i
\(849\) −37.7921 + 40.2145i −1.29702 + 1.38016i
\(850\) 0 0
\(851\) −8.74456 15.1460i −0.299760 0.519199i
\(852\) 7.11684 7.57301i 0.243819 0.259447i
\(853\) −0.883156 + 1.52967i −0.0302387 + 0.0523749i −0.880749 0.473584i \(-0.842960\pi\)
0.850510 + 0.525959i \(0.176293\pi\)
\(854\) 21.6277 0.740085
\(855\) 0 0
\(856\) 14.4891 0.495228
\(857\) 11.7446 20.3422i 0.401187 0.694876i −0.592683 0.805436i \(-0.701931\pi\)
0.993869 + 0.110560i \(0.0352646\pi\)
\(858\) −10.9783 2.57924i −0.374791 0.0880538i
\(859\) −0.0584220 0.101190i −0.00199333 0.00345255i 0.865027 0.501725i \(-0.167301\pi\)
−0.867020 + 0.498273i \(0.833968\pi\)
\(860\) 0 0
\(861\) 3.55842 + 11.8020i 0.121271 + 0.402209i
\(862\) 13.1168 22.7190i 0.446761 0.773814i
\(863\) 42.6060 1.45032 0.725162 0.688578i \(-0.241765\pi\)
0.725162 + 0.688578i \(0.241765\pi\)
\(864\) 0.872281 5.12241i 0.0296756 0.174268i
\(865\) 0 0
\(866\) 0.313859 0.543620i 0.0106654 0.0184730i
\(867\) −18.6753 61.9389i −0.634245 2.10355i
\(868\) 8.00000 + 13.8564i 0.271538 + 0.470317i
\(869\) −1.37228 2.37686i −0.0465515 0.0806295i
\(870\) 0 0
\(871\) 16.6060 28.7624i 0.562672 0.974576i
\(872\) 9.62772 0.326036
\(873\) −0.489125 7.86797i −0.0165544 0.266290i
\(874\) 14.7446 0.498742
\(875\) 0 0
\(876\) −16.7446 + 17.8178i −0.565746 + 0.602009i
\(877\) −27.9783 48.4598i −0.944758 1.63637i −0.756234 0.654301i \(-0.772963\pi\)
−0.188524 0.982069i \(-0.560370\pi\)
\(878\) −8.11684 14.0588i −0.273930 0.474461i
\(879\) −9.76631 + 10.3923i −0.329410 + 0.350524i
\(880\) 0 0
\(881\) 27.3505 0.921463 0.460731 0.887540i \(-0.347587\pi\)
0.460731 + 0.887540i \(0.347587\pi\)
\(882\) 3.43070 2.27567i 0.115518 0.0766258i
\(883\) −12.7228 −0.428157 −0.214078 0.976816i \(-0.568675\pi\)
−0.214078 + 0.976816i \(0.568675\pi\)
\(884\) 17.4891 30.2921i 0.588223 1.01883i
\(885\) 0 0
\(886\) −13.2446 22.9403i −0.444960 0.770693i
\(887\) −18.8614 32.6689i −0.633304 1.09691i −0.986872 0.161506i \(-0.948365\pi\)
0.353568 0.935409i \(-0.384968\pi\)
\(888\) −2.00000 6.63325i −0.0671156 0.222597i
\(889\) 10.8139 18.7302i 0.362685 0.628189i
\(890\) 0 0
\(891\) 7.45245 + 9.84868i 0.249667 + 0.329943i
\(892\) −12.3723 −0.414255
\(893\) −2.74456 + 4.75372i −0.0918433 + 0.159077i
\(894\) −9.55842 31.7017i −0.319681 1.06026i
\(895\) 0 0
\(896\) −1.18614 2.05446i −0.0396262 0.0686346i
\(897\) −34.9783 8.21782i −1.16789 0.274385i
\(898\) 9.43070 16.3345i 0.314707 0.545088i
\(899\) 29.4891 0.983517
\(900\) 0 0
\(901\) −84.7011 −2.82180
\(902\) 2.05842 3.56529i 0.0685380 0.118711i
\(903\) −32.0000 + 34.0511i −1.06489 + 1.13315i
\(904\) 7.37228 + 12.7692i 0.245198 + 0.424696i
\(905\) 0 0
\(906\) 11.8614 12.6217i 0.394069 0.419328i
\(907\) −3.50000 + 6.06218i −0.116216 + 0.201291i −0.918265 0.395966i \(-0.870410\pi\)
0.802049 + 0.597258i \(0.203743\pi\)
\(908\) −1.88316 −0.0624947
\(909\) 1.62772 + 26.1831i 0.0539880 + 0.868440i
\(910\) 0 0
\(911\) 21.0000 36.3731i 0.695761 1.20509i −0.274162 0.961683i \(-0.588401\pi\)
0.969923 0.243410i \(-0.0782661\pi\)
\(912\) 5.68614 + 1.33591i 0.188287 + 0.0442363i
\(913\) 1.11684 + 1.93443i 0.0369621 + 0.0640203i
\(914\) 15.0584 + 26.0820i 0.498088 + 0.862714i
\(915\) 0 0
\(916\) −9.18614 + 15.9109i −0.303519 + 0.525710i
\(917\) 20.7446 0.685046
\(918\) −35.9198 + 13.3128i −1.18553 + 0.439387i
\(919\) 42.4674 1.40087 0.700435 0.713716i \(-0.252989\pi\)
0.700435 + 0.713716i \(0.252989\pi\)
\(920\) 0 0
\(921\) −16.6168 55.1118i −0.547544 1.81600i
\(922\) −9.55842 16.5557i −0.314790 0.545232i
\(923\) −14.2337 24.6535i −0.468508 0.811479i
\(924\) 5.48913 + 1.28962i 0.180579 + 0.0424254i
\(925\) 0 0
\(926\) −20.0000 −0.657241
\(927\) 42.9783 + 21.3745i 1.41159 + 0.702031i
\(928\) −4.37228 −0.143527
\(929\) 19.9783 34.6033i 0.655465 1.13530i −0.326312 0.945262i \(-0.605806\pi\)
0.981777 0.190037i \(-0.0608607\pi\)
\(930\) 0 0
\(931\) 2.31386 + 4.00772i 0.0758337 + 0.131348i
\(932\) −5.05842 8.76144i −0.165694 0.286991i
\(933\) 10.9783 11.6819i 0.359412 0.382449i
\(934\) 12.9416 22.4155i 0.423461 0.733457i
\(935\) 0 0
\(936\) −12.7446 6.33830i −0.416569 0.207174i
\(937\) 17.7228 0.578979 0.289490 0.957181i \(-0.406514\pi\)
0.289490 + 0.957181i \(0.406514\pi\)
\(938\) −8.30298 + 14.3812i −0.271102 + 0.469563i
\(939\) −15.8030 3.71277i −0.515711 0.121162i
\(940\) 0 0
\(941\) −18.8139 32.5866i −0.613314 1.06229i −0.990678 0.136226i \(-0.956503\pi\)
0.377363 0.926065i \(-0.376831\pi\)
\(942\) 2.37228 + 7.86797i 0.0772931 + 0.256352i
\(943\) 6.55842 11.3595i 0.213572 0.369917i
\(944\) −1.37228 −0.0446640
\(945\) 0 0
\(946\) 15.6060 0.507394
\(947\) 11.3614 19.6785i 0.369196 0.639466i −0.620244 0.784409i \(-0.712966\pi\)
0.989440 + 0.144943i \(0.0462997\pi\)
\(948\) −1.00000 3.31662i −0.0324785 0.107719i
\(949\) 33.4891 + 58.0049i 1.08710 + 1.88292i
\(950\) 0 0
\(951\) 14.7446 + 3.46410i 0.478125 + 0.112331i
\(952\) −8.74456 + 15.1460i −0.283413 + 0.490886i
\(953\) −30.8614 −0.999699 −0.499850 0.866112i \(-0.666611\pi\)
−0.499850 + 0.866112i \(0.666611\pi\)
\(954\) 2.13859 + 34.4010i 0.0692395 + 1.11377i
\(955\) 0 0
\(956\) 7.37228 12.7692i 0.238437 0.412984i
\(957\) 7.11684 7.57301i 0.230055 0.244801i
\(958\) 11.7446 + 20.3422i 0.379450 + 0.657226i
\(959\) −2.23369 3.86886i −0.0721295 0.124932i
\(960\) 0 0
\(961\) −7.24456 + 12.5480i −0.233696 + 0.404773i
\(962\) −18.9783 −0.611883
\(963\) −36.2228 + 24.0275i −1.16726 + 0.774275i
\(964\) 10.4891 0.337832
\(965\) 0 0
\(966\) 17.4891 + 4.10891i 0.562703 + 0.132202i
\(967\) 9.44158 + 16.3533i 0.303621 + 0.525886i 0.976953 0.213453i \(-0.0684711\pi\)
−0.673333 + 0.739340i \(0.735138\pi\)
\(968\) 4.55842 + 7.89542i 0.146513 + 0.253768i
\(969\) −12.4307 41.2280i −0.399332 1.32443i
\(970\) 0 0
\(971\) 22.9783 0.737407 0.368704 0.929547i \(-0.379802\pi\)
0.368704 + 0.929547i \(0.379802\pi\)
\(972\) 6.31386 + 14.2525i 0.202517 + 0.457151i
\(973\) 42.9783 1.37782
\(974\) −0.627719 + 1.08724i −0.0201134 + 0.0348374i
\(975\) 0 0
\(976\) −4.55842 7.89542i −0.145912 0.252726i
\(977\) −20.0584 34.7422i −0.641726 1.11150i −0.985047 0.172284i \(-0.944885\pi\)
0.343322 0.939218i \(-0.388448\pi\)
\(978\) −2.51087 0.589907i −0.0802889 0.0188632i
\(979\) 0.766312 1.32729i 0.0244914 0.0424204i
\(980\) 0 0
\(981\) −24.0693 + 15.9658i −0.768474 + 0.509748i
\(982\) 3.60597 0.115071
\(983\) 7.93070 13.7364i 0.252950 0.438123i −0.711387 0.702801i \(-0.751932\pi\)
0.964337 + 0.264678i \(0.0852658\pi\)
\(984\) 3.55842 3.78651i 0.113438 0.120709i
\(985\) 0 0
\(986\) 16.1168 + 27.9152i 0.513265 + 0.889001i
\(987\) −4.58017 + 4.87375i −0.145788 + 0.155133i
\(988\) 8.00000 13.8564i 0.254514 0.440831i
\(989\) 49.7228 1.58109
\(990\) 0 0
\(991\) −18.2337 −0.579212 −0.289606 0.957146i \(-0.593524\pi\)
−0.289606 + 0.957146i \(0.593524\pi\)
\(992\) 3.37228 5.84096i 0.107070 0.185451i
\(993\) −30.7446 7.22316i −0.975649 0.229220i
\(994\) 7.11684 + 12.3267i 0.225733 + 0.390980i
\(995\) 0 0
\(996\) 0.813859 + 2.69927i 0.0257881 + 0.0855295i
\(997\) 7.00000 12.1244i 0.221692 0.383982i −0.733630 0.679549i \(-0.762175\pi\)
0.955322 + 0.295567i \(0.0955086\pi\)
\(998\) −2.11684 −0.0670075
\(999\) 16.0000 + 13.2665i 0.506218 + 0.419733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.e.j.151.1 4
3.2 odd 2 1350.2.e.l.451.1 4
5.2 odd 4 450.2.j.g.349.1 8
5.3 odd 4 450.2.j.g.349.4 8
5.4 even 2 90.2.e.c.61.2 yes 4
9.2 odd 6 4050.2.a.bo.1.2 2
9.4 even 3 inner 450.2.e.j.301.2 4
9.5 odd 6 1350.2.e.l.901.1 4
9.7 even 3 4050.2.a.bw.1.2 2
15.2 even 4 1350.2.j.f.1099.3 8
15.8 even 4 1350.2.j.f.1099.2 8
15.14 odd 2 270.2.e.c.181.2 4
20.19 odd 2 720.2.q.f.241.1 4
45.2 even 12 4050.2.c.ba.649.2 4
45.4 even 6 90.2.e.c.31.1 4
45.7 odd 12 4050.2.c.v.649.4 4
45.13 odd 12 450.2.j.g.49.1 8
45.14 odd 6 270.2.e.c.91.2 4
45.22 odd 12 450.2.j.g.49.4 8
45.23 even 12 1350.2.j.f.199.3 8
45.29 odd 6 810.2.a.k.1.1 2
45.32 even 12 1350.2.j.f.199.2 8
45.34 even 6 810.2.a.i.1.1 2
45.38 even 12 4050.2.c.ba.649.3 4
45.43 odd 12 4050.2.c.v.649.1 4
60.59 even 2 2160.2.q.f.721.1 4
180.59 even 6 2160.2.q.f.1441.1 4
180.79 odd 6 6480.2.a.be.1.2 2
180.119 even 6 6480.2.a.bn.1.2 2
180.139 odd 6 720.2.q.f.481.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.c.31.1 4 45.4 even 6
90.2.e.c.61.2 yes 4 5.4 even 2
270.2.e.c.91.2 4 45.14 odd 6
270.2.e.c.181.2 4 15.14 odd 2
450.2.e.j.151.1 4 1.1 even 1 trivial
450.2.e.j.301.2 4 9.4 even 3 inner
450.2.j.g.49.1 8 45.13 odd 12
450.2.j.g.49.4 8 45.22 odd 12
450.2.j.g.349.1 8 5.2 odd 4
450.2.j.g.349.4 8 5.3 odd 4
720.2.q.f.241.1 4 20.19 odd 2
720.2.q.f.481.2 4 180.139 odd 6
810.2.a.i.1.1 2 45.34 even 6
810.2.a.k.1.1 2 45.29 odd 6
1350.2.e.l.451.1 4 3.2 odd 2
1350.2.e.l.901.1 4 9.5 odd 6
1350.2.j.f.199.2 8 45.32 even 12
1350.2.j.f.199.3 8 45.23 even 12
1350.2.j.f.1099.2 8 15.8 even 4
1350.2.j.f.1099.3 8 15.2 even 4
2160.2.q.f.721.1 4 60.59 even 2
2160.2.q.f.1441.1 4 180.59 even 6
4050.2.a.bo.1.2 2 9.2 odd 6
4050.2.a.bw.1.2 2 9.7 even 3
4050.2.c.v.649.1 4 45.43 odd 12
4050.2.c.v.649.4 4 45.7 odd 12
4050.2.c.ba.649.2 4 45.2 even 12
4050.2.c.ba.649.3 4 45.38 even 12
6480.2.a.be.1.2 2 180.79 odd 6
6480.2.a.bn.1.2 2 180.119 even 6